
Remote Sensing of Environment 301 (2024) 113956

A
0

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

A rapid high-resolution multi-sensory urban flood mapping framework via
DEM upscaling
Weikai Tan a, Nannan Qin b, Ying Zhang c,∗, Heather McGrath c, Maxim Fortin c, Jonathan Li a,d,∗∗

a Department of Geography and Environmental Management, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada
b School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, JiangSu, China
c Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, K1S 5K2, Ontario, Canada
d Department of Systems Design Engineering, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada

A R T I C L E I N F O

Edited by Menghua Wang

Keywords:
Urban flood mapping
Image fusion
Digital elevation model
Deep learning

A B S T R A C T

Urban floods can cause severe loss of economic and social assets, and remote sensing has been an effective
tool for flood mapping during disaster response. Due to the complexity of high-density urban structures, high-
resolution (HR) optical images can only extract visible floods in open spaces, and floods in shadows and under
the canopy are challenging to map. Accurate digital elevation models (DEMs) are essential for inundation
estimation towards urban flood mapping, but HR DEMs are often unavailable due to the high acquisition
costs. Through DEM upscaling, HR DEMs could be obtained from existing low-resolution (LR) DEMs using deep
learning. To this end, a novel multi-sensory HR urban flood mapping framework is proposed in this research.
The framework consists of three components: 1) a new DEM upscaling network to infer HR DEMs from existing
LR DEMs with a fusion approach, 2) a rapid flood segmentation network to extract visible flood from very-high-
resolution (VHR) optical images with limited human labelling, and 3) an accurate Geographical Information
System (GIS)-based tool for floodwater extent and depth estimation from the visible flood information along
with HR DEMs. The proposed framework was validated on a fluvial flood that occurred in Calgary, Canada, in
2013, where the proposed DEM upscaling network produced an upscaled HR DEM at 2 m resolution from an
existing LR DEM at 18 m resolution. In addition, the proposed flood segmentation network has shown accurate
visible flood extraction from VHR RGB aerial imagery with over 80% intersection-over-union (𝐼𝑜𝑈) using 10%
of human labelling as training samples. Finally, the floodwater extent and floodwater depth estimation using
the proposed GIS tool showed significant improvement over conventional flood mapping methods.
1. Introduction

1.1. Backgrounds

Urban floods can cause severe loss of economic and social assets
in urban regions due to the high density of population and infras-
tructure. The ubiquitous impervious surfaces in urban regions increase
the runoff coefficient and peak discharge compared with natural land
covers (Gyamfi et al., 2016). As a result, when water flows exceed
the drainage capacity, water surcharge would spread across the surface
flow networks, including roads, small watercourses and footpaths (Mak-
simović et al., 2009). Climate change may cause more rapid glacier
melts and more extreme weather events, including heavy rainfalls,
which poses new challenges to urban flood risk analysis (IPCC, 2014).
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The stakeholders and policymakers need accurate flood risk analy-
sis models and maps to develop flood mitigation infrastructure and
establish contingency plans (Merz et al., 2010).

Flood extent mapping during flood events is essential for disaster
response and management, but rapid and effective inundation mapping
is challenging in urban regions. Typical near real-time flood mapping
is usually performed with medium-resolution (10–30 m) satellite op-
tical images or synthetic aperture radar (SAR) images (Tanguy et al.,
2017). However, medium-resolution optical images such as Landsat
or Sentinel-2 do not provide enough resolution in dense urban areas,
and SAR images usually suffer from the complicated structure of urban
structures. There are high-resolution (HR) (below 5 m) optical satellite
sensors such as SPOT and WorldView, but the timely acquisition is not
often available during flood events due to weather conditions. Pluvial
and fluvial floods often occur during springtime or heavy precipitation
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events, so that cloud coverage would be challenging for HR imaging
satellites to acquire clear imagery for real-time flood mapping (Huang
et al., 2018). As a result, the more flexible airplanes and unmanned
aerial vehicle (UAV) sensors are more suitable for real-time flood
mapping and disaster response to provide accurate visible floodwater
extent at sub-metre resolution (Feng et al., 2015; Zhang et al., 2019).

