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ARTICLE INFO ABSTRACT

Keywords: Tree species mapping is an important type of information demanded in different study fields. However, this task
Convolutional neural networks can be expensive and time-consuming, making it difficult to monitor extensive areas. Hence, automatic methods
Mobile devices are required to optimize tree species mapping. Here, we propose a deep learning-based mobile application tool

Trees mapping

N for tree species classification in high-spatial-resolution RGB images. Several deep learning architectures were
Remote sensing

evaluated, including mobile networks and traditional models. A total of 2,349 images were used, of which
1,174 images consisted of the Dipteryx alata species and 1,175 images of other local species. These images
were manually annotated and randomly divided into training (70%), validation (20%), and testing (10%)
subsets, considering the five-fold cross-validation. We evaluated the accuracy and speed (GPU and CPU) of
all the implemented deep learning architectures. We found out that the traditional networks have the best
performance in terms of F1 score; however, mobile networks are faster. Inception V3 model achieved the best
accuracy (F1 score of 97.4%), and MobileNet the worst (F1 score of 83.84%). The MobileNet obtained the
best classification speed for CPU (with a mean execution time of 102.8 ms) and GPU (72.4 ms) units. For
comparison, Inception V3 achieved a mean execution time of 1058.3 ms for CPU and 634.5 ms for GPU. We
conclude that the mobile application proposed can be successfully used to run mobile networks and traditional
networks for image classification, but the balance between accuracy and execution time needs to be carefully
assessed. This mobile app is a tool for researchers, policymakers, non-governmental organizations, and the
general public who intends to assess the tree species, providing a GUI-based platform for non-programmers to
access the capabilities of deep learning models in complex classification tasks.

1. Introduction to map complex targets using mobile platforms (Ran et al., 2018; Deng,

2019. As a result, mapping tasks have also extended to mobile platforms

The expanding market of online mapping, satellite imagery usage, capable of performing an integrated and dynamic investigation (Giusti

and personal navigation apps have motivated the geospatial community et al., 2015) that can support decision-making processes (Giusti et al.,
to develop tools to address social and economic demands in multiple 2015; Ran et al., 2018).

contexts. The task of object detection in remote sensing images using
machine learning approaches increased and, in the last years, became
more accessible to researchers in multiple countries, making it possible

Forest monitoring offers essential data to guide public policies on
vegetation protection and management, climate change mitigation, and
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sustainable development. The capability of detecting individuals or
groups of trees is essential for many applications, such as resource in-
ventories, wildlife habitat mapping, biodiversity assessment, and threat
and stress management (Fassnacht et al., 2016). For urban centers,
where the deteriorating ecological environment is critical in urban
ecosystems (Bastian et al., 2012), it is crucial to map vegetation to
assist practices that aim to improve its sustainability and resilience.
Trees provide an array of ecosystem services, including regulating and
maintaining local climatic conditions by reducing the formation of
heat islands and increasing water infiltration in the soil. They also
nourish habitat for local biodiversity, provisioning resources (wood,
food, and biomass), cultural, economic, and historical values, and
scenic landscapes (Baré et al., 2014; McHugh et al., 2015). Therefore,
the preservation of these systems requires accurate and precise data
gathering, especially for the more sensitive or endangered tree species.
However, individual tree mapping based on ground surveys can be
expensive and time-consuming, evolving specialists in this field, making
the task difficult to be implemented for larger areas.

Remote sensing platforms are essential for data acquisition at differ-
ent scales, like orbital, suborbital, aerial, and terrestrial levels (Alonzo
et al., 2014). Advances in Unmanned Aerial Vehicles (UAV) platforms
technologies (Salami et al., 2014), for example, enable acquiring aerial
images at a high spatial resolution rapidly and at a lower cost than in
the past. High spatial-resolution imagery use enables a more refined
data analysis required in some applications like those related to tree
species mapping (Lobo Torres et al., 2020; Liu et al., 2017). Never-
theless, due to the large amount of data generated, there is a demand
for building tools that can efficiently process this information. As such,
integrating deep learning methods and mobile platforms may result
in a robust and low-cost approach to deal with this issue. Among the
deep learning architectures, the usage of convolutional neural networks
(CNN) based architectures is currently the most used approach to
extract information from remote sensing imagery (Martins et al., 2021;
dos Santos et al., 2019; Osco et al., 2019; Li et al., 2019).

