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 Abstract— Nowadays, unmanned aerial vehicle (UAV) remote 

sensing data are key operational sources used to produce a reliable 

building damage map (BDM), which is of great importance in 

instant response and rescue operations after earthquakes. The 

present study proposes a novel weighted ensemble transferred U-

Net-based model (WETUM) consisting of two major steps to 

create a reliable binary BDM using UAV data. In the first step of 

the proposed approach, three individual initial BDMs are 

predicted by three pre-trained U-Net-based composite networks. 

In the second step, these three individual predictions are linearly 

integrated through a proposed grid search technique so that an 

optimized hybrid BDM (OHBDM) incorporating complementary 

damage information is made. The proposed WETUM was then 

compared with several conventional deep learning (DL) and 

machine learning (ML) models. The models were compared across 

two pivotal scenarios, addressing the impact of diverse feature sets 

on model performance and generalizability. Specifically, the first 

scenario focused solely on spectral features, while the second 

incorporated both spectral and geometrical features. To make the 

comparisons, this study conducted empirical analyses using UAV 

spectral and geometrical data acquired over Sarpol-e Zahab, Iran. 

The experimental findings showed that the synergic use of spectral 

and geometrical data boosted both DL- and ML-based approaches 

in damage detection. Moreover, the proposed WETUM with DDR 

values of 65.22 and 78.26 (%), respectively, for the first and second 

scenarios, outperformed all the compared methods. Notably, 

WETUM with only spectral data outperformed the random forest 

(RF) classifier equipped with many hand-crafted spectral and 

geometrical features, indicating the highest potential and 

generalizability of the proposed WETUM for building damage 
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I. INTRODUCTION 

ATURAL disasters, including wildfires, floods, 

cyclones, landslides, and earthquakes, continuously 

pose threats to the world [1], [2]. Of these, the most 

catastrophic is the earthquake, causing many fatalities and 

severe damage to buildings within urban environments 

worldwide [3], [4]. Hence, diagnosing the earthquake-induced 

damages to these areas is crucial in immediate response and 

rescue operations. Building damage assessment relying on the 

field survey is costly and time-consuming and is nearly 

impossible in some cases due to road closures within urban 

regions after earthquakes. Lately, remote sensing (RS) 

technology and data sources, due to their synoptic view, have 

been broadly used in an operational way to produce the building 

damage map (BDM). Overall, the existing BDM generation 

approaches generally use two main RS data sources, including 

satellite imagery [5]–[8] and unmanned aerial vehicle (UAV) 

data. Particularly, UAVs, also called drones, play a vital role in 

post-earthquake rapid damage evaluation due to their capability 

to cover inaccessible areas and real-time and high-resolution 
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data acquisition. In general, drone data-based building damage 

assessment approaches could be investigated from two time and 

methodological viewpoints. From the time perspective of the 

used drone data, previous methods employed either a uni-

temporal post-event image [9]–[11] or bi-temporal pre- and 

post-event images [12], [13]. Using a single post-event drone 

data is more practical and preferred over applying bi-temporal 

images as the latter contains a number of challenges, such as 

shadow artifacts, geometrical displacements, and co-

registration issues. Moreover, access to an appropriate pre-

event image for bi-temporal damage evaluation is not always 

guaranteed [14]. 

In terms of the methodology employed, two major categories 

for producing BDM in previous drone data-based works are (1) 

Machine Learning (ML) and (2) Deep Learning (DL)-based 

methods. Two main steps are overall pursued in the ML 

approaches. Firstly, hand-crafted features are extracted from 

input data, and secondly, the extracted features are classified 

into different damage categories by a classifier. ML methods 

need more accurate manual/expert-dependent feature 

engineering in which the features and ML algorithms must be 

adjusted before classification, which may differ in various 

scenarios, applications, and geographical areas [15]. In recent 

years, DL-based methods have substantially addressed the 

aforementioned challenges of the ML algorithms in damage 

evaluation works [16]–[18]. Contrary to ML, automatically 

extracting and classifying many complex abstract features are 

coincidently carried out in DL models [19]. Among the existing 

DL structures used for damage assessment purposes, 

convolutional neural networks (CNNs) have been proven to be 

more effective and accurate in BDM generation due to their 

automatic feature extraction allowing for the effective 

extraction of multi-level features of buildings, such as colors, 

edges, and problem-specific features [20], [21]. Notably, 

amongst CNN-based structures, U-Net architecture [22] as an 

appropriate choice has attracted much attention in the context 

of building damage detection [23]–[28]. Because the U-Net 

structure can work efficiently even with a small amount of 

labeled data [22], which is especially suited to building damage 

assessment where annotated data is challenging to be obtained. 

Yet, the lack of a strong feature extractor mechanism within U-

Net for capturing complex image features may lead to losing 

accurate earthquake damage information. To fill this gap, a very 

limited number of studies employed some CNN-based 

architectures as backbones added to the simple U-Net model to 

generate more abstract damage features. For instance, 

Irwansyah et al. [29] embedded the ResNet-50 backbone in the 

U-Net model and trained the composite structure using xBD 

dataset. They finally employed the trained model to generate 

BDMs. On the other hand, the pre-trained backbones, such as 

deep transfer learning (DTL) techniques, can help U-Net 

generalize well in a new earthquake scenario where the training 

data might be small and insufficient [30]. In fact, DTL is a 

strategy that involves pre-training deep neural networks on 

large datasets and then fine-tuning them on related smaller ones 

to improve deep models on smaller unseen datasets. In this way, 

transferred deep models can generalize to new scenarios 

through learning more general features that are applicable 

across new datasets [31]–[33]. Lately, coupling pre-trained 

backbones with the U-Net structure, which is regarded as 

composite deep models throughout the present paper, has 

already been found effective in medical image processing fields 

for raising the generalizability [34]–[36], but further research 

works are also to be carried out to peruse the efficiency of DTL 

in the building damage detection context. 

Though the aforementioned and previous earthquake-related 

damage assessment studies led to satisfactory results, they still 

face some remarkable issues and gaps that should be well 

tackled. Firstly, none of the existing U-Net-based DL building 

damage detection methods have employed backbone structures 

and DTL techniques simultaneously, and they also lack 

utilizing ensemble predictions derived from several transferred 

models to evaluate building damages. Considering any 

individual pre-trained backbone can reflect some particular 

damage information in its prediction, integrating the predictions 

of several transferred models is assumed to reflect and 

accumulate distinct aspects of building damage information 

within an integrated individual prediction. Secondly, to the best 

of the authors’ knowledge, the earthquake-induced building 

damage assessment literature lacks a comprehensive 

comparison between ML- and DL-based approaches in terms of 

input data (features) combination and generalizability. From the 

input features combination perspective, none of the previous 

works specifically evaluated the impact of spectral features 

(i.e., RGB bands) and their combinations with geometrical 

features such as digital surface model (DSM) on ML- and DL-

derived BDMs. Notably, using DSM data as 3D geometrical 

information alongside spectral data can better reflect the 

physical properties of the buildings [37].  Moreover, in terms of 

generalizability, a comparison between ML and DL approaches 

for a new earthquake-related damaged area remains 

unexplored, where test and training data lack overlap. To 

overcome the issues and gaps mentioned for the previous efforts 

in the building damage examination field, a novel ensemble 

DTL algorithm was proposed here, and a detailed comparison 

among the proposed model and several ML- and DL-based 

approaches was conducted with several spectral and 

geometrical input features. Indeed, the present study has two 

major research significance from the viewpoints of data and 

methodology. Firstly, regarding data, the use of UAV remote 

sensing data is highlighted as a key operational source for 

generating reliable BDMs despite satellite data. This 

underscores the practical relevance of the study in the context 

of instant response and rescue operations after earthquakes. 