The real-time HR optical images can capture more details and have
advantages in flood mapping due to the high spatial resolution. How-
ever, the optical images can only provide information from the sensor’s
view above the top layer, and limited information on the ground
could be captured due to the occlusion of buildings and canopies.
Optical images can only identify floodwater in open areas, and flood
in shadows or under vegetation canopies is difficult to extract directly.
As a result, accurate HR digital elevation models (DEMs) are necessary
in addition to optical images for flood extent mapping and inundation
models for urban flood risk analysis (Dottori et al., 2013). In this
article, DEM refers to the elevation surface of bare earth, not including
buildings and trees. Airborne Light Detection and Ranging (LiDAR)
is the preferred source for HR DEM due to the high accuracy and
the direct measurement of distance (Qin et al., 2023a), and hydraulic
models can be applied to produce HR flood maps if the floodwater
level can be determined (Muhadi et al., 2020). Visible floodwater extent
extracted from real-time optical imagery could be used as a guide for
inundation area and extent estimation under vegetation canopy from
HR DEMs (Hashemi-Beni and Gebrehiwot, 2021).

A typical real-time HR urban floodwater mapping workflow can be
organized in three procedures: (1) obtain HR DEMs, (2) extract visible
floodwater extent from real-time HR optical images during flooding,
and (3) estimate flood inundation depth and extent. Due to the high
cost of LiDAR data acquisition and processing, HR DEMs are often avail-
able only in limited regions at a relatively recent time, making real-time
HR flood mapping challenging to be applied extensively in practice.
Inferring HR DEMs from existing low-resolution (LR) DEMs would be
cost-effective and significantly benefit the purpose of urban floodwater
mapping. Visible floodwater extraction from HR optical imagery can
be processed as a pixel-wise image classification or a semantic segmen-
tation task, but these procedures often require a significant number of
training samples to train a model. Rapid data processing is required in
disaster response, so a floodwater extraction method with little human
interaction is desired. Moreover, flood mapping from incomplete water
extent extracted from optical imagery due to shadows and vegetation
is seldom addressed in the literature, so a hydraulic model needs to be
assembled.

Therefore, this research paper aims to address existing challenges
in HR urban flood mapping by proposing a novel rapid floodwater
mapping framework, which can be divided into three components:

1. A new DEM upscaling method effectively reconstructs HR to-
pographic details in urban regions from LR DEMs, so that ar-
eas without HR DEMs can better prepare for potential natural
disasters, including floods.

2. A rapid visible floodwater extent extraction method from HR
RGB remote sensing imagery takes a very limited amount of
manual annotation, so that flood maps can be quickly produced
in near real-time to benefit disaster response.

3. An accurate floodwater extent and depth estimation tool uti-
lizing HR DEMs and visible floodwater extents, so that flood
impact can be more accurately estimated to overcome the data
acquisition limitations of HR optical imagery in shadows and
vegetated regions.

This research conducts a case study with a real-world flood event
to demonstrate the feasibility of applying the proposed multi-sensory
urban flood mapping framework at a large urban scale for disaster
2

response.
1.2. Related studies

1.2.1. DEM upscaling
The spatial resolution of DEMs determines the accuracy of flood

mapping and modelling, and HR DEMs are especially desired in urban
studies (Muhadi et al., 2020). However, HR DEMs are not always
available in a given area, so enhancing the spatial resolution of DEMs
could be a potential solution to this problem. Image super-resolution
(SR) is a technology that generates HR images from LR images to
meet the demand of resolution in various applications by using algo-
rithms to surpass the limit of sensors (Fernandez-Beltran et al., 2017).
Compared to conventional interpolation methods (e.g. bilinear, bicubic
and lanczos), which tend to over-smooth the reconstructed HR images,
learning-based algorithms that learn the relationship between multi-
sensor and multi-resolution DEMs can improve the spatial resolution of
DEMs, including a multi-scale Kalman smoother approach (Jhee et al.,
2013) and an adapted multi-scale regularization method (Yue et al.,
2015). As Xu et al. (2015) pointed out, DEMs are costly to obtain
and are usually updated infrequently, so a single image SR method
is more practical in DEM upscaling. With the recent advancement
of deep learning methods, especially convolutional neural networks
(CNNs), the single image SR task has made revolutionary progress in
quantitative and qualitative evaluations (Wang et al., 2021). Early at-
tempts have been made at DEM upscaling by directly applying an image
SR network (i.e. SRCNN) to DEMs, and the results in the case study
showed significant improvement over conventional methods (Chen
et al., 2016). Demiray et al. (2021) applied the SRGAN image SR
network to DEM upscaling, and the results indicated that the network
performs well at flatter terrains but needs improvements in steeper
areas. Compared to most research that trains the SR models with syn-
thetic LR-HR DEM pairs, where corresponding LR DEMs were produced
by downscaling and degrading HR DEMs, Wu et al. (2021) used real-
world DEMs to train a network to simulate the WorldDEM at 12 m
resolution from the shuttle radar topography mission (SRTM) DEM
at 30 m resolution, and the experiments showed that the real-world
training data produced better results. Zhang and Yu (2022) conducted a
comparative study on applying three popular single-image SR networks
(i.e. SRGAN, ESRGAN, CEDGAN) in the DEM upscaling task, and the
results indicated that CNNs do not necessarily produce better results
in the DEM upscaling task. Instead of directly adapting single-image
SR networks, Xu et al. (2019) introduced edge detectors as an image
gradient before training the proposed network, and the addition of
gradient was demonstrated to be effective in two single-image SR
networks (i.e. SRCNN and EDSR).