For tree species mapping issues, several studies have combined
deep learning methods and remote sensing data such as multi and
hyperspectral images, LiDAR, and a combination of both (Ferreira
et al., 2020; Torabzadeh et al., 2019; Franklin and Ahmed, 2018; Xie
et al., 2019). However, classifying tree species in high spatial-resolution
RGB imagery with deep learning models should be encouraged since
RGB sensors are cheaper and frequently embedded in UAV platforms.
Additionally, in recent years, there has been a growing availability of
powerful and low-cost mobile phones and devices that researchers have
explored with deep learning methods (Sandler et al., 2018; Ran et al.,
2018; Deng, 2019; Suharjito et al., 2021).

Mobile applications for tree mapping using CNNs are still poorly
explored. This is due to the fact that algorithms of this type of approach
are computationally expensive, especially for mobile devices that do
not have robust hardware when in comparison to desktop computers.
For video-logging systems, mobile mapping phase systems can offer
full 3-D mapping capabilities that are achieved using advanced multi-
sensor integrated data acquisition and processing technology, making
it possible to refine data analysis (Nyqvist et al., 2020; Zhang et al.,
2020; Sant’Ana et al., 2021; Qian et al., 2021). As highlighted by Tao
and Li (2007), the recent technological trend in mobile mapping can
be characterized by: (1) the increasing usage of mobile and portable
sensors with low-cost, enabling direct georeferencing appliances; and
(2) a collaborative mapping with networked multi-platform sensors.
Thus, even though mobile phones have considerably less hardware
power than desktop computers, they could be a suitable platform to
run CNN’s models.

In the aforementioned context, this study proposes a deep learning-
based mobile application for tree species classification in RGB imagery
with high spatial resolution. We considered CNNs designed specifically
for mobile devices, such as the MobileNet V2 (Sandler et al., 2018)
and NASNet Mobile (Zoph et al., 2017), and traditional CNNs like
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Table 1
Mobile device specification.

Smartphone Moto Z2 Play
Screen resolution 1080 x 1920
Camera 12 Mp/4032 x 3024
ChipSet Snapdragon 626
RAM 4 GB

Android version 9.0

InceptionResNet V2 (Szegedy et al., 2016), Inception V3 (Szegedy et al.,
2015), and ResNets (He et al., 2016). For our study case, we trained
these CNNs to map the Dipteryx alata tree species, popularly known as
Cumbaru or Baru in their native regions. The Dipteryx alata trees are
common in the Cerrado biome regions in Brazil and have important
ecological and socioeconomic value (Martins, 2010). Moreover, we
analyzed the computational cost of these CNNs when executed on
mobile devices, calculating the mean execution time in both the CPU
and the GPU. Our research fills the literature gap related to the usage
of deep learning on mobile phones as a platform for ecological remote
sensing applications and provides an easy-to-use application tool for
mapping tree species.

2. Materials and methods
2.1. Generic mobile application for remote sensing

For this study, a tool for classifying remote sensing imagery was
developed, and the tests proved that it enables more agility to map
tree species. The developed application has a modern design, extra
features for image pre-processing, a database to store the ratings and
captured images, real-time rating using the device’s camera, rating
new photos, or uploading an image from the gallery, and the storage
of the georeferenced image with the collection of latitude, longitude,
and altitude. We developed the application to accept all classification
models tested on Tensorflow with useful source code programming
practices to facilitate maintenance, extension, and calculation of in-
ference processing time. The application was named iCarus by the
development team, and its complete source code and other artifacts
are freely available in the Geomatica laboratory source code repository
at the following link: https://gitlab.com/geomatics-laboratory/deep-
learning/classification/icarus. Fig. 1 shows screenshots of the iCarus
application interface.