Secondly, the methodological significance involves introducing 

a novel DL-based architecture, analyzing the synergic 

integration of spectral and geometrical features, and 

comprehensively comparing the proposed DL approach and the 

state-of-the-art algorithms. The primary emphasis in this 

research is on localizing damaged buildings rather than the 

evaluation of the extent and severity of damage. Hence, the 

main contributions and methodological novelties of the present  
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Fig. 1. The general comparison framework of the present study for producing ML- and DL-based BDMs, where BDM and 

RBDM are abbreviations for building damage map and reference building damage map, respectively.  

 

study are summarized as follows: 

1) A novel weighted ensemble transferred U-Net-based 

model (WETUM) with three various pre-trained backbone 

structures alongside a reliable integration approach is proposed 

to take advantage of the predictions of several models for 

generating an optimized BDM. 

2) Various combinations of spectral and geometrical features 

as inputs given to both ML- and DL-based models are evaluated 

and compared to investigate their impact on recognizing 

damage/non-damage. 

    3) For the first time, both ML- and DL-based BDM 

generation approaches are compared in generalizability level 

for a new unseen earthquake-affected area non-overlapped with 

the training areas. 

The remainder of this paper is presented as follows: Section 

II details the proposed DL-based WETUM and explains the 

comparative ML-based approaches. In Section III, the study 

area and datasets chosen for this work are introduced. The 

experiments are detailed, and the assessment criteria considered 

for evaluating the results attained in this research are also 

described in Section IV. Then, the analysis and discussion of 

the quantitative and qualitative results for both DL- and ML-

based models are presented in Section V. Lastly, Section VI 

summarizes the key findings drawn from the results and 

concludes the paper. 

II. METHODOLOGY 

The general framework of the present comparative building 

damage detection study with four main steps is shown in Fig. 1: 

(1) pre-processing of the used drone data, (2) developing a 

novel DTL-based approach named WETUM based on optical 

and DSM data for binary BDM generation, (3) implementing 

various ML algorithms trained by different feature 

combinations, including optical, DSM and other hand-crafted 

features to produce binary BDMs, and (4) post-processing of 

the BDMs obtained by the DL and ML algorithms. 

 

  

 
Fig. 2. Removing the non-building pixels from the input data 

in the pre-processing phase. 

 

A. Pre-processing 

The pre-processing of the data used in this study falls into two 

different stages: (1) non-building pixels removal for both ML- 

and DL-based methods and (2) patch extraction and data 

augmentation for DL-based approaches. At the first stage, in 

order to reduce the negative effects of non-building pixels on 

all training, validation and testing procedures in both ML and 

DL approaches, the building vector layer as one of the input 

data was overlaid on both input optical and DSM data to  
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Fig. 4. The flowchart of the proposed weighted ensemble transferred U-Net-based model (WETUM) for generating a reliable 

BDM. 

 

 
Fig. 3. Illustrating the patch extraction method used to 

prepare adequate datasets for deep learning (DL) algorithms, 

in which the input and their corresponding output (label) 

patches are respectively shown at the left and right sides. 

 separate the built-up and non-built-up areas as depicted in Fig. 

2. The building vector map as an ancillary data, due to the lack 

of updated vector data for the Sarpol-e Zahab region, were 

manually prepared by precisely visualizing the corresponding 

pre-event Google Earth images. It is worth nothing that the 

presumption in the proposed methodology is that the vector data 

is of trusted quality, even though there might be instances of 

data being outdated or unavailable – circumstances irrelevant to 

the functionality of the developed algorithm. However, due to 

the removal of non-building objects that may negatively affect 

damage detection, this pre-processing step raises the reliability 

of detecting the damaged buildings, as only the building pixels 

are inspected, and the irrelevant background objects are 

ignored.  

In the second stage, to convert the input data used for DL 

models to a correct format (i.e., a four-dimensional array 

containing the number of samples, rows, columns, and 

channels) suited to the Keras Python library [38] and to increase 

the amount of both training and validation data, all training, 

validation, and testing data and their corresponding labels were 

partitioned into nonoverlapping square patches of size 128×128 

pixels (see Fig. 3). Additionally, the patches were next 

augmented with rotation with an angle of 90˚ and left/right and 

up/down flipping to sufficiently provide training, validation, 

and testing datasets were derived as (1148, 128, 128, n), (341, 

128, 128, n), and (21, 128, 128, n), respectively, where n 

represents the number of input data bands, which is 3 (red, 

green, and blue bands) and 4 (red, green, blue, and DSM bands) 

for ortho-photo and stacked ortho-photo and DSM data, 

respectively. 

B. DL-based WETUM  

Fig. 4 depicts the 2-step architecture of the proposed 

weighted ensembled approach for the generation of BDM from 

input RGB and DSM images. In the first step, three individual 

initial probabilistic BDMs are produced using three different 

multi-class semantic segmentation pre-trained models. In the 

second step, to make an optimized ensembled BDM prediction 

from these individual predictions, they are linearly integrated 

by three different weights determined using a grid search 

combination strategy. Each step mentioned above is detailed in 

the following paragraphs. 

  1)  Generating initial individual BDMs using the trained 

models: Even though the traditional U-Net model can achieve 

satisfactory outcomes in building damage recognition, it suffers 

from the existence of a limited number of convolutional layers 

as feature extractors in its architecture, leading to damage and 

non-damage information loss. To cope with this drawback, 

embedding useful backbones to the U-Net architecture can 

increase its potential to extract meaningful and discriminative 

features from the input image to precisely detect damage/non-  
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Algorithm 1: The Pseudo Code of the Proposed Grid Search Technique 

for Estimating the Best Integration Weights 

Inputs: 

𝑵 (Number of validation patches; n=1, … , 𝑁) 

𝑽𝑩𝑫𝑴𝑷𝑼𝑹
𝒏 , 𝑽𝑩𝑫𝑴𝑷𝑼𝑽

𝒏 , and 𝑽𝑩𝑫𝑴𝑷𝑼𝑰
𝒏  (Individual VBDM patches 

respectively derived by 𝑈𝑅, 𝑈𝑉, and 𝑈𝐼 for the nth validation patch) 

𝑹𝑩𝑫𝑴𝑷𝒏 (Reference BDM patch for the nth validation patch) 

Outputs: 

𝒘𝒑
𝑹∗, 𝒘𝒑

𝑽∗, and 𝒘𝒑
𝑰∗ (The most optimal weight values of 𝑤𝑝

𝑅𝑛0, 𝑤𝑝
𝑉𝑛0, 

and 𝑤𝑝
𝐼𝑛0) 

