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A B S T R A C T   

Currently, most pointcloud classification methods heavily rely on huge numbers of labeled samples. Notably, 
labeling a large-scale multispectral LiDAR (MS-LiDAR) pointcloud is time-consuming and costly. To address this 
issue, we propose a feature perturbation weakly supervised network for classifying MS-LiDAR pointclouds using 
a few labeled samples, termed as FPWS-Net. In the FPWS-Net, we innovatively design a dual semantic inference 
structure, including a primary semantic inference module and an auxiliary semantic inference module. To 
provide the network with rich, accurate supervised signals, we embed kernel point convolution (KPConv) into 
the network for modelling the contextual information of MS-LiDAR pointclouds and propagating the signals 
between labeled and unlabeled points. Additionally, to constrain feature perturbations resulting from the dual 
semantic inference structure, fully leverage unlabeled points, and fit the architecture of the FPWS-Net, we 
combine consistency constraint and mutual pseudo-labeling loss. The proposed FPWS-Net is tested on two 
datasets, and achieves at least an average F1-score of 83.69 %, an mIoU of 78.81 %, and an OA of 95.97 % using 
only 0.1 % labeled points. The comparative experimental results demonstrate that the FPWS-Net not only out
performs the state-of-the-art (SOTA) weakly supervised networks, but also achieves the comparable classification 
performance to the fully supervised methods in the airborne MS-LiDAR pointcloud classification tasks.   

1. Introduction 

An airborne multispectral LiDAR (MS-LiDAR) system, which simul
taneously captures multiple-band pointcloud datasets, provides the in
tegrated spatial-spectral information of the areas to be surveyed, 
contributing to the description of the surveyed areas in detail. Thus, MS- 
LiDAR technology has gained increasing attention, and more and more 
institutions and companies dedicated themselves to the development of 
MS-LiDAR prototypes. For instance, the first commercial MS-LiDAR 
system, released by Teledyne Optech (Toronto, ON, Canada), contains 
three wavelengths of 1550 nm, 1064 nm, and 532 nm (Bakuła, 2015). 
Wuhan University has developed a MS-LiDAR system prototype (Gong 
et al., 2015) with four wavelength channels of 556 nm, 670 nm, 700 nm, 
and 780 nm. Compared with conventional single-band LiDAR data, data 
acquired by MS-LiDAR systems significantly improve object 

identification and pointcloud classification accuracies (Ekhtari et al., 
2018; Wang and Gu, 2020). Currently, MS-LiDAR pointclouds have been 
increasingly used in a range of applications, e.g., urban observation 
(Yokoya et al., 2018), coastal management (Shaker et al., 2019), forest 
monitoring (Yan et al., 2020), and land cover classification (Ghaseminik 
et al., 2021). 

In terms of input data format, MS-LiDAR pointcloud processing 
methods can be broadly categorized into two groups: two-dimensional 
(2D) rasterized multispectral images-based and three-dimensional 
(3D) pointcloud-based. The former first transforms a 3D MS-LiDAR 
pointcloud into 2D multispectral images, to which machine learning 
(Matikainen et al., 2020, 2017) or deep learning (Yu et al., 2020, 2022) 
image processing algorithms are applied for object recognition and 
pointcloud classification. However, this data conversion damages the 
geometric completeness of objects, such as trees and buildings, resulting 
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in a reduction in point cloud processing accuracy. Comparatively, the 
latter directly processes 3D MS-LiDAR pointclouds via machine learning 
or deep learning algorithms (Chen et al., 2020; Morsy et al., 2016). 
Although machine learning-based MS-LiDAR pointcloud classification 
methods have achieved a large success, feature design and selection is 
tedious and subjective, resulting in the unreliability of data processing 
accuracy. Deep learning has quickly attracted much attention to MS- 
LiDAR pointclouds due to its advantages in automatic feature extrac
tion and its abilities of handling complex high-dimensional data. 

Inspired by various classic deep learning methods for processing 
single-band pointclouds, such as PointNet++ (Qi et al., 2017), DGCNN 
(Wang et al., 2019), and RSCNN (Liu et al., 2019), a variety of deep 
learning methods have been specifically designed for MS-LiDAR point 
clouds. For example, Jing et al. (2021) enhanced the classification ac
curacies of MS-LiDAR pointclouds by embedding Squeeze-and- 
Excitation blocks into PointNet++. This integration aimed to accen
tuate crucial channels while suppressing channels that were less infor
mative for accurate predictions. To further utilize contextual features, 
Zhao et al. (2021), based on a graph convolution network (GCN), 
developed a global reasoning unit for capturing global contextual fea
tures to reveal spatial relationships among points and a local reasoning 
unit for dynamically adjusting edge features with attention weights, 
finally improving MS-LiDAR pointcloud classification performance. To 
learn better geometry feature representations of MS-LiDAR pointclouds, 
Li et al. (2022a) designed a attention graph geometric moment convo
lution (AGGM Convolution) and constructed a feature pyramid to 
extract and fuse multi-scale features. Although the aforementioned 
methods or networks have demonstrated their superiorities in airborne 
MS-LiDAR pointcloud classification tasks, they heavily relied on a sig
nificant number of labeled samples. Notably, labeling large-scale 
pointclouds is costly and complex. Consequently, weakly supervised 
learning methods have become increasingly appealing to 3D pointcloud 
classification since they require only partially labeled samples. 

Currently, in terms of labeling means, weakly supervised pointcloud 
classification methods can be grouped into indirect labeling-based and 
direct labeling-based methods. The former converts an input pointcloud 
into 2D images (Wang et al., 2020), sub-pointclouds (Wei et al., 2020), 
or segments (Tao et al., 2022) before pointcloud labeling operations. 
Although the indirect labeling-based methods can effectively reduce the 
workload of manually labeling, they require data pre-processing, which 
is still time-consuming and labor-intensive, especially for large-scene 
LiDAR pointclouds. 