Despite some success in applying single image SR methods in DEM
upscaling, these methods are based on an ill-posed assumption that
high-level details can be reconstructed without extra information for
reference (Yue et al., 2016). Image resolution can also be improved
with spatial information taken from a different sensor at a higher spatial
resolution with a fusion method, and one of the most well-known
strategies in remote sensing is pan-sharpening. Pan-sharpening utilizes
an HR panchromatic image to improve the spatial resolution of the
multi-spectral images by taking advantage of the HR spatial features
at a different spectral frequency (Meng et al., 2019). Since HR and
VHR optical images are ubiquitously available at a much lower cost
than LiDAR DEMs, they could provide HR spatial details of the terrain
despite vegetation and objects covering the ground surface. Therefore, a
fusion approach utilizing the HR optical imagery to improve the spatial
resolution of LR DEMs would be a promising approach instead of di-
rectly upscaling the LR DEMs. Argudo et al. (2018) experimented with
a fully convolutional network which utilizes deep feature hierarchies
encoding to combine features at different scales to perform terrain SR
using an aerial image fusion method to produce 2 m resolution DEMs
from downsampled 15 m resolution LR DEMs. Kubade et al. (2021)
further developed an attention feedback network using the same DEM

dataset to take advantage of a recurrent structure to focus more on the
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initial layers of the networks to enhance some key features of terrains.
Compared to mountainous regions, where vegetation usually covers
terrains, urban regions feature complex buildings and infrastructure.
Amirkolaee and Arefi (2021) proposed a multi-scale deep network to
produce an HR digital surface model (DSM) from SRTM DEMs utilizing
corresponding HR satellite images, but this study was based on the
task of urban height estimation from satellite images without learning
terrain features from the LR DEMs. In summary, there are limited
studies on urban DEM upscaling with a fusion approach using HR
optical images and LR DEMs.

1.2.2. Flood mapping with remote sensing imagery
Remote sensing images, including both optical and SAR images,

have been widely used in real-time flood mapping, especially in rural
regions (Joyce et al., 2009). SAR images are very sensitive to open
water regions with low backscatter values, which help identify flooded
regions by comparing during and before flooding images (DeVries
et al., 2020). More recently, deep learning models have demonstrated
very effective in detecting surface water from medium-resolution SAR
sensors such as Sentinel-1 when trained on well-labelled datasets such
as Sen1Floods11 (Bonafilia et al., 2020). However, SAR images do not
work well in urban regions, especially in dense built-up areas, due to
complex urban structures, i.e. specular reflections from smooth asphalt
and buildings, shadows and overlay effects of tall buildings (Mason
et al., 2010). Tanguy et al. (2017) compared the floodwater classifi-
cation accuracy with ultra-fine RADARSAT-2 images in both rural and
urban regions, and the results in urban areas are more than 10% less
accurate compared with rural areas using the same method. Low to
medium-resolution optical images like MODIS and Landsat images pro-
vide floodwater mapping capability at a regional scale, and long-term
monitoring and retrospective research capabilities of flood mapping
over a large region (Mueller et al., 2016). However, the medium
resolution optical images cannot provide enough details characterizing
urban features, which provides limited benefits in urban areas.

Arithmetic indices calculated from combinations of different spec-
tral bands of the optical sensors are commonly used for water mapping,
such as the normalized difference water index (NDWI), the modified
NDWI (MNDWI), the water ratio index (WRI), and the automated
water extraction index (AWEI). The NDWI was proposed by McFeeters
(1996) for the Landsat satellites by calculating the ratio between the
near infra-red (NIR) and the green band, inspired by the well-known
normalized difference vegetation index (NDVI). Afterwards, the short-
wave infrared (SWIR) was found to be more reliable in built-up areas,
and the MNDWI was proposed by taking the SWIR band in Landsat (Xu,
2006). The WRI was used by Shen and Li (2010) to extract water bodies
from Landsat ETM+ images by taking the red band into consideration.

o improve water and nonwater separability in dark built-up areas
nd shadow-infested areas, AWEI was proposed with two indices to
utomatically extract water areas from Landsat images to accommodate
he two circumstances (Feyisa et al., 2014).