1: for 𝑛: = 1 to 𝑁, step 1 do 

          (Loop 1 on 𝑁) 

          for 𝑤𝑝
𝑅𝑛0 ≔ 0 to 1, step 0.1 do 

          (Loop 2 on the number of candidate values for 𝑤𝑝
𝑅𝑛0) 

          for 𝑤𝑝
𝑉𝑛0:= 0 to 1, step 0.1 do 

          (Loop 3 on the number of candidate values for 𝑤𝑝
𝑉𝑛0) 

          for 𝑤𝑝
𝐼𝑛0:= 0 to 1, step 0.1 do 

          (Loop 4 on the number of candidate values for 𝑤𝑝
𝐼𝑛0) 

                if 𝑤𝑝
𝑅𝑛0+𝑤𝑝

𝑉𝑛0+𝑤𝑝
𝐼𝑛0 = 1 (Condition 1) 

                        𝒘𝒏𝟎=[𝑤𝑝
𝑅𝑛0, 𝑤𝑝

𝑉𝑛0, 𝑤𝑝
𝐼𝑛0]; 

                        𝒘𝒗𝒏𝟎 ← 𝒘𝒏𝟎; 

                       

 𝐻𝐵𝐷𝑀𝑃𝑛0=𝑤𝑝
𝑅𝑛0×𝑉𝐵𝐷𝑀𝑃𝑈𝑅

𝑛 +𝑤𝑝
𝑉𝑛0×𝑉𝐵𝐷𝑀𝑃𝑈𝑉

𝑛 +𝑤𝑝
𝐼𝑛0×𝑉𝐵𝐷𝑀𝑃𝑈𝐼

𝑛 ; 

                        𝑘𝑛0 =AccEval (𝑅𝐵𝐷𝑀𝑃𝑛, 𝐻𝐵𝐷𝑀𝑃𝑛0); 

                        where AccEval(.) is a function taking 𝑅𝐵𝐷𝑀𝑃𝑛and 

𝐻𝐵𝐷𝑀𝑃𝑛0 to calculate kappa for the nth validation patch, i.e., 𝑘𝑛0. 

                        𝑲𝑽𝒏𝟎 ← 𝑘𝑛0; 

                        where 𝑲𝑽𝒏𝟎 is a vector in which the calculated 𝑘𝑛0 are 

collected. 

                        𝐼𝐷𝑛∗=argmax (𝐾𝑉𝑛0); 

                        where argmax(.) is an operator returning the ID of the 

highest kappa value in 𝐾𝑉𝑛0. 

                        𝒘𝒏∗=𝒘𝒗𝒏𝟎[𝐼𝐷𝑛∗]; where 𝒘𝒏∗= [𝑤𝑝
𝑅𝑛∗, 𝑤𝑝

𝑉𝑛∗, 𝑤𝑝
𝐼𝑛∗]; 

                        𝑾 ← 𝒘𝒏∗; 

                        where 𝑤𝑛∗ is the best form of 𝑤𝑝
𝑅𝑛0, 𝑤𝑝

𝑉𝑛0, and 𝑤𝑝
𝐼𝑛0 for the 

nth validation patch. 

                end if (End condition 1) 

          end for (End loop 4) 

          end for (End loop 3) 

          end for (End loop 2) 

    end for (End loop 1) 

2: 𝑤𝑝
𝑅∗=𝑎𝑣𝑔(𝑾[: ,1]); 

3: 𝑤𝑝
𝑉∗= 𝑎𝑣𝑔(𝑾[: ,2]); 

4: 𝑤𝑝
𝐼∗= 𝑎𝑣𝑔(𝑾[: ,3]); 

     where 𝑾[: ,1], 𝑾[: ,2], and 𝑾[: ,3] denote the first, second, and third 

columns of 𝑾, respectively. 

5: return 𝑤𝑝
𝑅∗, 𝑤𝑝

𝑉∗, and 𝑤𝑝
𝐼∗ 

 

damage categories. Moreover, using the pre-trained variant of a 

backbone can help U-Net generalize better to new unseen data 

as a pre-trained backbone is already trained on large datasets 

with diverse images. On the other hand, since pre-trained 

backbone weights already contain beneficial low-level 

damage/non-damage building features like edges and textures, 

adding a pre-trained backbone to U-Net and fine-tuning it on 

damage detection task can enable U-Net to exploit the learned 

features to result in faster convergence and improved BDMs. 

Considering each backbone can capture some unique multi-level 

abstract features, the use of several different pre-trained 

backbones could reflect a broad range of feature sets, each of 

which could contain distinct particular aspects of damage/non-

damage information. Hence, three well-known CNN-based 

backbones, including ResNet-34 [39], Vgg16 [40], and 

InceptionV3 [41], respectively abbreviated as 𝑅, 𝑉, and 𝐼,  were 

considered in this research work. The backbones 𝑅, 𝑉, and 𝐼 

were pre-trained on the ImageNet database [42], a large-scale 

dataset of labeled images, which has been widely used to pre-

train DL networks as an efficient transfer learning technique. 

The three pre-trained backbones were separately embedded into 

U-Net in order to form three different composite DL structures, 

namely U-Net+ResNet34 (𝑈𝑅), U-Net+Vgg16 (𝑈𝑉) and U-

Net+InceptionV3 (𝑈𝐼) within the Python Keras library. 𝑈𝑅, 𝑈𝑉, 

and 𝑈𝐼 models were then fine-tuned by the available training and 

validation patches to reach the best network training weights 

(i.e., 𝑤𝑚
𝑅 , 𝑤𝑚

𝑉 , and 𝑤𝑚
𝐼 ) for the composite models. After the 

training phase, the validation data with N patches (i.e., 

n=1, … , 𝑁) and the test data patches were given to the trained 

𝑈𝑅, 𝑈𝑉, and 𝑈𝐼  models to produce (1) validation data-based 

BDM patches (𝑉𝐵𝐷𝑀𝑃𝑈𝑅
𝑛 , 𝑉𝐵𝐷𝑀𝑃𝑈𝑉

𝑛 , and 𝑉𝐵𝐷𝑀𝑃𝑈𝐼
𝑛 ) and (2) 

test data-based BDM patches (𝑇𝐵𝐷𝑀𝑃𝑈𝑅, 𝑇𝐵𝐷𝑀𝑃𝑈𝑉, and 

𝑇𝐵𝐷𝑀𝑃𝑈𝐼), respectively. These two categories of initial single 

BDM results were then kept for the subsequent analyses. 

  2)  Generating an optimized hybrid BDM (OHBDM): Each 

of the previously produced 𝑇𝐵𝐷𝑀𝑃𝑈𝑅, 𝑇𝐵𝐷𝑀𝑃𝑈𝑉, and 

𝑇𝐵𝐷𝑀𝑃𝑈𝐼  reflects unique damage/non-damage information as 

three different composite models produced them. Accordingly, 

their integration as a key solution to the damage detection 

problem can provide complementary valuable information due 

to accentuating the merits of the individual BDM results. To 

this end, a linear integration consisting of three unique weights 

and the predictions of 𝑈𝑅, 𝑈𝑉, and 𝑈𝐼 was proposed in this study 

to produce an integrated individual prediction named optimized 

hybrid BDM (OHBDM). The optimal weight values of this 

linear integration were estimated through a proposed validation 

patches-based grid search approach, detailed in the following. 