The tests were performed on a smartphone equipped with a 12
Mp/4032 x 3024 (Table 1) where the iCarus application was installed
and tested. For a better assessment, experiments on the mobile device
were performed on both the CPU and GPU. A configuration option was
implemented in iCarus, where it is possible to change the application to
make inferences on the CPU or GPU. The configuration of the number
of CPU threads in the application is also available. All CPU tests were
performed with 4 threads.

2.2. Project development workflow

Our workflow was divided into seven main stages (Fig. 2). (a) Ac-
quisition of RGB images by a UAV flight carried out in the metropolitan
region of Campo Grande, State of Mato Grosso do Sul, Brazil, followed
by the annotation of trees in the images; (b) Division of images into
training, validation, and test subsets; (c) Definition of five state-of-
the-art deep learning architectures for the classification of Dipteryx
alata trees; (d) Architecture training, application of transfer learning
and hyperparameter adjustment with cross-validation; (e) Architecture
evaluation with metrics such as F1 score, confusion matrix, inference
time, and application of ANOVA and Tukey tests; and (f) Deploy-
ment of architectures through an Android application and performance
evaluation in terms of accuracy and execution time in CPU and GPU.
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Fig. 1. Screenshots of the iCarus application working: (a) Menu options and screen with the cards of the inferences made; (b) Screen for capturing the images and setting the
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Fig. 2. Workflow summarizing the method implemented in our study.

Table 2
UAV equipment and flight specifications.
Aircraft Phantom 4 Advanced
Sensor 1” CMOS
Field of view 85°
Nominal focal length 8.8 mm
Image size 5472 x 3648
Mean GSD 0.85 cm
Mean flight height 35 m

2.3. Study area and data acquisition

The study was conducted in the urban area of the city of Campo
Grande, inside the state of Mato Grosso do Sul, which is located
in the Cerrado Biome of Brazil as presented in Fig. 3. A total of
2349 images were acquired in between five months (January—-March
2019 and September-December 2019), with five missions. An advanced
Phantom 4 UAV equipped with a 20-megapixel RGB camera captured
images at 25-45 m flight heights (Table 2). Images have a resolution
of 5472 pixels by 3648 pixels and a Ground Sample Distance (GSD)
of 0.85 cm (centimeter) and were captured inside two regions in the
urban part of the municipality, totaling an area of approximately 95
ha. Approximately 75 Cumbaru trees were photographed during these
missions.

Examples of tree image samples that were captured via UAV are
shown in Fig. 4. It is important to note that the images of the trees were

captured at different times of the year and with various conditions, such
as climate, appearance, scale, lighting, leaf color, presence of fruits,
and presence of other trees in their surroundings. This data variability
provided a challenging scenario for our research, which is important
for monitoring studies in real-life situations. All captured images were
manually labeled by specialists using the LabelMe open annotation tool
software (http://labelme.csail.mit.edu/). In this process, Dipteryx alata
trees were annotated with bounding boxes. This dataset was properly
annotated and can be used both in experiments of image classification
and in object detection. As the objective of this study was to evaluate
classification methods, the images were cropped to the bounding boxes
and resized to 1024 x 1024 pixels. Samples of the cropped images
containing the target species and other tree species are shown in Fig. 4.
The classification dataset has 1174 images of Dipteryx alata and 1175
images of other local species in the Cerrado Biome. The description of
how this subset of images was partitioned for training and testing is
described in detail in Section 2.5, including details of cross-validation
and data augmentation.