Direct labeling-based methods involve sparsely labeling a subset of a 
pointcloud to classify the entire pointcloud data. For example, Xu and 
Lee (2020) developed a muti-branch weakly supervised framework for 
pointcloud classification using 10 % sampling points. However, 10 % 
labeled points is still a considerable workload for large-scene, high- 
density pointclouds. To further reduce the labeling workload, a semantic 
query network (SQN), proposed by Hu et al. (2021), exploited the se
mantic similarity between sparsely labeled points and their neighbors to 
enhance the underlying supervised signals through a trilinear interpo
lation. This approach enabled pointcloud classification using only 0.1 % 
labeled points. However, SQN inadequately explored the features of 
unlabeled points to accurately describe the characteristics of objects, 
thereby lowering the pointcloud classification accuracy. Zhang et al. 
(2021) proposed a two-step knowledge transfer method, in which a self- 
supervised network was designed to extract the prior knowledge be
tween color information and classes of interest, and a weakly supervised 
network was used to integrate the knowledge for improving feature 
representation. However, this method required pre-training, therefore 
lowering the training efficiency. Thus, to increase the utilization of su
pervised signals, sample perturbation was employed to augment input 
samples. Specifically, Jiang et al. (2021), based on contrastive learning 
between input samples and augmented samples, improved feature rep
resentation and model generalization via pseudo-label guidance and 
confidence guidance. Zhang et al. (2021b) proposed perturbed self- 

distillation (PSD), in which an attribute attention module was used to 
construct a perturbed branch conducive to the model, and then incor
porated GCN into a decoder to capture relationships among local points 
based on high-dimensional feature distances, generating affinity loss, 
and providing more supervised signals to the model. HybridCR, pro
posed by Li et al. (2022b), improved the diversity of perturbed samples 
via a dynamic point augmentor, and employed local and global guidance 
contrastive losses to enhance model performance. Although sample 
perturbations could effectively increase supervised signals and achieved 
promising pointcloud classification results, they normally increased 
memory consumption because of inputting double samples to the net
works. Moreover, only using neighboring points to encode feature vec
tors poorly modeled high-dimensional feature relationships among 
points, and the rigid information encoded in the high-dimensional 
feature space severely hampered network generalization (Qiu et al., 
2021). 

Therefore, we propose a novel feature perturbation weakly super
vised pointcloud classification framework, termed as FPWS-Net, for 
airborne MS-LiDAR pointclouds. Firstly, to construct simple and effec
tive feature perturbations, the FPWS-Net is designed as a dual semantic 
inference structure including a primary semantic inference module and 
an auxiliary semantic inference module. Subsequently, we embed kernel 
point convolution (KPConv) (Thomas et al., 2019) as a context-aware 
module into the primary semantic inference module to provide accu
rate underlying supervised signals for the FPWS-Net. Furthermore, we 
employ a consistency constraint and a mutual pseudo-labeling loss to 
minimize prediction discrepancy between the two semantic inference 
modules and fully leverage abundant unlabeled data. The main contri
butions of this paper are as follows:  

1. We propose a novel weakly supervised deep learning framework, 
termed as FPWS-Net, for MS-LiDAR pointcloud classification, which 
achieves pointcloud classification performance comparable to those 
of the fully supervised methods by utilizing 0.1 % labeled data. 

2. The FPWS-Net innovatively employs two semantic inference mod
ules to construct feature perturbations within the model. To enhance 
contextual information and provide accurate underlying supervised 
signals for the weakly supervised network, we embed KPConv into 
the auxiliary semantic inference module.  

3. We combine the consistency constraint loss and the mutual pseudo- 
labeling loss to constrain feature perturbations from the two se
mantic inference modules, fully leverage abundant unlabeled data, 
and provide more supervised signals to the model. 

The remainder of the paper is organized as follows. Section 2 details 
the two large-scale airborne MS-LiDAR pointcloud datasets. Section 3 
briefly presents data preprocessing and gives a comprehensive descrip
tion of the proposed FPWS-Net. Section 4 discusses the experimental 
results. Finally, Section 5 gives concluding remarks. 

2. Study areas and datasets 

The two MS-LiDAR pointcloud datasets were collected by a Teledyne 
Optech Titan MS-LiDAR system, which equipped with laser scanners 
operating at 1550 nm (MIR), 1064 nm (NIR), and, 532 nm (Green), 
respectively. Each channel of the system provided 300 kHZ repetition 
per pulses (RPP). The three channels in the system were arranged at an 
interval of 3.5◦, and simultaneously provided three individual point
cloud datasets. Table1 lists the detailed specifications of the system. 

The first study area is situated in Whitchurch-Stouffville, a small 
town in Ontario, Canada, with the center coordinates at longitude 
79◦15′00″ and latitude 43◦58′00″. The Titan MS-LiDAR system collected 
MS-LiDAR data at a flight height of around 1000 m, and correspond
ingly, the point density was estimated 3.6 points/m2 for each channel. 
The system scanned 19 strips with overlapping, covering an area of 
2,052 m × 1,566 m. Thirteen representative and feature-rich scenes (see 
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Fig. 1 (b)) were selected to construct the Whitchurch-Stouffville (WS) 
dataset. For the WS dataset, Areas 11–13 were selected as testing data, 
and the remaining scenes were used as training data. 

The second study area is situated in Tobermory, at the northern end 
of the Bruce Peninsula in southeastern Ontario, Canada, centered at 
coordinates of longitude 81◦39′57″ and latitude 45◦15′24″. The Titan 
MS-LiDAR system collected 10 vertically intersecting strips. Twelve 
representative scenes were selected to build the Tobermory dataset (see 
Fig. 1 (c)). For the Tobermory dataset, Areas 9 and 12 were selected as 
testing data, and the remaining scenes were used as training data. In this 
study, due to the absence of system parameters and flight trajectories 
during data acquisition, absolute intensity calibration was not 
performed. 

3. Methodology 

3.1. Data pre-processing 

To create the input data to the proposed FPWS-Net, a pre-processing 

is required for the WS and Tobermory datasets, which mainly involves 
two steps: data fusion and labeling, and sample generation. 

3.1.1. Data fusion and labeling 
The Titan MS-LiDAR system captures three independent pointclouds 

for the three laser channels (i.e., 1550 nm, 1064 nm, and 532 nm). To 
create a single high-density multispectral LiDAR pointcloud dataset, we 
fuse the three independent pointclouds via the method mentioned in 
Jing et al. (2021). After data fusion, each point in the two datasets 
contains not only its own geometric information (X, Y, Z) but also the 
spectral information of three channels (1550 nm, 1064 nm, and 532 
nm). We then manually labeled the fused MS-LiDAR datasets point-by- 
point. For the WS dataset, we labeled it into six classes, including 
road, building, grass, tree, soil, and powerline. For the Tobermory 
dataset, we also labeled it into six classes, including road, building, land 
(soil and grass), tree, water, and powerline. Table 2 shows the number of 
points and the proportion of each class in the two MS-LiDAR datasets. It 
is worth noting that these two datasets suffer from severe data imbal
ance, for instance, the number of powerline points is only about 0.2 % of 
the total points. 

Table 1 
Specifications of the Teledyne Optech Titan MS-LiDAR system (Jing et al., 2021; 
Zhao et al., 2021).  