For real-time flood mapping during disaster response, airplanes
nd UAVs are often considered more desirable than optical satellite
mages due to the flexibility of data collection, the higher spatial res-
lution, and the operability under cloud layers in bad weather (Zhang
nd Crawford, 2020). However, unlike typical optical satellite sensors,
maging sensors mounted on airplanes or UAVs are usually digital
ameras without the capability of capturing infrared bands. As a result,
he aforementioned water indices that rely on infrared bands may not
irectly apply in floodwater extraction from aerial photos and UAV
mages. Several methods have attempted to use only RGB bands in
loodwater extraction. Gerl et al. (2014) adopted a decision-tree classi-
ier to perform land cover classification using pan-sharpened IKONOS
GB images. Feng et al. (2015) utilized grey-level co-occurrence matrix
GLCM) features in addition to the RGB spectral features to identify
looded areas using a random forest classifier from UAV images during
3

flood event. Zhang et al. (2019) proposed a flood water index (FWI)
for turbid floodwater detection using RGB bands to work with both
satellite and aerial images. More recently, deep learning methods, espe-
cially CNNs, have shown advantages in processing HR and VHR optical
images due to the powerful spatial feature learning capability compared
with conventional pixel-wise and object-wise classification techniques
in urban flood mapping by treating it as a semantic segmentation prob-
lem (Gebrehiwot et al., 2019). However, due to the scarcity of training
samples for HR flood images, data augmentation and other techniques
are necessary to avoid overfitting in training deep learning networks
for floodwater extraction (Hashemi-Beni and Gebrehiwot, 2021). With
more and more openly accessible HR optical satellite and UAV images,
datasets for developing deep learning models for flood monitoring have
emerged recently, such as FloodNet (Rahnemoonfar et al., 2021) and
SpaceNet 8 (Hänsch et al., 2022), making transfer learning a viable
solution to overcome the limitation of training samples.

1.2.3. Flood mapping with DEM
Real-time mapping from optical images during flood events can

extract visible floodwater extent, but the complete flood extent and
flood depth estimation typically require a DEM as the input of flood
models (National Research Council, 2007). The resolution and accuracy
of DEMs are vital in flood modelling, and HR DEM is especially impor-
tant in dense urban regions where small features like road curbs would
affect the determination of inundation areas. LR DEMs allow a rapid
flood simulation but will result in a large loss of information, including
inundation extent, flow depth and flow velocity (Haile and Rientjes,
2005). HR DEM generated from airborne LiDAR has been demonstrated
to have the highest accuracy in inundation estimation than other DEM
sources including digital photogrammetry and interferometric synthetic
aperture radar (IfSAR) (Casas et al., 2006). A finer resolution DEM is re-
quired for fine local-scale inundation predictions for flood management
decisions in dense urban regions (de Almeida et al., 2018).

Typical physical hydraulic models take DEM as the primary input
and solve 1D or 2D shallow-water equations (Warren and Bach, 1992).
2D models are the most widely used models in flood mapping and flood
risk analysis, and some commonly used 2D models include ANUGA,
FloodFlow, MIKE FLOOD, TUFLOW, HEC-RAS (Teng et al., 2017).
Compared with the complicated hydrodynamic models, which require a
huge amount of calculations, simplified flood models rely little on phys-
ical process simulation and directly predict the final flood state (Néelz
and Pender, 2010). These methods are often faster to calculate in
applications that do not require accurate flow dynamics, and some
representative simplified models include the Rapid Flood Spreading
Method (RFSM) and the Height Above the Nearest Drainage (HAND)
model (Teng et al., 2017). The physical hydraulic models predict water
movement from a pour point, but complex urban infrastructures, espe-
cially sewer systems and underground structures, make them difficult
to accurately predict flood impact with sufficient supporting infras-
tructure data, as sewage overflow may occur in addition to overland
flow in urban environments (Maksimović et al., 2009). Moreover,
the computational complexity and input requirements make physical
models undesirable in urban environments at a very high resolution,
especially for real-time or near real-time flood mapping during disaster
response (de Almeida et al., 2018). As a result, simplified inundation
models with GIS software would be more practical and efficient in
time-critical flood mapping scenarios (Cohen et al., 2018).