2.4. Image classification models

A total of five deep learning architectures were evaluated in this
study for benchmark purposes of tree species classification using mobile
platforms. We categorize them into two groups: traditional networks
- TN (Inception V3, ResNet, and InceptionResNet V2) and mobile
networks - MN (MobileNet and NASNets). It is important to note that


http://labelme.csail.mit.edu/

M.d.A. Carvalho et al. International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103045

75°W 60°W 45°W 30°W
s ' s s

Cerrado Biome in Brazil

0°

15°S A

—km o I Cerrado biome area

- Campo Grande
Municipality

Brazilian states
|:] Brazil boundary L

Source: Brazilian Statistics Institute.
Scale: 1/250,000. Datum: WGS 84

Esri, Garmin, FAO, NOAA, USGS

30°S 4

Fig. 4. Examples of images cropped from the image subset; (a) Dipteryx alata tree images on different dates; (b) Other tree species from the dataset. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

traditional networks indicate that they are methods designed to process size of the network with a reasonable processing cost, as it is
data in desktop machines, with powerful Graphical Processing Units known that the most direct way to improve accuracy is to increase
(GPU), and mobile networks are designed to run in smaller and lesser its size. In Inception V3, the authors proposed a new approach

computationally demanding systems. The image classification models

. ) . . to the initial architecture. For this, they explore other ways of
used in this study are briefly described below.

factorizing convolutions in various settings and use regularization

+ Inception V3 (Szegedy et al., 2015) evaluates how an ideal local techniques.
sparse structure of a network can be approximated and covered * ResNet (He et al., 2016) is a CNN winner of the 2015 ILSVRC.
by dense components. The motivation for this is to increase the This architecture uses residual learning to train deeper networks.
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This approach is motivated by the phenomenon known as degra-
dation when the learning in the deeper layers becomes saturated.
Therefore, the authors proposed to add the input of a block with
the output according to Eq. (1), where V, and F(V,) are the input
and output, and F is a set of two convolution layers.

Vi=FV)+V, (€8]

InceptionResNet V2 (Szegedy et al., 2016) presents a combina-
tion of residual learning and inception architecture (inception
module). The idea is to have residual learning after an incep-
tion module. Training with residual connections accelerates the
training of inception networks significantly, as shown in Szegedy
et al. (2016), which provides evidence that combining networks
can increase the performance and accuracy of image classification
problems.

MobileNet (Sandler et al., 2018) improves the performance of
mobile models in several aspects, providing greater performance
in the prediction time and size of the trained models. This model
works with residual blocks, where both the input and the output
are thin neck layers opposite to traditional residual models. This
made it possible for light deep convolutions to filter features in
the intermediate expansion layers. To maintain the representa-
tional power in the model, non-linearity in the narrow layers
was removed to improve performance. The performance of the
model was tested in the ImageNet (Deng et al., 2009) dataset
for classification, COCO for object detection, and VOC for image
segmentation.

NASNets (Zoph et al.,, 2017) proposes a learning architecture
directly from its dataset. Although this technique is costly, its
accuracy places NASNet Large among the state-of-the-art classi-
fication CNNs. NASNet proposes to search for an architectural
building block in a smaller dataset and then transfer this block to
the larger one. This process allows NASNet to work with content
transferability. NASNet Mobile, a reduced version, is 3.1% better
than modern mobile CNNs, compared to the equivalent size for
mobile platforms. Due to the cost of the hardware to train the
NASNet Large, the experiments in this study were performed only
with NASNet Mobile.

2.5. Experimental setup

In our experiments, the five-fold cross-validation strategy was
adopted to obtain a more reliable method of validating the models. This
cross-validation strategy was applied to ensure that all images are used
in the test. The weights of all CNNs were initialized with pre-trained
values from the ImageNet dataset (http://www.image-net.org/). This
strategy is known as transfer learning, whose objective is to take
advantage of the weights trained in a large database to accelerate the
feature extraction process in the new application. With cross-validation
evaluation, the average accuracy of the five-folds can be obtained
while the standard deviation can indicate the possible discrepancies
in the obtained accuracy values. Adam optimizer was used in the
training phase of the models. Throughout several empirical tests using
learning rates of 0.01, 0.001, and 0.0001, it was demonstrated that the
convergence of the loss function obtained better results when using a
learning rate of 0.001. Fig. 5 shows the accuracy and loss curves for
the MobileNet V2.