Assuming 𝑤𝑝
𝑅𝑛0, 𝑤𝑝

𝑉𝑛0, and 𝑤𝑝
𝐼𝑛0are respectively the initial 

weights associated with 𝑉𝐵𝐷𝑀𝑃𝑈𝑅
𝑛 , 𝑉𝐵𝐷𝑀𝑃𝑈𝑉

𝑛 , and 

𝑉𝐵𝐷𝑀𝑃𝑈𝐼
𝑛 , where each weight ranges from 0 to 1 with a step of 

0.1, and n also denotes the number of validation patches as 

already mentioned. In the proposed grid search approach, for 

the nth validation patch, many possible linear combinations 

according to the (1) were first created between the weights and 

the 𝑉𝐵𝐷𝑀𝑃𝑈𝑅
𝑛 , 𝑉𝐵𝐷𝑀𝑃𝑈𝑉

𝑛 , and 𝑉𝐵𝐷𝑀𝑃𝑈𝐼
𝑛  to generate initial 

BDM patches (𝑅𝐵𝐷𝑀𝑃𝑛) to determine the best linear 

combination (𝐻𝐵𝐷𝑀𝑃𝑛∗) and its corresponding weights (𝒘𝒏∗= 

[𝑤𝑝
𝑅𝑛∗, 𝑤𝑝

𝑉𝑛∗, 𝑤𝑝
𝐼𝑛∗]). 

 

𝐻𝐵𝐷𝑀𝑃𝑠𝑛0 = ∑ 𝑉𝐵𝐷𝑀𝑃𝑈𝑑
𝑛  × 𝑤𝑝

𝑑𝑛0
𝑑 ; 

∑ 𝑤𝑝
𝑑𝑛0 = 1𝑑 , 𝑑: 𝑅, 𝑉, 𝐼 and 𝑛=1, … , 𝑁 

(1) 
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After the best weights (𝒘𝒏∗) determination for all N validation 

patches, all the 𝑤𝑝
𝑅𝑛∗, 𝑤𝑝

𝑉𝑛∗, and 𝑤𝑝
𝐼𝑛∗ were averaged on N to 

estimate the most optimal weights, namely 𝑤𝑝
𝑅∗, 𝑤𝑝

𝑉∗, and 𝑤𝑝
𝐼∗. 

The further details of the proposed grid search algorithm are 

also well represented in Algorithm 1. Once the validation data 

patches led to the ideal weights, the reliable OHBDM patches 

(OHBDMPs) for the test data patches were achieved by linearly 

integrating 𝑇𝐵𝐷𝑀𝑃𝑈𝑅, 𝑇𝐵𝐷𝑀𝑃𝑈𝑉, and 𝑇𝐵𝐷𝑀𝑃𝑈𝐼  produced in 

the previous section and the optimal weights as formulated in 

(2). Eventually, OHBDMPs were connected horizontally and 

vertically to form the final entire OHBDM. It's worth noting the 

training and testing processes in this work were performed 

within the Google Colaboratory Pro Python environment with 

16 GB GPU (i.e., NVIDIA Tesla V100) and 25 GB of RAM. 

 

𝑂𝐻𝐵𝐷𝑀𝑃𝑠 = ∑ 𝑇𝐵𝐷𝑀𝑃𝑈𝑑 × 𝑤𝑝
𝑑∗

𝑑 ; 𝑑: 𝑅, 𝑉, 𝐼 (2) 
 

C. ML-based methods 

In the present study, ML-based methods are implemented in 

two stages. Firstly, some hand-crafted ancillary features were 

extracted, including the grey level co-occurrence matrix 

(GLCM) features for both input ortho-photo and DSM data and 

RGB indices only for the RGB ortho-photo. Secondly, the 

conventional ML algorithms are applied to classify the two 

main inputs (i.e., ortho-photo and DSM) and the extracted 

hand-crafted features to damage and non-damage classes. 

 

1)  Hand-crafted features extraction: In order to provide 

adequate ancillary training features, as an essential stage of 

ML-based methods implementation, a number of hand-crafted 

features, including textural information and an optical index, 

are extracted for the input data. In detail, the overall principle 

behind exploiting the textural features is that the buildings 

damaged after earthquakes appear with rougher and more 

differentiable texture than that of the intact ones in RS data 

[43]. Consequently, extracting texture features for giving to 

MLs could be considered straightforward, leading to 

producing accurate BDMs in these methods. Accordingly, in 

the present work, three well-known Haralick [44] GLCM 

textural features, including mean, variance, and homogeneity, 

extracted from both the blue band of the ortho-photo and the 

DSM data were employed to better discriminate the 

damaged/non-damaged buildings. Besides using textural 

features, the use of optical indices could also be a good choice 

in ML-based building damage recognition due to their multi-

spectral analysis capability. To this end, the optical 

panchromatic (PAN) index was also extracted here from the 

three-band drone ortho-photo data. The further advantages of 

the used ancillary GLCM-derived textural features and the 

PAN index alongside their formulae are reported in Table I 

where  𝑖 and 𝑗 are the row and column numbers, µ denotes the 

mean value of GLCM. 

  2) Damage/non-damage classification using ML algorithms: 

The classification stage in ML-based damage detection 

approaches plays a crucial role in identifying and categorizing 

post-earthquake damages. In this research, to generate ML-

based BDMs, five widely used algorithms, including (1) 

gradient boosting (GB), (2) logistic regression (LR), (3) 

decision tree (DT), (4) k-nearest neighbors (KNN), and (5) 

random forest (RF) were used to categorize the previously 

mentioned input main and hand-crafted features to damage/ 

non-damage. The performance characteristics of each ML 

algorithm are briefly described in Table II, where further 

details on the algorithms can also be found in their relevant 

references. 

  

TABLE I 

TEXTURAL AND OPTICAL HAND-CRAFTED FEATURES USED FOR ML ALGORITHMS 

Feature Description Equation 

G
L

C
M

 

Mean 
-Sensitive to variations in surface roughness, cracks, or other 

textural changes that may indicate structural damage. 
∑ ∑ 𝑗 × 𝐺𝐿𝐶𝑀(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

Variance 
-Highlighting high damage potential by detecting pixel 

intensity variations due to changes in texture caused by cracks, 

debris, or structural alterations. 

∑ ∑(𝑗 − 𝜇)2 × 𝐺𝐿𝐶𝑀(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

 

Homogeneity 

 

 

-Noise-resistant damage detection due to quantifying the local 

similarity of neighboring pixels. 

-Useful when dealing with complex scenes. 

∑ ∑
𝐺𝐿𝐶𝑀(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑛

𝑗=1

𝑚

𝑖=1

 

O
p

ti
c
a
l 

in
d

ex
 

PAN 

-Identifying small cracks or structural. 

-Enhancing the contrast between damaged and undamaged 

buildings. 

-Detecting severe building damages due to multi-spectral 

analysis. 