For coastal flood mapping, the flood extent and depth can be
directly estimated by setting a flood elevation according to historical
water gauge readings (Webster et al., 2006), but this kind of method
has significant limitations in mapping river floods as a large area may
contain several watersheds and flood elevation may change along the
river (Zhang and Crawford, 2020). For pluvial and fluvial floods, the
flood extent is usually extracted from remote sensing images, and the
flood depth is then estimated by subtracting the DEM from the inferred
floodwater elevation. To account for changes in water elevation, Huang

et al. (2014) split flooded areas into small tiles to fill DEMs to inferred
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water elevations assuming the flood surface is flat at a local scale.
This idea was further developed to estimate the flood elevation of each
extracted floodwater polygon to calculate flood depth by extracting
statistical elevation values at boundary cells, such as mean (Gebrehiwot
and Hashemi-Beni, 2021) and percentile threshold (Cian et al., 2018).
One of the widely applied GIS floodwater mapping tools, the Floodwa-
ter Depth Estimation Tool (FwDET), estimates boundary flood depth
by firstly adopted focal statistics in the initial version (Cohen et al.,
2018) and then utilized the Cost Allocation tool in ArcGIS to better
accommodate coastal floods (Cohen et al., 2019). The FwDET further
applied two filtering procedures to smooth the input DEM to mitigate
the impact of outliers on boundary flood elevation estimation in the
latest version (Peter et al., 2022).

However, these methods only account for areas under visible flood
extent, and floodwater mapping under vegetation canopy and in shad-
ows is still challenging as visible floodwater boundaries do not neces-
sarily correspond to 0 floodwater depth. Hashemi-Beni and Gebrehiwot
(2021) attempted to infer flood extent under vegetation by applying
region growing from remote sensing image derived visible floodwater
extent, but the seed points were still manually selected with regard to
the land cover type and water gauge readings. More recently, Bryant
et al. (2022) proposed an inundation estimation tool called RICorDE
which utilizes HAND values to correct potential errors in estimated
flood polygons, but this tool has not been publicly released yet. There-
fore, an automated rapid flood depth and extent estimation tool that
utilizes incomplete visible flood extents with shadows and vegetation
canopy is still in demand.

2. Methods

2.1. Study area

The study area of the proposed research is located in the city of
Calgary, Alberta, Canada, the third most populous city in Canada. The
Bow River flows through Calgary, and the Elbow River intersects the
Bow River in the downtown region. In June of 2013, an unprecedented
flood event occurred in Alberta due to excessive precipitation, resulting
in the most significant flood event on the Bow River since 1932. As a re-
sult, Calgary experienced extensive flooding in the urban region, which
caused the evacuation of approximately 100,000 people. The estimated
damage caused by this flood was over $5 billion (City of Calgary,
2021). The specific study area is the flooded zones within downtown
Calgary, covering approximately 4.9 km by 6.5 km, as shown in Fig. 1.
The study area comprises various urban landscapes, including dense
high-rise buildings, low-rise residential, low-rise commercial buildings
and urban vegetation. Though timely HR aerial imagery was collected
just after the peak of the flood event, the complex urban structure,
shadows, and vegetation coverage made it difficult to delineate the
complete flood extent and depth directly from the RGB imagery. There-
fore the proposed method aims to estimate urban flood extent with
multi-sensory data efficiently and accurately.

2.2. Overview of the proposed framework

A flowchart of the proposed study is shown in Fig. 2. The proposed
research intends to produce accurate near real-time flood mapping
combining aerial imagery during the flood and a pre-event HR DEM up-
scaled from existing data utilizing deep neural networks. The proposed
multi-sensory flood mapping framework consists of three components.
(1) DEM upscaling from an LR existing DEM and an HR aerial imagery
before the flood event to produce an HR DEM with a deep neural
network. (2) Visible floodwater extraction from RGB aerial imagery
acquired during the flood with a semantic segmentation deep neural
network. (3) Using the extracted visible floodwater extent as a guide
to estimate flood inundation extent with a GIS-based tool. The detailed
methods proposed for this study are discussed in the following sections.
4

This research intends to validate the proposed flood mapping frame-
work in a real-world flood scenario, the 2013 Calgary flood. The highest
quality publicly accessible DEM in Calgary before 2013 was the Cana-
dian Digital Elevation Model (CDEM) with an approximate resolution
of 18 m, which is not effective in producing HR flood mapping. An
aerial image of Calgary with 25 cm resolution was taken in 2012, which
was before the flood event, is used in the DEM upscaling process to
reconstruct HR urban elevation details. The proposed DEM upscaling
method upscales the CDEM 9 times into a 2 m resolution HR DEM
with the support of the aerial imagery. Next, aerial imagery taken by
the City of Calgary on June 22nd, 2013, after the peak of the flood
event, covering the major urban areas along the Bow River in Calgary
at 20 cm resolution was used to extract visible floodwater extent. A
detailed floodwater extent polygon dataset provided by Natural Re-
sources Canada through manual digitization was used as the ground
truth for validation. Finally, the proposed GIS-based flood mapping
tool produces an estimated flood extent and flood depth map with the
upscaled HR DEM and the visible floodwater mask. The data used in
this research are summarized in Table 1.