As noted, the loss function declines rapidly in the first epochs and
stabilizes, indicating that the number of epochs has been sufficient
and the learning rate is adequate. Furthermore, the accuracy in the
validation set has not increased in the last five epochs. Therefore, the
learning rate was set to 0.001 and the number of epochs to 30 for all
models.

To reduce overfitting during training, the data augmentation tech-
nique, including re-scale, rotation, flip, shift, shear, and zoom, was
applied to the images during the training process. The combination of
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data augmentation and cross-validation techniques allows to train and
evaluate models more reliably during training, the main idea of this
combination is to use the generation of unseen images for the training
set so that the same does not memorize the dataset and reduce the risk
of overfitting. The training and validation of the methods were carried
out on a workstation computer equipped with an Intel®Xeon CPU E3-
1270 @ 3.80 GHz, 250 GB SSD with 64 GB of RAM, Titan V graphics
card with 12 GB of graphics memory, CUDA version 10.2, and Ubuntu
20.04 operating system. We also exported and validated the models
using the Tensorflow Lite library, which enabled the development of
the application called iCarus for testing the models on mobile devices.

2.6. Performance metrics

The performance of the models was evaluated using the metric F1
score (F1). The F1 score metric is calculated based on the weighted
average of Precision (P) and Recall (R), where an F1 score reaches its
best value at 1 and the worst score at 0. The precision (P) metric is
defined as the number of True Positives (TP) divided by the number of
True Positives (TP) plus the number of False Positives (FP), as shown
in Eq. (2). The recall (R) metric is defined as the number of True
Positives (TP) over the number of True Positives (TP) plus the number
of False Negatives (FN), as shown in the (3) equation. The equation for
the F1 score (F1) is described in Eq. (4).

po TP -
TP+ FP
R=_TP _ (3)
TP+ FN
Fl—score:2~P.R (C))
P+R

For performance analysis on the mobile device, we calculated the
average processing time of each model, in both the CPU and GPU, for
image prediction. Each model was exported to the iCarus application
mobile, where tests were carried out to verify prediction in a set of test
images. In this sense, the loading times of the models and data pre-
processing were discarded. Only the processing time for the prediction
of each image was considered in the analyses.

A one-way ANOVA test was applied to check if there were differ-
ences between the methods analyzed at a significance level of 5%,
using the F1 score metric as the independent variable. After that,
Tukey’s post hoc test was applied to the results of the classification
models to identify the statistical differences between the deep learning
methods tested. The results were analyzed using descriptive statistics,
with a boxplot graph, to verify the models’ convergence of losses and
accuracy.

3. Results and discussion

This section presents the results obtained by the models and their
discussion. In Section 3.1 the results on the desktop computer are
presented, and in Section 3.2 is presented the performance on the
mobile devices.

3.1. Experiments on desktop computer

The F1 scores of the classification of Dipteryx alata tree species
using deep learning models in each cross-validation round (R1-R5) are
presented in Table 3. The last column of this table presents the average
of the rounds, with Inception V3 having the highest value. ResNet101
with 94.6% and InceptionResNet with 93.8% have the second and
third best F1 score averages, respectively. The results of the ANOVA
test indicated a p-value of 6.3647e~7, being less than the significance
level (a« = 0.05). Therefore, we can reject the null hypothesis that the
F1 score averages are similar. According to the post hoc Tukey’s test,
CNNs can be categorized into three accuracy categories (a), (b), and
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Fig. 5. Accuracy and loss curves for training and validation phases for the MobileNet V2 network.