Parameter Specification 

Wavelength (nm) Channel 1: 1550 (shortwave infrared SWIR) 
Channel 2: 1064 (near infrared NIR) 
Channel 3: 532 (green GREEN) 

Look angle (degree) Channel 1: 3.5◦

Channel 2: 0◦

Channel 3: 7◦

Scanning field of view angle (degree) +/− 20◦

Pulse repletion frequency (kHZ) 300 
Flying height (m) ~1000 
Point density (points/m2) ~3.6 
Point spacing (points/m) ~0.5  

Fig. 1. Illustration of two study areas, (a) the locations, (b) Whitchurch-Stouffville study area, and (c) Tobermory study area.  

Table 2 
The number of points and proportion of each class in the WS and Tobermory 
datasets, respectively.  

WS dataset Tobermory dataset 

Class Nums (#) Proportion 
(%) 

Class Nums (#) Proportion 
(%) 

Road 855,929  10.03 Road 894,911  3.40 
Building 531,848  6.23 Building 712,916  2.70 
Grass 3,480,918  40.80 Land 4,798,345  18.21 
Tree 3,486,836  40.87 Tree 16,425,016  62.32 
Soil 157,180  1.84 Water 3,460,372  13.13 
Powerline 19,700  0.23 Powerline 64,738  0.25  
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3.1.2. Sample generation 
To generate a certain number of training samples, we design a 

sample generation method via grid sampling and KD-Tree (K-dimen
sional tree). The specific sample generation method is detailed as 
follows.  

1) A pointcloud scene is divided into a series of 3D sub-grids with a side 
length of 0.5 m, with regards to the average point density of the MS- 
LiDAR dataset (around 3.6 points/m2 for each channel in this study).  

2) For each sub-grid, we first record the geometric and spectral statistics 
of all points, respectively, and calculate their mean values as a 
sampling point for the sub-grid. Moreover, we count the number of 
points for each class, and the class with the largest proportion is 
selected as the class for the sampling point.  

3) Finally, each sampling point is used to establish a KD-Tree, by which 
we obtain its N − 1 neighbors, where N is the number of input points 
at a single batch. 

By using the grid sampling and KD-Tree, we acquire a fixed number 
of sampling points for network training, which helps maintain the 
completeness of geometric structure of a pointcloud. Thus, the samples 
input into the model contain three geometric coordinates (X, Y, Z), three 
spectral bands (1550 nm, 1064 nm, and 532 nm), and a class label. 

3.2. Framework of the FPWS-Net 

Fig. 2 illustrates the framework of our FPWS-Net. The FPWS-Net is a 
dual semantic inference structure, which includes the primary and 
auxiliary semantic inference modules. To provide accurate, semantically 
rich, and underlying supervised signals to the network, we embed 
KPConv into the primary semantic inference module. Additionally, to 
constrain the feature perturbations generated by the two semantic 
inference modules, consistency constraint is used to enhance the sta
bility of the model. Finally, a mutual pseudo-labeling loss is employed to 
convert a large number of unlabeled points into auxiliary supervised 
signals. 

As shown in Fig. 2, the FPWS-Net is an end-to-end structure, which 
takes N training samples as input and outputs the point-by-point clas
sification predictions by the primary semantic inference module. To 
begin with, the training samples, each of which includes three co
ordinates (X, Y, Z), three spectral bands (i.e., 1550 nm, 1064 nm, and 
532 nm), and a labeled class, are fed into an encoder to extract features. 
The encoder is built by a fully connected layer, five layers of combina
tion of random sampling and local feature aggregation (Hu et al., 2020). 
The fully connected layer uniformly converts the training samples to 8- 
dimensional features, enabling the FPWS-Net to accommodate various 
types of pointcloud data. The subsequent five layers are constructed to 
gradually down-sample points at a certain scale (i.e., 1, 1/4, 1/16, 1/64, 
1/256, 1/512) and increase the feature dimension at scales of 8, 16, 64, 
128, 256, and 512. Notably, at each sampling operation, the coordinates 
of the input MS-LiDAR pointcloud are also used for the auxiliary se
mantic inference modules. 

Next, the output features of the encoder are input to the primary 
semantic inference module and the auxiliary semantic inference module, 
respectively. These two semantic inference modules generate pre
dictions A and B, respectively, which result in feature perturbations. The 
feature perturbations are then supervised by two classification losses LclA 
and LclB of labeled points, and a consistency constraint loss Lcc of all 
points. The mutual pseudo-labeling loss Lpl is applied to unlabeled points 
of predictions A and B, generating soft pseudo-labels for mutual super
vision, respectively. Finally, the predictions obtained by the primary 
semantic inference module are considered as the final predictions of the 
FPWS-Net, i.e., assigning a class to each point. 

3.2.1. Primary semantic inference module 
Usually, the pointcloud classification performance of the network 

significantly degrades with a decrease of the number of labeled samples 
because the supervised signals obtained from the sparsely labeled points 
are poorly propagated to unlabeled points. To address this issue and 
obtain rich underlying supervised signals, we design a primary semantic 
inference module, which consists of a group of five up-sampling layers 
and five Multi-Layer Perceptions (MLPs), a KPConv, a group of three 

Fig. 2. The framework of the FPWS-Net.  
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fully connected layers and one dropout layer. Specifically, the features 
obtained from the encoder first go through the group of five up-sampling 
layers and five MLPs, which gradually up-sample to obtain the same 
number of as its original number of points while increasing the feature 
dimensions of {512, 256, 128, 64, 16, 8}. Subsequently, the outputs are 
fed to the KPConv for establishing the relationships between local 
points, thereby generating corresponding local features. The features 
output from KPConv are then concatenated with its input features and 
fed into the group of three fully connected layers and one dropout layer, 
resulting in the predictions of points. 

In the primary semantic inference module, the KPConv, a context- 
aware module, establishes the relationships among local points, facili
tating the propagation of signals between labeled and unlabeled points. 
Fig. 3 details the diagram of the KPConv. As seen in Fig. 3, KPConv first 
assigns neighboring features with different weights to the kernel points, 
based on the linear correlation function between the kernel points and 
the neighboring points of the input points. Then the kernel points are 
multiplied by the learnable weight matrix to obtain the contextual 
feature and output them. This process provides the network with robust, 
effective underlying supervised signals. In addition, to improve the ef
ficiency of training model, simple rigid convolutional kernel points are 
adopted. 