To evaluate the performance of the proposed flood mapping frame-
work, several metrics were adopted to quantify both the completeness
and correctness of the floodwater extent prediction, including overall
accuracy (𝑂𝐴), precision (or user’s accuracy), recall (or producer’s
accuracy), 𝐹1−𝑠𝑐𝑜𝑟𝑒 and intersection-over-union (𝐼𝑜𝑈). In a confu-
sion matrix, an observation of predictions are compared with the
ground truth to be categorized into true positive (𝑇𝑃 ), true negative
(𝑇𝑁), false positive (𝐹𝑃 ) and false negative (𝐹𝑁). The evaluations are
defined as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

(𝑇𝑃 + 𝑇𝑁)
∑

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
(1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑇𝑃
∑

(𝑇𝑃 + 𝐹𝑃 )
(2)

𝑒𝑐𝑎𝑙𝑙 =
∑

𝑇𝑃
∑

(𝑇𝑃 + 𝐹𝑁)
(3)

𝐼𝑜𝑈 =
∑

𝑇𝑃
∑

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
(4)

𝐹1−𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(5)

2.3. DEM upscaling network with aerial imagery fusion

An image fusion network is proposed to reconstruct an HR DEM
from an LR DEM with support from an HR optical image in urban
regions. Different from conventional image fusion tasks such as pan-
sharpening, the optical images do not directly present correspondence
with the underlying topography, but some latent relation with urban
features such as building and tree height in less dense vegetated areas
could be explored with deep learning models (Mou and Zhu, 2018).
The proposed DEM upscaling network focuses on the potential added
topographic details in HR DEMs in urban regions, such as roads,
buildings, and infrastructure, which cannot be well-represented in LR
DEMs but may serve as the passage or obstruction for urban floods.
These urban features are usually built according to similar building
codes or standards, so in this research, the HR topographic details are
assumed to be comparable across different regions and urban terrains
regardless of the LR topography underneath. An LR DEM base map
in an urban area could be viewed as a coarse representation of the
terrain without details, changes made on the terrain surface, such as
construction of roads and buildings, can be reflected on the HR optical
imagery. Therefore, the proposed method aims to infer the elevation
difference between corresponding HR and LR DEMs directly from HR
optical imagery. Adding the detailed elevation differences to the LR
DEM, an HR DEM with topographic details could be reconstructed to
improve the potential flood mapping capability of the LR DEM when a

higher quality DEM is not available.
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Fig. 1. The study area in Calgary, Canada.
Fig. 2. Overview of the proposed flood mapping framework.
Inspired by the depth completion CNN model proposed by Ma
et al. (2019), DEM resolution enhancement is formulated as a deep
regression problem from two inputs, an LR DEM and a corresponding
5

HR RGB image in this work. The proposed network adopts a 5-layer
encoder-decoder architecture, where the ResNet-34 (He et al., 2016) is
adopted as the encoder and transposed convolution blocks with 3 × 3
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Table 1
List of data.

Dataset Source Resolution Usage

Ontario LiDAR DEM Government of Ontario 2 m Train DEM upscaling network
Ontario Orthoimagery Government of Ontario 20 cm Train DEM upscaling network
Canadian CDEM Government of Canada 18 m Produce upscaled DEM in Calgary
2012 Calgary Orthoimagery City of Calgary 25 cm Produce upscaled DEM in Calgary
FloodNet image dataset Rahnemoonfar et al. (2021) 1.5 cm Train floodwater extraction network
2013 Calgary Orthoimagery City of Calgary 10 cm Train floodwater extraction network and produce floodwater extent
Calgary floodwater polygon Natural Resources Canada – Train floodwater extraction network and validate produced flood maps
Calgary floodwater extent City of Calgary – Validate produced flood maps
2012 Calgary LiDAR DEM City of Calgary 20 cm Validate produced flood maps
Fig. 3. Overview of proposed DEM upscaling network.
convolutions with stride 2, followed by a 1 × 1 convolution layer to pro-
duce the inferred HR topographic details. The output from each encod-
ing layer is concatenated with the input of the corresponding decoding
layer using skip connections with a similar strategy as UNet (Ron-
neberger et al., 2015). Finally, the predicted elevation differences are
added to the interpolated DEM to produce the inferred HR DEM. The
proposed DEM upscaling network structure is summarized in Fig. 3.