Table 3
Average F score metric for the Dipteryx alata tree classification in five cross-validation
rounds (R1-R5).

Table 4
Mean execution time of all the classification models using the CPU and GPU of the
mobile device.

Model R1 R2 R3 R4 R5 F score (std) Model Mean Exec. time (s) Stand. Dev. (ms) Device
InceptionResNet V2~ 91.00 91.00 97.00 97.00 93.00 93.8 InceptionResNet V2 2.2511 20.3492 CPU
Inception V3 98.00 97.00 97.00 98.00 97.00 97.4 1.4245 6.7564 GPU
MobileNet \/bgl 87.00 76.00 79.00 89.00 88.00 83.8 Inception V3 1.0583 15.8811 cPU
NASNet Mobile 88.00 90.00 90.00 92.00 90.00 90.0 0.6345 41048 GPU

ResNet101 V2 94.00 97.00 94.00 95.00 93.00 94.6 .

ResNet152 V2 93.00 9400 93.00 93.00 9500 93.6 MobileNet V2 0.1028 3.0919 CPU
ResNet50 V2 93.00 90.00 91.00 90.00 93.00 91.4 0.0724 1.9078 GPU
NASNet Mobile 0.2561 1.2206 CPU
0.3972 5.3814 GPU
. . ResNet101 V2 1.3897 39.6839 CPU
(c). These categories are represented by Inception V3 (a), ResNet50 0.6697 2.4104 GPU
and NASNet Mobile (b), and MobileNet V2 (c). Although categories ResNet152 V2 21323 2.2925 cPU
(a) and (b) present significant differences between them, they did not 0.9719 3.4771 GPU
present significant differences in relation to the CNNs of the category ResNet50 V2 0.7172 24.9471 cPU
(ab), composed by the InceptionResNet, ResNet101, and ResNet152. 0.3622 8.1216 GPU

MobileNet V2 is a CNN optimized for mobile devices, and therefore
its F1 score was expected to be smaller than all the heavier and more
complex CNNs. However, it is important to point the F1 score obtained
by NASNet Mobile, which was assigned to group (b) with 90.0.

Fig. 6 shows boxplots with the performance achieved by each
CNN. When analyzing the distribution of the metric, we noticed that
Inception V3 has the most negligible dispersion around the median.
The others have lower performance compared to Inception V3, in
addition to more dispersion around the median and the presence of
outliers. MobileNet presents the highest dispersion along with the worst
performance.

3.2. Experiments on mobile device

This subsection presents the run-time experiments on mobile de-
vices. Table 4 shows the average time in seconds using the CPU and
GPU of the device. The average time was obtained by performing the
classification in 30 randomly chosen images.

MobileNet obtained the lowest computational cost with similar
values for GPU (0.0724 s) and CPU (0.1028 s) when compared to the
differences in computational costs among GPU and CPU observed for
the other evaluated networks (Table 4). The second and third lowest

computational costs were NASNet Mobile and ResNet50, respectively.
These results were expected since MobileNet and NASNet Mobile are
designed and optimized to work on mobile devices, which implies less
complexity in their architecture. The computational cost of MobileNet
V2 was up to 10 times faster than the InceptionV3, thus demonstrating
its effectiveness and efficiency in mobile devices. The CPU and GPU
times also had differences. In general, the execution through GPU
obtains an increase in processing speed. This can be observed in the
experiments, except with NASNet Mobile, which was the only CNN
that obtained a lower result on the GPU. The results showed that
specialized mobile models are simple, and the GPU usage does not
make a significant difference as it does for the general models.

To test the generalization capability and robustness of the models,
we performed the prediction using images under different conditions.
As aforementioned, we captured images at different times of the year
to carry out tests with different scenarios (variation of lighting, scale,
presence of fruits, presence of flowers, and leaves with different shades
of colors). Despite the different variations of the images, all the models
tested achieved good performance in their classification as presented in
Fig. 7.
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Fig. 6. Boxplot comparing the performance of the models using F1 score. TN and MN stand for Traditional Networks and Mobile Networks, respectively.
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to the web version of this article.)