Concretely, for any one point pi in the high-dimensional feature 
space with X, Y, Z coordinates, we assume it as a center point and query 
its neighboring points (pk

i , k = 1,2,⋯,Ka,Ka is the number of neigh
boring points) via a K-nearest neighboring (KNN). The geometric co
ordinates of point pk

i and its high-dimensional features fk
i are arranged 

into two arrays, i.e., (Ka, 3) and (Ka, 8), respectively. Denote the kernel 
points as xj, (j = 1, 2, …, Nj, Nj is the number of the kernel points) in a 

unit ball in the Euclidean space. The contextual feature vector F→i of the 
central point pi is calculated by 

F→i =
∑Ka

k=1

∑Nj

j=1
Wjh

(
pk

i , xj
)
f k
i (1)  

where Wj denotes the weight matrix of the kernel points learned from 
network training. h denotes the linear correlation function between the 
neighboring points and the kernel points, which is written by 

h
(

pk
i , xj

)

= max
(

0, 1 −
‖pk

i − xj‖

d

)

(2)  

where d denotes the defined radius of the kernel points. It can be 
observed that the closer the distance between a neighboring point and a 
kernel point, the greater the weight. 

Afterwards, the contextual feature vector F→i of the central point pi, is 
generated and then concatenated with the features output from the 

group of five up-sampling layers and five MLPs, enhancing feature 
representation. The enhanced feature representation provides the 
network with a semantically rich, underlying supervised signal, ulti
mately improving the probability of the predictions. 

3.2.2. Auxiliary semantic inference module 
The primary semantic inference module uses both sparsely labeled 

and unlabeled points as supervised signals to update the network pa
rameters. Because the unlabeled points may include many unimportant 
training signals, an auxiliary semantic inference module is designed to 
fully leverage the sparse yet valuable supervised signals. The auxiliary 
semantic inference module gathers features from the sparsely labeled 
points and their neighbors across the encoding layers for model training. 
This process backpropagates these valuable, accurate supervised signals 
into an expanded spatial context, thus implicitly enhancing the network 
supervision. 

Fig. 4 details the diagram of the auxiliary semantic inference module. 
As shown in Fig. 4, in the auxiliary semantic inference module, each 
sparsely labeled point is used as a query point to obtain its Kb nearest 
neighbors in the high-dimensional feature space of each encoding layer 
via KNN. Then, the features of the Kb nearest neighbors are compressed 
into a feature vector by a trilinear interpolation. Finally, the feature 
vectors coming from the five encoding layers are concatenated together 
to obtain supervised signals of the query point, which are then fed to the 
MLPs to infer the point class information. Taking the first encoding layer 
as an example, the steps are specifically detailed as follows.  

1) In the first encoding layer, a labeled point pl ∈ R3
l (containing X, Y 

and Z coordinates) is given as a query point, its Kb neighboring points 
pk

l (k = 1,2,⋯,Kb, Kb is the number of neighboring points) and its 16- 
dimensional feature fk

l are obtained accordingly.  
2) Then, the nearest neighbors pk

l is compressed into a feature vector 

F1
l

̅→
of point pl by the trilinear interpolation, according to the dis

tance between points pl and pk
l . The feature vector F1

l
̅→

serves as the 
feature vector of point pl in the first encoding layer. This operation is 
done in the five encoding layers respectively, and the feature vectors 

{ F1
l

̅→
, F2

l
̅→

, F3
l

̅→
, F4

l
̅→

, F5
l

̅→
} coming from these five layers are concat

enated to obtain the representative features of point pl.  
3) Finally, the predicted probability of point pl is obtained through 

three 1 × 1 fully connected layers and one dropout layer. 

Note that, to facilitate network operation and loss function calcula
tion during training, we input the feature information of all points into 
the auxiliary semantic inference module. However, we only use the 
supervised signals of the labeled points to supervise the network. 

Fig. 3. The diagram of the KPConv.  
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3.2.3. Losses 
In the training process of the FPWS-Net, the total loss Ltotal contains 

three components: the consistency constraint loss function Lcc for su
pervising all the points, the mutual pseudo-labeling loss function Lpl for 
supervising the unlabeled points, and the classification loss functions Lcl 
for supervising the labeled points.  

1) Consistency constraint loss 

To measure the differences between the predicted probabilities of the 
two semantic inference modules, a Jensen-Shannon (JS) divergence is 
adopted to calculate the consistency constraint loss Lcc, which is written 
by: 

Lcc =
1

2N

∑N

i
JS(PA‖PB)

=
1

4N
∑N

i

∑C

j
KL(PAij‖

PAij + PBij

2
)+KL(PBij‖

PAij + PBij

2
) (3)  

=
1

2N

∑N

i

∑C

j
PAijlog

PAij

PAij + PBij
+PBijlog

PBij

PAij + PBij  

Where KL denotes the Kullback-Leibler divergence. PAij and PBij, 
respectively, are the probabilities that the primary semantic inference 

module and the auxiliary semantic inference module predict point pi 
belonging to class j. N is the number of input points at a single batch, and 
C is the number of classes. 

By the Jensen-Shannon divergence, consistency constraint is per
formed on the model to realize its self-supervision and provide addi
tional, auxiliary supervised signals for the model, finally improving the 
stability of the model prediction. This loss applies to both labeled and 
unlabeled data.  

2) Mutual pseudo-labeling loss 

To fully utilize the large numbers of unlabeled points, provide the 
network with more auxiliary supervised signals, and align with the 
FPWS-Net framework, we propose a mutual soft pseudo-labeling loss. 
Specifically, first, we convert the predicted probabilities PUA and PUB of 
the unlabeled points output from the primary semantic inference mod
ule and the auxiliary semantic inference module, respectively, into soft 
pseudo-labels sPLA and sPLB by a sharpening function, which is written 
by 

sPL =
PT

PT + (1 − P)T (4)  

where T is a constant that controls the degree of sharpening. Compared 
with the hard pseudo-labels generated by a fixed threshold, the soft 
pseudo-labels effectively eliminate the negative influence of training 

Fig. 4. The diagram of auxiliary semantic inference module.  
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data caused by incorrect prediction tags, which reduces uncertainty and 
provides the predictions with high confidence. 

Then, we employ entropy regularization to supervise the predictions 
(PUB) of the auxiliary semantic inference module using the soft pseudo- 
labels (sPLA) produced by the primary semantic inference module. The 
entropy regularization LAer is defined by 

LAer = −
1
M

∑M

i

∑C

j
sPLAijlogPUBij (5)  

where M is the number of unlabeled points. PUBij is the probability in the 
predictions PUB of point pi predicted to be class j. sPLAij is the probability 
of class j in the soft pseudo-labels of point pi. C is the total number of 
classes. 