0.2989 × Red + 0.587 × Green + 0.114 × Blue 
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Fig. 5. Post-processing procedure used in this study 

 

 

Fig. 6. Location of the study area in Iran and Kermanshah 

Province. (a) Location of Kermanshah Province in Iran. (b) 

Location of Sarpol-e Zahab County in Kermanshah Province 

D. Post-processing 

The initial BDMs previously obtained by both DL- and ML-

based damage detection models contained individual damage/ 

non-damage labeled pixels within the building polygons, which 

leads to ambiguity about whether each building is entirely intact 

or destructed. In order to resolve this vagueness and to fully 

attribute each building to one of the two mentioned classes, a 

post-processing approach was employed to the initially 

obtained BDM results. This approach calculated a ratio where 

the number of damaged pixels is divided by the number of non-

damage pixels for each candidate building. Afterward, 

buildings with ratio values equal to and greater than 0.5 were 

labeled as damaged, but the remaining were labeled as 

undamaged (Fig. 5). 

III. STUDY AREA AND DATASET 

The Sarpol-e Zahab earthquake, also known as the 

Kermanshah earthquake, occurred on November 12, 2017, in 

the western part of Iran. The earthquake had a magnitude of 7.3 

and took place near the town of Sarpol-e Zahab in Kermanshah 

Province. This earthquake also caused significant loss of life 

and damage to many buildings and infrastructures in the region.  

 

TABLE III 

THE CHARACTERISTICS OF THE UAV SENSOR USED IN THE 

PRESENT STUDY 

UAV Device Phantom 4 Pro 

Flight altitude 98.8 m 

Camera FC6310 

Focal length 8.8 mm 

Image dimension 3648 ×5472 pixel 

Pixel size 2.41 µm 

 

It is estimated that over 600 people were killed, and 

thousands were also injured due to the earthquake [50]. The 

location map of the study area is shown in Fig. 6. In this study, 

the post-earthquake optical ortho-photo and DSM datasets 

related to four sub-areas of Sarpol-e Zahab were used to train 

and validate the comparative models, and a test study area 

without any overlapping with the train and validation data was 

also considered to independently evaluate the performance of 

the models in building damage detection. Both orthophoto and 

DSM data with the same spatial resolution of 25 cm were 

derived from stereo UAV (drone) data captured by a sensor with 

characteristics listed in Table III. Moreover, the training, 

validation, and test sub-datasets used for training and testing the 

models are depicted in Fig. 7, and their specifications are also 

reported in Table IV. 

As for the reference BDM (RBDM) data required for 

training, validating, and testing the algorithms, due to the lack 

of updated and accurate pre-event building vector data for the 

Sarpol-e Zahab region, buildings footprints as a number of 

samples were manually delineated from pre-event Google Earth  

TABLE II 

DESCRIPTIONS OF THE COMPARED ML ALGORITHMS 

ML algorithm Description 

GB  [45] 

The main idea behind this algorithm is to create 

several sequential models in a forward stage-wise 

fashion, each of which attempts to reduce the errors 

of the previous one. This strategy also allows for the 

optimization of arbitrary distinct loss functions. 

LR  [46] 

Logistic regression uses a logistic function to model 

some dependent variables that are dichotomous in 

nature, which could be considered as several 

possible classes. 

DT  [47] 

This classifier creates the classification model by 

building a decision tree. Each node in the tree 

specifies a test on an attribute, and each branch 

descending from that node also corresponds to one 

of the possible values for that attribute. 

KNN  [48] 

The k-nearest neighbors (KNN) algorithm is a non-

parametric, supervised learning classifier, which 

uses vicinity to make decisions about the grouping 

of individual samples. 

RF  [49] 

A random forest is a meta classifier fitting a number 

of decision trees on various sub-samples of the 

dataset and averaging several results to improve the 

final single prediction and to control over-fitting.  
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TABLE IV 

THE SPECIFICATIONS OF THE SUB-DATASETS EMPLOYED FOR 

TRAINING, VALIDATING, AND TESTING THE MODELS 

Dataset-labeled 

in Fig.7 
GSD (m) Area (𝐤𝐦𝟐) 

Train 1-(a) 0.25 0.03 

Validation-(b) 0.25 0.11 

Train 2-(c) 0.25 0.02 

Train 3-(d) 0.25 0.14 

Test-(e) 0.25 0.03 

 

images within a precise visual interpretation procedure. 

Afterward, these collected samples were divided into two 

classes, namely (1) damage and (2) non-damage, where 

buildings with intact roofs were labeled as 'Non-damage' [1], 

while roof-damaged buildings with varying degrees of 

destruction were labeled as 'Damage'. Table V lists the number 

of samples gathered for training, validation, and testing for the 

two classes of damage and non-damage.  

 In the case of ML algorithms, all the data needed for the 

training and testing phases were selected as individual pixels, 

contrary to the DL models capturing building polygons in all 

levels of training and testing stages. In fact, to train the ML 

algorithms, %20 of the pixels of each training polygon with a 

specific class of interest were randomly considered as training 

data samples, the number of which can also be seen in Table 

VI. 

 

IV. EVALUATION METRICS 

To quantitatively evaluate the performance of the 

comparative ML and DL methods in building damage 

detection, several metrics, namely damage detection rate 

(DDR), non-damage detection rate (NDR), overall accuracy 

(OA), kappa coefficient (KC), and F-score (FS) were 

 

 respectively estimated by equations (3)-(7), where true positive 

(TP) and true negative (TN) as two agreement measures refer 

to the number of correctly recognized damaged and non-

damage buildings, respectively. On the other hand, false 

positive (FP) and false negative (FN) are two disagreement 

metrics, respectively, signifying the number of non-damaged 

and damaged buildings detected wrongly as damaged and non-

damaged in the predicted BDM. The values of these four 

individual criteria were derived based on a confusion matrix 

formed by  

 

Fig. 7. The train, validation, and test sub-datasets selected in the present research. (a), (c) and (d) are the training sites, (b) is 

the validation site, and (e) is the testing site, where the first, second, and third columns show DSM, ortho-photo, and 

corresponding reference BDMs, respectively. 
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TABLE V 

DETAILS OF THE SUB-DATASETS SELECTED FOR DL MODELS 

(UNIT IS POLYGON) 

Dataset-labeled 

in Fig.7 
Total Sample Non-damage  Damage  

Train 1-(a) 56 29 27 

Validation-(b) 121 81 40 

Train 2-(c) 45 27 18 

Train 3-(d) 67 52 15 

Test-(e) 38 15 23 

Non-damage training polygons: 189 

Damage training polygons:100 

TABLE VI 

DETAILS OF THE SUB-DATASETS SELECTED FOR ML 

ALGORITHMS (UNIT IS PIXEL) 

Dataset-labeled in 

Fig.7 
Non-damage  Damage  

Train 1-(a) 1971 1917 

Train 2-(b) 12313 3642 

Train 3-(c) 2527 1243 

Train 4-(d) 13716 1312 

Non-damage training pixels: 30527 

Damage training pixels: 8114 

 

TABLE VII 

EXPLANATION OF THE CONFUSION MATRIX 

  Predicted BDM labels  

RBDM 

(Actual labels) 

Category damage non-damage 

damage TP FN 

non-damage FP TN 

 

𝐷𝐷𝑅 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) × 100 % (3) 