We noticed a trade-off in terms of speed and F score in our tests.
The choice of the best model is complex, and it needs to consider
the importance of the F score and the time cost of the application.
The overall best F score and time cost models are Inception V3 and
MobileNet V2, respectively. MobileNet V2, the model with the best
results in terms of time cost, showed the worst F score. On the other
hand, Inception V3, the model with the best results in F score, did
not result in satisfactory results in comparison with the time cost.
Comparing MobileNet with Inception V3, the difference is 955.5 ms for
the CPU and 562.1 ms for the GPU. This method had the best results
compared to InceptionResNet V2, ResNet101 V2, and ResNet152 V2.
The Inception V3 was surpassed, in terms of execution time, only by
networks specialized in mobile.

When choosing the best network to perform the current classifi-
cation task, the user should choose the best metric that is available
on the app. Despite the difference in time, the fastest CNN MobileNet
V2 takes 0.07 s in a GPU and 0.01 s in a CPU, and the slowest CNN
InceptionResNet V2 takes 1.42 s in a GPU and 2.25 in a CPU, we are
talking of no more than 2 s of difference in time, which may not be
a problem in most of the application that needs a fast classification
response.

We notice a trade-off in terms of speed and F1 score in our tests
(Fig. 8). The choice of the best model is complex, and the user needs
to consider the importance of the F1 score and the execution cost for
the application. Specialized models for mobile devices showed better
performance in terms of speed but lower results in terms of the F1 score.
The other models present better F1 scores but also higher execution
times.

The overall best F1 scores and execution cost models are Incep-
tion V3 and MobileNet, respectively. On the other hand, MobileNet

presented the worst F1 while Inception V3 did not get satisfactory
execution cost. Comparing MobileNet with Inception V3, the difference
is 955.5 ms for the CPU and 562.1 ms for the GPU. However, the
Inception V3 model performance was surpassed, in terms of execution
time, only by the CNN specialized for mobile devices.

In ecology, classification algorithms are among the most extensively
used statistical tools. Ecological data is frequently multidimensional,
with nonlinear and complicated interactions between variables, as well
as a large number of missing values among measured variables. Having
a toll that classifies this data with an easy-to-use implementation in
mobile devices is a step forward in terms of environmental assessments,
supporting the creation of policies that improve the health of human
and vegetation systems.

4. Conclusion

Here we investigated tree monitoring with remote sensing data in
combination with deep learning methods and mobile device image
capture. One of the most complex aspects of forest management is to
determine the precise number of trees and the corresponding species.
We were able to perform this task with success by implementing the
proposed method. Five deep learning architectures were evaluated,
three traditional and two mobile networks. We evaluated the models in
terms of F1 score and execution time. We also provided statistical anal-
ysis for the evaluation metrics used. Our results indicated that all CNNs
show satisfactory performance. Traditional CNNs have better F1 scores
and mobile CNNs have a shorter runtime. Our experimental results
demonstrated that mobile phones are suitable platforms to run both
traditional and mobile deep learning models for image classification
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purposes. However, for the choice of the model, the user must consider
the trade-off between accuracy and speed.

In conclusion, this study demonstrates the potential of combining
deep learning methods along with mobile phones for image classi-
fication problems. Once mobile phones became cheaper and more
accessible to the general public, our methodology can be helpful for
research, assisting governmental and non-governmental organizations
to map tree species or other classification tasks. For future works, we
intend to make the application tool available for public usage, train the
network to classify more tree species and improve our models to reach
better accuracy and time results, making it a viable approach to the
automatic classification of trees species at the same moment that the
image is captured by the mobile device and send to its CPU or GPU,
providing real-time application.
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