Similarly, we use entropy regularization to supervise the predictions 
(PUA) of the primary semantic inference module using the soft pseudo- 
labels (sPLB) produced by the auxiliary semantic inference module. 
The entropy regularization LBer is defined by 

LBer = −
1
M

∑M

i

∑C

j
sPLBijlogPUAij (6) 

Finally, the mutual pseudo-labeling loss consists of the above two 
entropy regularizations, as shown in the following equation: 

Lpl = LAer + LBer (7) 

The mutual pseudo-labeling loss encourages the generated soft 
pseudo-labels to maintain low entropy, promoting highly confident 
predictions and finally enhancing the model performance and general
ization ability.  

3) Classification loss 

To address the issue of class imbalance in weak supervised methods, 
we use a weighted cross-entropy loss function for labeled points. The 
weighted cross-entropy loss function assigns different weights according 
to the proportion of each class. Thus, the supervised signals are biased 
towards the classes with a small number of points, improving their 
classification accuracy. 

Moreover, because the cross-entropy loss function calculates the loss 
regarding the model prediction probability, a lovasz-softmax loss func
tion is optimized directly for intersection-over-union measure to balance 
the classification loss performance of the model (Berman et al., 2018). 
The final classification loss function Lcl is given by 

Lcl = −
1

N − M

∑N− M

i=1
wi

∑C

j=1
yiclog

exp
(

Pl
ij

)

∑C
j=1exp

(
Pl

ij

)+
1
C

∑

j∈C
ΔJj(Mj) (8)  

where Pl
ij denotes the probability that the i-th sparsely labeled point 

belongs to class j. wi represents the class weight of sample i. ΔJj
(
Mj

)

denotes the Jaccard coefficient constructed by the error distribution 
probability vector Mj for the samples belonging to class j. 

Accordingly, the primary semantic inference module and the auxil
iary semantic inference module separately compute their respective 
classification loss functions, denoted as LclA and LclB.  

4) Total loss 

The final network total loss Ltotal can be written by 

Ltotal = LclA + LclB + Lcc + λLpl (9) 

At the early stage of model training, the soft pseudo-labels generated 
by the FPWS-Net are unreliable, hence the mutual pseudo-label loss 
should not be used when optimizing the network parameters. However, 
when the network training proceeds, the soft pseudo-label is gradually 

stabilized and the weight of its loss function is gradually increased, and 
hence we introduce a nonlinear parameter λ to control the weight of the 
mutual pseudo-labeling loss in model supervision, and λ is expressed by 

λ =

{
0,

e
epoch

max epoch− 1,

epoch < 30
epoch⩾30 (10)  

Where epoch and max epoch are the current number of iterations and the 
total number of iterations, respectively, when model training. 

4. Results and discussion 

4.1. Implementation details 

All experiments were conducted on a workstation with hardware 
consisting of an Intel Core i7-9700 [CPU], 16 GB RAM and 8 GB NVIDIA 
GeForce RTX 2070 [GPU], under the Ubuntu 20.04 operating system. 
For model training, the batch size, the initial learning rate, the 
max epoch, and the decay rate per cycle were set to be 2, 0.001, 100, 5 
%, respectively, and the Adam optimizer was used. The number of 
convolution kernel points was set as 9, the number of the nearest 
neighbors in the KNN was set as 16, and the number of input points at a 
single batch was set as 40,960. The temperature constant T in the 
pseudo-label sharpening function was set as 10. 

Based on the point density (3.6 point/m2) of the WS and Tobermory 
datasets, the grid sampling size used the configuration of 0.5 m in this 
study. We adopted the sparse labeling strategy of SQN, which randomly 
selected points from data sampling with a certain percentage of labeled 
points. The number of total points, grid sampling point, training points, 
and sparsely labeled points for the two datasets are shown in Table 3. 

In this study, three evaluation metrics, including Overall Accuracy 
(OA), Mean Intersection over Union (mIoU), and F1-score, were used to 
quantitatively analyze the model performance. 

4.2. Overall classification performances 

4.2.1. Classification results of WS dataset 
To assess the performance of the proposed FPWS-Net on MS-LiDAR 

pointcloud classification, we trained the model with 10 scenes of the 
WS dataset using only 0.1 % labeled points, and tested it over the 
remaining three scenes (Areas 11–13). Fig. 5 shows the classification 
results of the three scenes. As seen in Fig. 5, our network achieved a 
promising performance for classes building, tree, and powerline with 
clear and obvious spatial structures. However, it encountered challenges 
in accurately and completely classifying soil points. 

We presented two of the close-up view regions (black oval-shaped 
regions A and B in Fig. 5) in Fig. 6. Visual inspection reveals that the 
majority of the MS-LiDAR points were correctly classified. However, 
there were some misclassifications observed for classes soil and road 
along the edges of the scenes. The misclassification of class road was 
primarily caused by a lack of sufficient road neighboring features pro
vided to the network in the edge regions of the scene. For the poor 
classification performance of soil points, this may be because the MS- 
LiDAR data were collected in July, when the majority of soil regions 
were covered by dense vegetation. Additionally, soil regions shared 
spectral similarities with its adjacent roads, thereby significantly 
increasing the misclassifications of soil points as road points. 

Table 4 lists the quantitative classification results obtained by the 

Table 3 
Overview of the two MS-LiDAR pointcloud datasets.  

Dataset Total points 
(#) 

Grid sampling 
points (#) 

Training 
points (#) 

Labeled points 
(0.1 %) (#) 

WS 8,532,411 6,629,894 4,906,189 4,906 
Tobermory 26,356,298 11,484,255 22,828,786 22,828  
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Fig. 5. Classification results obtained by the FPWS-Net on the WS dataset, (a) Area 11, (b) Area 12, and (c) Area 13.  

Fig. 6. Close-up view of the MS-LiDAR pointcloud classification results, where A and B represent detailed views of the two areas marked in Fig. 5.  

Table 4 
Quantitative results obtained by the FPWS-Net on the WS dataset.   

F1-score (%) Average F1-score (%) mIoU (%) OA (%) 

Road Building Grass Tree Soil Powerline 

Area 11  86.67  98.77  94.81  99.77  40.53  86.45  84.50  77.54  95.86 
Area 12  88.15  98.66  97.14  99.40  23.42  98.48  84.21  79.95  96.44 
Area 13  85.02  99.15  96.91  99.22  22.16  91.73  82.36  76.98  95.55  
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FPWS-Net on the WS dataset. As listed in Table 4, our method achieved 
the pointcloud classification accuracies of an average F1-score of over 
82.36 %, an mIoU of over 76.98 %, and an OA of over 95.55 % on the 
three test scenes. Among them, five classes, including road, building, 
grass, tree, and powerline, achieved an F1-score of over 85.02 %. 
Particularly, the FPWS-Net obtained the highest F1-scores of 99.15 %, 
97.14 %, and 99.77 %, respectively, for classes building, grass, and tree. 
This is mainly because the WS dataset, which was collected in July, 
provided rich vegetation information, improving the classification ac
curacies of classes grass and tree. Additionally, for buildings with 
distinct geometric structures, the FPWS-Net was capable of learning 
their rich neighboring features from the data. The KPConv also provided 
more supervised signals from the neighborhoods of labeled points, 
which improves MS-LiDAR pointcloud classification accuracy. 