𝑁𝐷𝑅 = (
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
) × 100 % (4) 

𝑂𝐴 = (1 −
𝐹𝑁 + 𝐹𝑃

𝐹𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁
) × 100 % (5) 

𝐾𝐶 = (
𝑃0 − 𝑃𝑒

1 − 𝑃𝑒
) × 100 % 

𝑠. 𝑡. {
𝑃𝑒 =

(𝑇𝑃+𝐹𝑁)×(𝑇𝑃+𝐹𝑃)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)2 +
(𝐹𝑁 + 𝑇𝑁)× (𝐹𝑃 + 𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)2

𝑃0 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁

 

(6) 

𝐹𝑆 =  (
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
) × 100 % (7) 

 

 

TABLE VIII 

THE CHARACTERISTICS OF THE COMPARATIVE DL MODELS 

Model Backbone Pre-trained 

No. of 

parameters 

(×𝟏𝟎𝟔) 

U-Net None Randomly 

initialized 

2.164 

MRU-Net None 
Randomly 

initialized 
7.263 

U-Net++ None 
Randomly 

initialized 
4.870 

Link-Net None 
Randomly 

initialized 
20.325 

UR ResNet34 ImageNet 24.456 

UV Vgg16 ImageNet 23.752 

UI InceptionV3 ImageNet 29.933 

TABLE IX 

THE VALUES OF HYPERPARAMETERS USED FOR THE DL 

MODELS 

DL Hyperparameters Value 

Learning rate 0.0001 

Batch size 16 

Maximum epochs 100 

Optimizer 'Adam' 

Loss 'Categorical cross entropy' 

 

comparing the BDM labels predicted by a model with the actual 

labels of an RBDM, as demonstrated in Table VII [2]. 

  

V. RESULTS AND DISCUSSION 

Experimental results obtained in this study are presented in 

three separate parts. The first part examines the performance 

of the proposed DL-based WETUM along with other U-Net- 

based models for different spectral and geometrical input data. 

The aforementioned widely used ML techniques are evaluated 

in the second part for different combinations of spectral- and 

geometrical-based input features. Finally, the best results of 

both DL-and ML-based approaches are analyzed and compared 

in the third part.  

 

  1)  Comparing the proposed WETUM with other DL-based 

approaches: To investigate the performance efficacy of the 

proposed WETUM for two input data combinations, including 

RGB and RGB+DSM, its qualitative and quantitative outcomes 

derived in the two different schemes were compared to those 

outputted by some state-of-the-art multi-class semantic 

segmentation DL (MCSS-DL) models, including typical U-Net, 

U-Net+ResNet34 (UR) [51], U-Net+Vgg16 (UV) [52], U-

Net+InceptionV3 (UI) [53], multi-residual U-Net (MRU-Net)  
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Fig. 8. The best and worst BDMs produced using the DL models for the two types of input data, RGB and RGB+DSM: (a) 

Reference BDM, (b) and (d) WETUM BDMs as the best results, (c) and (e) U-Net BDMs as the worst results. 

TABLE X 

QUANTITATIVE PERFORMANCE EVALUATION OF THE FIVE U-NET-BASED DL MODELS IN TWO CASES OF INPUT DATA, 

INCLUDING RGB AND RGB+DSM, WHERE THE BOLD TEXTS SIGNIFY THE BEST RESULTS 

Input data Model 
TP (No.) 

(RBDM=23) 

TN (No.) 

(RBDM=15) 

Evaluation Metrics (%) 

OA KC F-score 

RGB 

U-Net 8 14 57.89 24.19 50.00 

MRU-Net 10 14 63.16 32.32 58.82 

UR 11 15 68.42 41.98 64.71 

U-Net++ 12 14 68.42 40.78 66.67 

UV 13 14 71.05 45.14 70.27 

UI 13 14 71.05 45.14 70.27 

Link-Net 13 15 73.68 50.56 72.22 

WETUM 15 14 76.32 54.16 76.92 

RGB+DSM 

U-Net 12 13 65.79 35.17 64.84 

MRU-Net 11 15 68.42 41.98 64.71 

UR 14 14 73.68 49.60 73.68 

UV 13 15 73.68 50.65 72.22 

UI 14 14 73.68 49.60 73.68 

Link-Net 14 14 73.68 49.60 73.68 

U-Net++ 14 15 76.32 52.12 75.68 

WETUM 18 13 81.58 62.75 83.72 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3354737

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The University of Toronto. Downloaded on January 17,2024 at 01:56:48 UTC from IEEE Xplore.  Restrictions apply. 



10 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <  

 

  

 

 

Fig. 9. The damage and non-damage detection rates obtained from the DL models for two types of input data: (a) RGB and (b) 

RGB+DSM 

 

[54], U-Net ++ [55], and Link-Net [56] in BDM generation, 

reported in Fig. 8 and Table X. As for the MCSS-DL 

comparative models, their specifications are summarized in 

Table VIII. It is worth noting that all hyperparameters were 

considered the same for all the comparative models to ensure 

an impartial comparison among the results. The values set for 

these hyperparameters can be found in Table IX. Moreover, an 

early stopping parameter was used during the training stage to 

minimize excessive training and achieve the best accuracy for 

each deep network. 

From the quantitative results reported in Table X and Fig. 9, it 

can be noticed that the proposed WETUM outperformed the 

other comparative MCSS-DL models in both input data cases. 

In detail, in the first case where only RGB drone data was 

given to the models, WETUM led to the highest OA/F- score 

values of 76.32/76.92 (%) with improvements of 18.43/26.92,  

13.16/18.10, 7.9/12.21, 7.9/10.25, 5.27/6.65, 5.27/6.65, 

2.64/4.7 (%) compared to the U-Net, MRU-Net, UR, U-Net++ 

UV, UI, and Link-Net models, respectively. In addition, 

contrary to the NDR measure values that were nearly similar, 

DDR values in the first case varied remarkably for the 

compared MCSS-DL structures. Notably, the proposed 

WETUM with a DDR value of 65.22 (%) managed to improve 

the DDR values of the U-Net, MRU-Net, UR, U-Net++ UV, UI, 

and Link-Net networks by 30.44, 21.42 17.39, 13.05, 8.7, 8.7 

and 8.7 (%), respectively (Fig. 9a). Similarly, in the second 

case in which both the RGB and DSM data were used, a 

maximum KC value of 62.75 (%) was achieved when 

employing WETUM to produce the BDM, which was also 

more than those of U-Net, MRU-Net, UR, U-Net++ UV, UI, 

and Link-Net by 27.58, 20.77, 13.15, 12.1, 13.15, 13.15, and 

10.63 (%), respectively. As for correctly detecting the 

damaged buildings, the highest value of DDR metric, i.e., 

78.26 (%), was associated with the proposed WETUM and 

contained drastic increments of 26.09, 30.43, 17.39, 21.74, 

17.39 and 17.39 (%) compared to the aforementioned models, 

respectively (Fig. 9b). The superiority of the WETUM 

introduced in this study over the compared MCSS-DL 

networks is generally due to several reasons stated in the 

following. Firstly, U-Net-based networks used in the proposed 

model for resulting individual predictions are supported by the 

three different pre-trained backbone structures, each of which, 

as an efficient feature extractor, leads to particular 

discriminative damage information. Secondly, the outcome of 

WETUM made from linearly combining the individual 

predictions of the three composite models involves 

advantageous complementary building damage and non-

damage information. Moreover, the proposed robust grid search 

approach used in WETUM efficiently estimates the weights 

required for integrating the individual predictions. In addition 

to the WETUM ranked as the first superior method, the 

composite structures UR, UV, and UI with similar quantitative 

results performed better than the state-of-the-art DL 

architecture. For instance, in the first case, the DDR value of U-
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Net as the worst model increased by 13.05, 21.74, and 21.74 

(%) when UR, UV, and UI were used, respectively, which 

indicates adding pre-trained backbones to U-Net can 

dramatically improve its capability in building damage detection. 