HR DEMs and corresponding HR RGB images are required to train
this model. The 2013 South Central Ontario Orthophotography
(SCOOP) (OMNRF, 2013), the 2014 Digital Raster Acquisition Project
Eastern Ontario (DRAPE) (OMNRF, 2014), and the 2015 Southwestern
Ontario Orthophotography Project (SWOOP) (OMNRF, 2015), which
include georeferenced orthoimages at 20 cm resolution and LiDAR-
derived DEM at 2 m resolution pairs, were selected. The major urban ar-
eas within the three datasets, such as Kitchener–Waterloo–Cambridge,
Ottawa–Gatineau, Hamilton, Kingston, etc., were chosen as the training
area due to the similarity of urban structures to the city of Calgary.
The proposed network first upsamples an 18 m-resolution CDEM to
2 m with bicubic interpolation to match the output DEM resolution
of 2 m. To simulate this process, the HR DEMs were downscaled to
18 m to approximate the actual LR CDEM, and then were interpolated
to a 2 m resolution as the network input. The RGB orthoimages and
HR DEMs were also downscaled to 2 m to match the input and ground
truth resolution. The elevation difference between the 2 m DEM ground
truth and the interpolated LR DEM was used as the inference target.
Considering the significant absolute and relative elevation differences
in different areas, previous research on DEM upscaling either used log
transformation (Wu et al., 2021) or tile-wise normalization (Zhang and
Yu, 2022) to standardize the elevation values, but these methods may
not represent the elevation distributions well if applied in a different
region at a different spatial resolution or a different tile size. Based
on the assumption that the elevation differences between the LR and
HR DEMs in urban areas are consistent regardless of the topography,
normalization of elevation values is not needed in this model design.

To train this network, the L2 loss (mean squared error (MSE))
was used as the loss function to preserve sharper changes in urban
6

elevation around buildings and infrastructure, instead of the common
L1 loss (mean absolute error (MAE)) which may overly smooth the
reconstructed results (Wang et al., 2021). The image augmentations
include random flipping, rotation and centre cropping to 384 × 384
pixels. The ADAM optimizer (Kingma and Ba, 2015) with a learning
rate of 1 × 10−4 was adopted. Aerial imagery of Calgary taken in
September 2012 before the flood was used as the HR RGB image input
to guide the network. Finally, with the CDEM and the RGB aerial
imagery, an HR DEM of the area of interest was produced to predict
an HR DEM to support HR flood mapping. The DEM upscaling network
was implemented using PyTorch (Paszke et al., 2019).

2.4. Floodwater extraction network with transfer learning

Timely response during flood events requires the least amount of
manual labelling, so it is not feasible to produce a large number of
training samples for deep neural networks in real-world disaster re-
sponse scenarios. In addition, timely optical images are rarely collected
during flood events due to the limitation of weather and resources,
which further limits the available number of training samples. As a
result, transfer learning, which takes advantage of features learned by
deep neural networks on other datasets, is a sensible choice for visible
flood mapping to reduce manual annotation. Studies using CNN models
to extract floodwater from HR RGB images have attempted trans-
fer learning (Gebrehiwot et al., 2019; Hashemi-Beni and Gebrehiwot,
2021), but transferring weights trained on a universal image dataset
such as ImageNet (Deng et al., 2009) may not be the most suitable
method for the flood mapping task from remote sensing images. As
more public datasets have been released, taking advantage of flood
datasets would be more effective for transfer learning in this study.
The FloodNet dataset (Rahnemoonfar et al., 2021), which is a UAV
image dataset collected during Hurricane Harvey in Texas in 2017,
contains approximately 400 labelled VHR RGB images at the resolution
of 1.5 cm would provide substantial guidance for the flood extraction

network due to the scarcity of accessible images during flood events.
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Fig. 4. Workflow for proposed floodwater mapping tool.
A CNN network based on DeepLabV3+ (Chen et al., 2018) was uti-
lized to accurately map the visible floodwater extent from the real-time
RGB aerial imagery of Calgary in 2013. In this study, the ResNet-
50 (He et al., 2016) network was adopted as the backbone. The atrous
convolution layer was applied in the encoder and decoder. Depth-wise
separable convolution was also applied in the atrous spatial pyramid
pooling (ASPP) in the encoder. A two-stage fine-tuning process was
adopted for transfer learning due to the lack of labelled images during
flood events. The labelled images of the FloodNet dataset were down-
sampled 10 times to reach a similar resolution to that of the Calgary
aerial imagery. The limited samples make the classifier prone to overfit,
so the first fine-tuning process was based on the weights pre-trained
on the ADE20K dataset (Zhou et al., 2019). Since FloodNet is a multi-
class semantic segmentation dataset, the cross entropy loss was adopted
as the loss function, and the ADAM optimizer with a learning rate of
1 × 10−5 was used.