However, for class soil, we obtained poor classification performance 
with the lowest F1-score reaching only 22.16 %. Learning the feature 
differences between class soil and other classes from a small fraction of 
labeled soil points poses significant challenges for the model, resulting 
in poor MS-LiDAR pointcloud classification performance for class soil. 

4.2.2. Classification results of Tobermory dataset 
To further demonstrate the applicability of the FPWS-Net on MS- 

LiDAR pointcloud data, we conducted classification experiments on 
the Tobermory dataset. Fig. 7 presents the pointcloud classification re
sults on the two test scenes of the Tobermory dataset. Visual inspection 
indicates that the FPWS-Net obtained promising classification results for 
Areas 9 and 12. Specifically, the FPWS-Net performed well when iden
tifying classes building, land, tree, water, and powerline. Notably, even 
without clear boundaries between classes water and land, the FPWS-Net 
can effectively distinguish between them due to their distinct spectral 
differences. Comparatively, due to similarities in spectral and geometric 
features, some road points have been misclassified as land points. 

Table 5 reports the quantitative evaluation results obtained by the 
proposed FPWS-Net on the two test scenes of the Tobermory dataset. As 
shown in Table 5, the FPWS-Net obtained an average F1-score of 93.90 
%, an mIoU of 88.83 % and an OA of 97.52 % for Area 9, and an average 
F1-score of 91.06 %, an mIoU of 84.55 % and an OA of 96.88 % for Area 
12. Specifically, the F1-scores for classes tree and water are both above 
98.65 % because, even using randomly sparse labeling, the two classes 

Fig. 7. Qualitative results obtained by the FPWS-Net on the Tobermory dataset, (a) Area 9 and (b) Aera 12.  
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contained a large number of points and distinct spectral differences. 
However, for class road, the FPWS-Net obtained the lowest F1-score, 
reaching only 86.76 % and 74.62 %, respectively, for the two test scenes. 
This can be attributed to the road points having geometric features that 
are similar to both land and water, coupled with the absence of 
distinctive spectral information. Overall, the FPWS-Net effectively uti
lizes both the geometric and spectral information of airborne MS-LiDAR 
pointclouds, resulting in good classification using only 0.1 % labeled 
points. 

4.3. Comparative studies 

To further analyze the feasibility and superiority of the proposed 
FPWS-Net, a series of comparative experiments were performed with 
some SOTA networks on the WS dataset. The selected comparative 
methods included two categories: fully supervised and weakly super
vised. In the fully supervised category, we selected seven SOTA net
works, i.e., PointNet++, DGCNN, RSCNN, KPFCNN (Thomas et al., 
2019), RandLA-Net, SE-PointNet++, and FR-GCNet. Among them, the 
first five methods are the commonly used 3D pointcloud processing 
models, and the pointcloud classification results were obtained by their 
official source codes. The last two networks, i.e., SE-PointNet++ and 
FR-GCNet, are recently developed SOTA airborne MS-LiDAR pointcloud 
classification networks, and their classification results were obtained in 
the literature (Jing et al., 2021; Zhao et al., 2021). 

Table 6 lists the MS-LiDAR pointcloud classification results obtained 
by the comparative methods on the WS dataset. As seen in Table 6, for 
the fully supervised methods, KPFCNN and RandLA-Net performed well 
on the WS dataset and demonstrated obviously more advantageous 
pointcloud classification accuracies than the other networks, achieving 
more than 79.17 % average F1-score, 73.42 % mIoU, and 95.45 % OA, 
while PointNet++, DGCNN, and RSCNN behaved similarly and obtained 
relatively lower pointcloud classification performance with an average 
F1-score ranging from 71.47 % to 73.90 %. This is primarily because the 
advanced model design and learning strategies of KPFCNN and RandLA- 
Net enabled them to better capture the features of pointclouds, 
improving the MS-LiDAR pointcloud classification accuracy. The two 
fully supervised classification networks specifically developed for 
airborne MS-LiDAR pointclouds, i.e., SE-PointNet++ and FR-GCNet, got 
the middle pointcloud classification accuracies with an average F1-score 

of 75.84 % and 78.61 %, respectively. Because SE-PointNet and FR-GNet 
were built upon PointNet++ and DGCNN, respectively, they accom
modated the characteristics of MS-LiDAR data into the networks. 
However, they were unable to effectively handle large-scale pointclouds 
due to the limited receptive fields of the models, thereby preventing 
them from achieving classification accuracy comparable to those of 
KPFCNN and RandLA-Net. 

Although our FPWS-Net performed MS-LiDAR pointcloud classifi
cation using only 0.1 % labeled data, it obtained an average F1-score of 
83.69 %, an mIoU of 78.81 %, and an OA of 95.97 %. Compared with SE- 
PointNet++ and FR-GCNet, our FPWS-Net yielded an improvement of 
7.85 %, 14.49 %, and 2.96 % for the average F1-score, mIoU, and OA, 
respectively, and a gain of 5.08 %, 13.03 %, 2.42 %, respectively. 
Compared with the fully supervised method, i.e., RandLA-Net, the 
FPWS-Net achieved improvements of 2.34 %, 5.39 %, and 0.4 % for the 
average F1-score, mIoU, and OA. Moreover, the FPWS-Net achieved the 
best classification performance on three classes, i.e., road, grass, and 
powerline among all fully supervised methods. It is noteworthy that the 
FPWS-Net achieved overall classification accuracy surpassing that of 
fully supervised methods, primarily attributable to the incorporation of 
KPConv. KPConv furnished the network with additional supplementary 
signals, particularly excelling in processing features with unique 
geometrical characteristics, such as buildings and powerlines, which 
effectively compensated for the deficiencies of baseline in these respects. 

Because few weakly supervised methods have been developed for 
airborne MS-LiDAR pointclouds, we selected two recently proposed 
weakly supervised networks, i.e., SQN and PSD, for MLS or single-band 
ALS pointclouds for comparison. Additionally, we also selected two 
mainstream backbones, i.e., RandLA-Net and KPFCNN, to conduct 
weakly supervised experiments using 0.1 % labeled points. Notably, for 
a fair comparison, all experiments were configured with the same 
training parameters and the same 0.1 % sparse labels. 