Even though the three composite models individually improved 

the performance of the ordinary U-Net network, no significant 

differences among their performances were observed in the BDM 

generation. Yet, integrating the three predictions of UR, UV, and 

UI within the proposed ensemble model drastically increased the 

accuracy of BDM extraction accuracy. This again reveals the 

high potential of the grid search strategy embedded in WETUM 

for efficiently integrating several individual predictions. As well, 

other MCSS-DL models (i.e., MRU-Net, U-Net ++, and Link-

Net) performed well compared to traditional U-Net. For 

example, in the second case, when applying MRU-Net, U-Net 

++, and Link-Net, the OA value of U-Net improved by 13.05, 

5.27, 10.53, and 15.79 (%), respectively. Nonetheless, they 

could not achieve better outcomes than WETUM in all cases. On 

the other hand, from the viewpoint of the impact of input data 

(features), in the second case in which the drone data-derived 

DSM as geometrical information was added to the first case 

(RGB), the DSM data positively influenced all the compared DL-

based approaches. Notably, using DSM alongside the RGB data 

respectively raised the F-score values of U-Net, UR, UV, UI, 

MRU-Net, U-Net ++, Link-Net, and WETUM by 18.84, 8.97, 

1.95, 3,41, 5.89, 9.01, 1.46, and 6.8 (%), implying DSM 

provides precise height information and geometrical variations 

facilitating the detection of some damaged buildings not 

detectable by only spectral information, i.e., 2D RGB data. 

Regarding the obtained BDMs, the yellow box in Fig. 8 

demonstrates that the BDM produced by the typical U-Net 

structure, as the worst result, missed many damaged buildings 

in both the first and second cases. The reason is that U-Net 

solely relies on an individual prediction and also lacks an 

efficient feature extractor component to capture low- and high-

level damage features. Contrarily, the proposed structure 

resulted in the optimal BDMs in which most of the damaged 

buildings were identified correctly. This is due to the reliable 

integration of the predictions of the three pre-trained composite 

models in WETUM, which provides complementary damage 

information. In addition, the presence of DSM data as a 

geometrical source alongside the spectral RGB data led to an 

improvement in detecting the damaged buildings in all outputs, 

especially. In particular, the improvement was more 

considerable in the results of the typical U-Net model, which 

indicates the addition of altitudinal data to 2D RGB information 

largely compensated for the lack of strong feature extractors in 

its architecture. 

2)  Performance evaluation and comparison of ML algorithms: 

To peruse and analyze the impact of spectral, geometrical, and 

hand-crafted features on the results of the ML approaches and 

also individually compare the performance of the models, the 

outcomes of the compared five ML algorithms, i.e., GB, LR, 

DT, KNN, and RF were obtained in two cases in terms of the 

features input to them. In the first case, their performances were 

evaluated for drone data-derived spectral features (SFs),  

 

 

including RGB bands, RGB-derived GLCM textures, and the 

optical PAN index. On the other hand, in the second case, the 

drone data-based DSM, DSM-derived GLCM features, and SFs 

as a combination of spectral and geometrical features (SGFs) 

were fed to the compared ML approaches. Hence, for ease of 

discussion, the results of the GB, LR, DT, KNN, and RF 

machine learning models for the two mentioned input data 

SFs/SGFs categories were respectively termed as GB-SF/GB- 

SGF, LR-SF/LR-SGF, DT-SF/DT-SGF, KNN-SF/KNN-SGF, 

and RF-SF/RF-SGF. Regarding the set hyperparameters listed 

in Table XI for the compared algorithms, their values were 

either set experimentally or considered the same as the default 

values suggested by the Python Sklearn library [57]. 

Furthermore, the quantitative and qualitative ML results 

attained for the two data cases are presented in Table XII, Fig. 

10 and Fig. 11.  

Based on the quantitative results described in Table XII and Fig. 

11, the outcomes could overall be discussed in two input data 

cases SFs and SGFs. In the first case (SFs) where only spectral 

data was fed to the compared ML approaches, all the algorithms 

generally produced poor results and could not properly 

distinguish more damaged buildings. In more detail, though all 

the methods substantially tended to recognize undamaged 

buildings, the RF-SF with an OA of 47.37 (%) performed the 

best and improved all the GB-SF, LR-SF, DT- SF, and KNN-

SF methods by 5.26 (%). In fact, the latter four algorithms had 

identical poor performances in BDM generation compared to 

RF-SF. In the second case (SGFs) in which the geometrical 

DSM data was exploited besides the SFs, the DSM data and its 

GLCM features led to significant accuracy increments in the 

results of all the compared ML approaches. Notably, the DDR 

values of GB-SGF, LR-SGF, DT-SGF, KNN-SGF, and RF-

SGF were overall enhanced by an average of 35.69 (%) 

compared to the SFs case. However, substantial variations were 

not found among the results of the comparative ML models 

when giving SGFs to them for BDM generation. Totally, the RF 

classification method revealed rather promising results in 

comparison to the other four ML approaches in both SFs and 

SGFs cases. Because RF is known to be robust against input 

data outliers and, more importantly, is an ensemble classifier  

 

 

 

 

 

TABLE XI 

THE SET HYPERPARAMETERS FOR EACH ML ALGORITHM 

 ML algorithm ML Hyperparameters 

GB  

loss='log_loss', learning_rate=0.1, 
n_estimators=100, subsample=1.0, 

criterion='friedman_mse', min_samples_split=2, 
min_samples_leaf=1, 

min_weight_fraction_leaf=0.0, max_depth=3 

LR  
penalty='l2', tol=0.0001, C=2.0, random_state=0, 

max_iter=100 

DT  
max_depth=15, random_state=0, 

min_samples_leaf=10 

KNN  
n_neighbors=5, weights='uniform', 

algorithm='auto', leaf_size=30, p=2, 
metric='minkowski' 

RF  
n_estimators=200, max_depth=15, 

random_state=0 
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Fig. 10. The best and worst BDMs produced using the ML-based classifiers for the two types of input data, SFs and SGFs: (a) 

Reference BDM, (b) RF BDM as the best result, (c) GB, LR, KNN and DT BDMs jointly obtained as the worst results, (d) RF, 

KNN and DT jointly obtained as the best results, (c) GB and LR jointly obtained as the worst results. 

 

 

TABLE XII 

QUANTITATIVE PERFORMANCE EVALUATION OF THE FIVE ML ALGORITHMS FOR THE TWO TYPES OF INPUT DATA, SFS, AND 

SGFS, WHERE THE BOLD TEXTS SIGNIFY THE BEST RESULTS 

Input data Model 
TP (No.) 