As shown in Table 6, our FPWS-Net achieved the best average of F1- 
score, mIoU, and OA in all the weakly supervised methods. The two 
baselines, i.e., RandLA-Net and KPFCNN, behaved similarly and ob
tained lower pointcloud classification accuracies than the other weakly 
supervised methods. To be specific, compared with our FPWS-Net, the 
RandLA-Net obtained a performance degradation of 18.09 %, 18.67 %, 
and 23.41 % for the average F1-score, mIoU, and OA, respectively, when 
using 0.1 % labels. SQN, which was built upon the RandLA-Net baseline, 

Table 5 
Quantitative results obtained by our FPWS-Net on the Tobermory dataset.   

F1-score (%) Average F1-score (%) mIoU (%) OA (%) 

Road Building Land Tree Water Powerline 

Area 9  86.76  92.21  94.78  99.62  98.71  91.32  93.90  88.83  97.52 
Area 12  74.62  88.56  92.08  98.65  98.85  93.59  91.06  84.55  96.88  

Table 6 
Quantitative results of different fully supervised methods and weakly supervised methods on the WS dataset. The underlined represents the best scores among all 
methods, and the bold represents the best scores of FPWS-Net compared to all other methods.  

Method F1-score (%) Average F1-score (%) mIoU (%) OA (%) 

Road Building Tree Grass Soil Powerline 

Fully supervised PointNet++ 73.91  83.98  86.64  96.74  30.24  57.28  71.47  55.84  90.19 
DGCNN 70.43  90.25  93.62  97.93  21.97  55.24  71.57  52.04  91.36 
RSCNN 71.18  89.00  91.42  95.63  26.43  70.03  73.90  56.10  92.44 
KPFCNN 83.41  99.39  95.53  99.35  5.75  91.59  79.17  76.09  95.45 
RandLA-Net 84.72  93.47  96.34  99.12  31.68  82.75  81.35  73.42  95.57 
SE-PointNet++ 70.32  85.64  94.70  97.05  37.02  70.35  75.84  64.32  93.01 
FR-GCNet 82.63  90.81  95.33  98.77  28.72  74.11  78.61  65.78  93.55 

Weakly supervised (0.1 %) KPFCNN 44.74  98.33  60.85  99.38  10.92  92.69  67.83  60.19  73.22 
RandLA-Net 58.70  97.57  65.79  99.06  2.24  70.21  65.60  60.14  72.56 
SQN 75.21  98.93  93.05  99.34  3.70  71.73  70.66  67.20  93.15 
PSD 69,74  97.98  90.24  99.23  1.45  75.42  72.34  65.26  90.84 
Ours 86.61  98.86  96.29  99.46  28.70  92.22  83.69  78.81  95.97  
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outperformed the RandLA-Net in MS-LiDAR pointcloud classification, 
with a gain of 5.06 %, 7.06 %, and 20.59 % for the average F1-score, 
mIoU, and OA, respectively. This is because the point feature querying 
network of the SQN strongly leveraged the semantic similarity of local 
points, implicitly enhancing sparse supervised signals. However, SQN 
lacked of sufficient unlabeled data, which hindered its performance on 
MS-LiDAR LiDAR pointcloud classification tasks. Comparatively, the 
FPWS-Net not only provided rich bottom-up supervised signals to the 
model through KPConv and the auxiliary semantic inference module but 
also effectively converted a large number of unlabeled points into 
auxiliary supervised signals using the mutual pseudo-labeling loss, 
thereby obtaining a gain of 13.03 %, 11.61 %, and 2.82 % for the 
average F1-score, mIoU, and OA. 

PSD obtained the commendable MS-LiDAR pointcloud classification 
performance using 0.1 % labels. This is because PSD constrained the 
data perturbations generated twice from input pointclouds, providing 
additional auxiliary supervised signals to the model. In addition, GCN 
used in the PSD helped explore more underlying supervised signals. 
Compared with PSD, the FPWS-Net obtained a gain of 11.35 %, 13.55 %, 
and 5.13 % for the average F1-score, mIoU, and OA. The reason might be 
that GCN only modelled the feature distances of neighboring points and 
poorly aggregated their location information, while the KPConv in our 
FPWS-Net assigned different weights to the kernel points based on their 
distances to neighboring points, aggregating positional distances and 
feature distances of neighboring points, providing more accurate clas
sification cues for the model, and finally improving pointcloud classifi
cation accuracies. 

As illustrated in Fig. 8, our FPWS-Net, exploring its exceptional 
capability for extracting underlying semantic features and efficiently 
utilizing unlabeled data, achieved classification performance signifi
cantly surpassing those of the SQN and PSD weakly supervised methods. 
Notably, there are two examples marked by dashed and solid oval- 
shaped areas in Fig. 8. In the dashed oval-shaped area, our FPWS-Net 
correctly distinguished linearly-structured powerline points from their 
surrounding tree points, whereas SQN and PSD incorrectly identified 
powerline points as tree points. In the solid oval-shaped area, our FPWS- 
Net accurately recognized road points with distinct boundary lines. In 
contrast, PSD misclassified some road points as tree points, while SQN 
obtained the worst classification performance by misclassifying the 
majority of road points as tree and soil points. 

Moreover, the FPWS-Net obtained the best F1-score values of 86.61 
%, 96.29 %, 99.46 %, and 28.70 %, respectively, for class road, tree, 

grass, and soil, among all weakly supervised methods. Thus, it demon
strates that the proposed FPWS-Net can achieve the MS-LiDAR point
cloud classification accuracy comparable to the fully supervised 
methods when using 0.1 % labeled points and outperformed the weakly 
supervised methods. 

4.4. Ablation studies 

In our FPWS-Net, the modules, i.e., the mutual pseudo-labeling loss, 
the consistency constraint and the KPConv, contributed positively and 
significantly to the enhancement of the quality of both the feature rep
resentation and the pointcloud classification. Thereby, we intently 
tested the advanced superiorities of these three modules to the 
improvement of the airborne MS-LiDAR pointcloud classification accu
racies. To this end, we performed a set of ablation experiments on the 
WS dataset to analyze these important components. To better analyze 
the contribution of each component, 0.1 % labeled points were used in 
all the experiments. First, we removed the mutual pseudo-labeling loss 
from the FPWS-Net, and the resultant network was termed as Model A. 
Second, we removed the consistency constraint from the FPWS-Net, and 
the modified network was termed as Model B. Finally, we replaced 
KPConv with GCN, and the modified network was termed as Model C. 
These models were trained using the same data, strategies, and hyper
parameter settings. Table 7 details the MS-LiDAR pointcloud classifi
cation results obtained by these modified models on the WS dataset. The 
metrics, i.e., average F1-score and OA, were also used for quantitative 
comparisons and analyses. 

As seen in Table 7, Model A, by removing the mutual pseudo-labeling 
loss, behaved less promisingly with a slight decrease of 2.24 % and 0.97 
% for the average F1-score and OA, respectively. The reason is that 

Fig. 8. Detailed visualization of the comparison methods, (a) SQN, (b) PSD, and (c) the proposed FPWS-Net.  

Table 7 
Quantitative results obtained by the modified networks on the WS dataset.  

Model Mutual 
pseudo- 
labeling 
loss 

Consistency 
constraint 

KPConv GCN Average 
F1-score 
(%) 

OA 
(%) 

Ours √ √ √   83.69  95.97 
A  √ √   81.45  95.00 
B √  √   82.21  95.44 
C √ √  √  79.60  94.99  
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without the mutual pseudo-labeling loss, the large numbers of unlabeled 
points were not fully exploited to provide additional supervised signals 
for better learning data features and class distributions. Only relying on 
the training data randomly selected from the spares labeled points 
limited the model performance. Model B, by abandoning the consistency 
constraint, obtained a degradation of 1.48 % and 0.53 % for the average 
F1-score and OA, respectively. This is because that model B without the 
consistency constraint, lacked of unified supervised signals on the 
feature perturbations of the two semantic inference modules during the 
learning process. This led to the two semantic inference modules 
learning inconsistent feature representations, thereby resulting in a 
decrease in classification accuracy. The mutual pseudo-labeling loss and 
the consistency constraint expanded the extent and distribution of 
training data and constrained the prediction differences between the 
two semantic inference modules, respectively, providing the model with 
additional supervised signals and increasing the MS-LiDAR pointcloud 
classification performance. 

Model C, by replacing KPConv with GCN, performed less poorly with 
an average F1-score decrease of 4.09 % and an OA decrease of 0.98 % in 
MS-LiDAR pointcloud classification tasks. This can be attributed to the 
advantages of KPConv over GCN. KPConv assigned weights to the kernel 
points based on their distances to points, ensuring the kernel points to 
capture more useful features and providing more accurate supervised 
signals for the model. Moreover, the learned kernel point weight matrix 
properly allocated weights to each kernel point during model training. 
On contrary, GCN only modeled the local relationships between the 
high-dimensional point features regarding feature distance, thereby 
neglecting the crucial geometric distances between points. 

To further validate the effectiveness of the KPConv in the FPWS-Net, 
we embedded it into RandLA-Net and SQN, respectively, named as 
RandLA-Net-KPC and SQN-KPC. In the RandLA-Net, the KPConv was 
used to construct context-aware information for all points. In the SQN, 
only the features of labeled points were utilized for semantic inference. 
Table 8 lists the MS-LiDAR pointcloud classification results obtained by 
these modified methods on the WS dataset. 

As listed in Table 8, the classification performance was improved 
when embedding the KPConv into the networks. Specifically, compared 
with RandLA-Net and SQN, the RandLA-Net-KPC and SQN-KPC obtained 
an average F1-score gain of 2.91 % and an OA gain of 19.9 %, as well as 
an average F1-score gain of 3.61 % and an OA gain of 2.27 %, respec
tively. This is because, by embedding the KPConv into the RandLA-Net 
and the SQN, the RandLA-Net-KPC and the SQN-KPC promoted the 
feature semantic quality, thereby leading to the improvement of MS- 
LiDAR pointcloud classification. Moreover, our FPWS-Net achieved a 
higher average F1-score of 15.18 % and 9.42 %, and a higher OA of 3.51 
% and 0.55 % than those of the RandLA-Net-KPC and SQN-KPC, 
respectively. This demonstrates that constraining the feature perturba
tions generated by the two semantic inference modules effectively en
hances the stability and classification performance of the model. 

To further discuss the influence of the number of labeled points on 
the MS-LiDAR pointcloud classification performance, we varied the 
number of labeled points with four labeling ratios, i.e., 0.05 %, 0.1 %, 1 
%, and 10 %. Fig. 9(a) illustrates the MS-LiDAR pointcloud classification 
accuracies at the four labeling ratios. The average F1-score and OA 
metrics were also leveraged for quantitative analyses. As seen in Fig. 9 
(a), the pointcloud classification accuracies increased with the increase 

of the labeling ratio. To be specific, a rapid increase occurred when the 
ratio changed from 0.05 % to 0.1 %, indicating that less than 0.1 % 
labeled points may be insufficient for the network to learn adequately 
features. Although the pointcloud classification accuracies improved 
when the ratio changed from 0.1 % to 10 %, this improvement became 
insignificant. This demonstrates that more labeled points provide the 
network with more supervised signals, allowing it to better learn the 
underlying feature patterns. Therefore, to trade-off the annotation ef
forts and model performance, 0.1 % labeling ratio was suitable for the 
weakly supervised networks in MS-LiDAR pointcloud classification 
tasks. 

To validate the accuracy variability of the FPWS-Net using different 
labeled points, we repetitively trained the FPWS-Net six times, which 
means the randomly selected 0.1 % labeled points at each time were 
different for training. The experimental results are presented in Fig. 9 
(b). It is observable that there are slight but not significant differences 
among the six classification results, which indicates that the proposed 
FPWS-Net exhibits the robustness to the randomly selected labeled 
points. 

5. Conclusion 

This paper presented a novel weakly-supervised deep learning 
framework, termed as FPWS-Net, for MS-LiDAR pointcloud classifica
tion tasks. The FPWS-Net innovatively employed a dual semantic 
inference structure including a primary semantic inference module and 
an auxiliary semantic inference module. To be specific, the feature 
perturbance generated by the primary and auxiliary semantics inference 
modules were minimized to enhance model stability by a consistency 
constraint loss and a mutual pseudo-labeling loss. Moreover, a KPConv 
was embedded into the network to fully explore the geometric and 
spectral feature relationships between local points in a high-dimensional 
feature space, which provided more features and supervisory signals for 
training the network. 

The proposed FPWS-Net was tested on two MS-LiDAR pointcloud 
datasets, and obtained at least an average F1-score of 83.69 %, an mIoU 
of 78.81 %, and an OA of 95.97 %, using only 0.1 % labeled points. All 
experiments also indicated the generalization and effectiveness of the 
FPWS-Net in MS-LiDAR pointcloud classification tasks. However, the 
FPWS-Net failed to deal with some classes, such as soil, due to the lack of 
abundant supervised signals. In the future, we will focus on obtaining 
more effective supervised signals and more contextual information to 
achieve higher classification performance using less data labeling. 
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