(RBDM=23) 

TN (No.) 

(RBDM=15) 

Evaluation Metrics (%) 

OA KC FS 

SFs 

GB 1 15 42.11 3.46 8.33 

LR 1 15 42.11 3.46 8.33 

DT 1 15 42.11 3.46 8.33 

KNN 1 15 42.11 3.46 8.33 

RF 3 15 47.37 10.59 23.08 

SGFs 

GB 9 15 63.16 33.67 56.25 

LR 9 15 63.16 33.67 56.25 

DT 10 15 65.79 37.78 60.61 

KNN 10 15 65.79 37.78 60.61 

RF 10 15 65.79 37.78 60.61 
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Fig. 11. The damage and non-damage detection rates obtained from the ML algorithms for the two types of input data: (a) SFs 

and (b) SFFs 

 

 

 

Fig. 12. Quantitative comparison of the BDMs produced using the best DL model (WETUM) and the best ML algorithm (RF) 

 

averaging several DT-based predictions to improve the final 

single prediction. 

 On the other hand, the BDMs shown in Fig. 10 as qualitative 

outcomes confirm the RF-SGFs generated the best BDM where 

some of the damaged buildings were recognized due to the use 

of DSM-related features and the aforementioned merits of RF. 

In detail, in the first SFs case, GB-SF, LR-SF, DT-SF, and 

KNN-SF jointly with detecting only 1 damaged building led to 

the worst BDMs. But RF outputted relatively better BDM 

where 3 damaged buildings were correctly distinguished. In the 

second SGFs case, RF-SGF alongside the two DT-SGF and 

KNN-SGF models generated acceptable BDMs in which a 

fairly higher number of buildings were extracted than the first 

case BDMs. Consequently, it could be deduced ensemble 

classification can generate better damage detection results, and 

the synergic use of spectral and geometrical information can 

also boost the performance of ML-based building damage 

detection methods. Of course, the ancillary hand-crafted 

features extracted from the training area are merely suited and 

limited to the same particular region and not generic to other 

unseen test areas. 

3)  Comparison of the produced BDM using DL and ML-

based method: To investigate how generalizable both ML-

based and DL-based building damage detection approaches are 

to a new unseen earthquake-damaged region nonoverlapped 

with the training area, the BDMs resulted from both the RF 

model as the best ML algorithm and the proposed ensemble DL 

approach named WETUM were compared together. The 

comparison was made in two different scenarios in terms of the 
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input features. In the first scenario, the RF algorithm took 'SFs', 

but only the 'RGB' bands were fed to WETUM. Contrarily, in 

the second scenario, 'SGFs' and 'RGB+DSM' were given to RF 

and WETUM, respectively. For ease of comparison and 

discussion of the results obtained in the first scenario, the RF 

and the WETUM models were regarded as RF-SFs and 

WETUM-RGB, respectively, in the following. Likewise, the 

two compared models were also termed RF-SGFs and 

WETUM-RGBDSM in the second scenario.  

From Fig. 12, the WETUM, as the best DL approach, 

performed best compared to RF as the best representative of 

ML algorithms in all the scenarios. In detail, in the first scenario 

that merely relies on spectral information, a DDR value of 

65.22 (%) was attained when using WETUM-RGB for 

generating BDMs, which raised that of RF-SFs by 51.82 (%), 

implying WETUM detected the damaged buildings much better 

than the RF in this scenario. In the second scenario where both 

spectral and geometrical features were employed, WETUM-

RGBDSM with a maximum DDR value of 78.26 (%) led to the 

best BDM in this research work and also increased the DDR 

values of WETUM-RGB, RF-SFs, and RF-SGFs by 13.04 (%), 

64.86 (%), and 34.78 (%). Additionally, the damage loss rate, 

which demonstrates the amount of missed damaged buildings, 

contained the least value of 21.47 (%) for WETUM-RGBDSM 

compared to all other cases. Regardless of the comparison made 

for each scenario between the two methods, although many 

diverse hand-crafted features as ancillary information were 

injected into RF, the ML approach could not extract the 

damaged buildings even in comparison with the WETUM-

RGB. It is therefore deduced that even though many of the 

aforementioned spectral and geometrical features were 

considered in the ML-based approaches, even the synergic use   

of all these features were not efficient for identifying the 

buildings damaged in another unseen earthquake-influenced 

area. On the contrary, only RGB-based multi-level deep 

features automatically extracted within the proposed DL-based 

WETUM were useful enough to be employed in a new 

earthquake scenario. Indeed, the proposed WETUM, even with 

RGB bands, generalizes to new unseen test data remarkably 

better than the ML-based RF equipped with many ancillary 

features. This superiority is mainly because the proposed DL 

model employs a reliable integrated prediction that is obtained 

by combining several predictions of transferred individual U-

Net-based powerful composite models with the three optimal 

weights determined by the proposed effective grid search 

approach. 

VI. CONCLUSION 

In this research, three main objectives in the field of binary 

building damage map (BDM) generation were pursued. The 

first objective was to propose a novel weighted ensemble 

transferred U-Net-based model named WETUM linearly 

integrating the predictions of three pre-trained ResNet34, 

Vgg16, and InceptionV3 backbones. The second objective of 

this study was to compare the results of machine learning (ML) 

and deep learning (DL) approaches for two different input data 

sets based on (1) 'RGB' data and (2) the combination of RGB 

data and digital surface model (DSM). The third objective of 

the present work was to explore the generalizability level of 

both DL- and ML-based approaches for detecting damaged 

buildings in a new unseen earthquake-affected sub-region. To 

carry out experiments required for these objectives, drone data 

captured over Sarpol-e Zahab earthquake in Iran was utilized in 

this paper. The study's findings emphasize the operational 

relevance and potential impact on enhancing post-earthquake 

response efforts.  In detail, the foremost remarks discovered in 

this study are therefore listed below: 

1) The proposed WETUM, due to exploiting the transfer 

learning technique and integrating beneficial aspects of 

damage information, outperformed the other compared DL 

networks. 

2) As for the impact of the input feature sets, the DSM data 

containing height information into substantially boosted 

both ML and DL approaches in building damage 

examination.  

3) Regarding the generalizability level of the ML and DL 

approaches, the synergic use of main and hand-crafted 

features was solely suited to the training sub-regions in 

MLs. On the other hand, WETUM with and without adding 

DSM to RGB data revealed the highest generalizability 

among all the compared models.  

Since remote sensing data, specifically ortho-photo UAV 

images observe the terrestrial objects with an orthogonal (nadir) 

view, the proposed approach cannot detect the damage 

connected to the underground and aboveground utilities. 

Furthermore, though the present study only focused on 

localizing damaged buildings regardless of analyzing building 

damage parameters such as damage extent and severity [57], 

this study significantly contributes to timely and accurate 

rescue operations. Anyway, as future research works, the 

potential of WETUM could be evaluated in higher levels of 

building damage assessment, such as characterizing damage 

extent and severity for further earthquake events, especially 

when outdated or incomplete building vector data for the target 

study area is available. 
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