The RGB aerial imagery of Calgary during the flood event was tiled
into 1000 × 1000 pixel patches with the matching visible floodwater
extent masks to reduce the computational cost of each image. Note
that in this research, all permanent water bodies including rivers and
ponds are treated as floodwater in the ground truth floodwater extent
masks. In the second stage of transfer learning, a small percentage
of the data was used for fine-tuning a binary segmentation network
with the goal of requiring the least number of labelled images and
the least amount of time possible. Since the flooded area only covers
a small percentage of the imaged area, non-flooded image tiles were
also sampled in addition to the flooded tiles in the training set to
reproduce a similar distribution of the actual image to reduce the
probability of overfitting. A weighted binary cross entropy loss was
adopted to accelerate convergence, and the ADAM optimizer with a
learning rate of 1×10−6 was used. Random flipping, rotation and centre
cropping were adopted as image augmentation in both fine-tuning
processes. The experiments were conducted using the MMSegmentation
toolbox (MMSegmentation Contributors, 2020) and PyTorch.

2.5. Floodwater mapping tool with visible floodwater map and HR DEM

Due to the complexity of urban environments and drainage systems,
it is challenging to estimate flood inundation areas using HR DEMs by
setting a flood elevation. For flood risk predictions, some flood models
could take drainage capacity into consideration to some extent, but
these methods are not always achievable without a massive amount
of supporting data about urban infrastructures (Mignot et al., 2019).
However, it is feasible to predict inundation at a local level with
guidance using visible floodwater information extracted from real-time
aerial images since flood elevation can be assumed to be consistent
in a local region (Huang et al., 2014). Some established methods,
such as the FwDET (Cohen et al., 2018), assume boundaries of visible
floodwater extent to have a water depth of 0, but this assumption is
not the case when shadows and vegetation canopy are present. This
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research intends to account for potentially flooded areas in shadows
and under vegetation canopy, which could not be directly extracted
and are often underestimated from optical imagery. The HR DEM
may not be sufficient to delineate complete urban drainage basins due
to the complexity of urban stormwater infrastructure, but the local
drainage basins derived using the proposed flood mapping tool can help
complete the extent of the observed standing water from HR optical
images to better assess the flood extent.

Before the full floodwater extent and depth mapping procedure,
visible flood extent polygons extracted from HR imagery with an area
under 16 m2, which is equivalent to four pixels in the reconstructed
2 m DEM, were removed to reduce prediction outliers. Fig. 4 presents
an overview of the floodwater mapping procedure. The main idea
of the floodwater mapping procedure is to identify potential flood
elevation at the local basin level. The floodwater depth estimation tool
was implemented with ArcGIS Pro (ESRI Inc, 2021) Model Builder.
Firstly, local basins or potential flood impact zones could be extracted
from the DEM using hydrological analysis with the following steps (Ja-
mali et al., 2018): (1) compute flow direction of each cell in DEM,
(2) identify sinks, (3) fill sinks and identify watersheds, (4) extract
watershed boundaries. Different from conventional river hydrological
analysis where all sinks are filled, a threshold of 20 cm was used in the
filling process to capture detailed urban water catchments along roads
or small terrain depressions where urban shallow water movements
prevail (de Almeida et al., 2018). The GIS tools used in this step
include Fill, Flow Direction, and Basin. Afterwards, potential floodwater
elevation within each watershed could be identified by overlaying the
visible floodwater extent and the DEM. To reduce the impact of possible
elevation outliers in HR DEMs, especially in the upsampled DEM from
the proposed deep neural network, the 95th percentile (Cian et al.,
2018) of elevation values in each basin is taken as the inferred flood-
water elevation. The tool Zonal Statistics is applied in this step. Finally,
a floodwater extent map can be produced by setting the elevation
thresholds within each basin, and the floodwater depth map can also
be produced by subtraction. The tools used in this step include Minus
and Set Null. To produce the final floodwater extent and depth map for
disaster response, the existing water bodies including rivers and lakes,
need to be removed.

3. Results and analysis

3.1. Results of DEM upscaling

The proposed DEM upscaling method intends to regress the latent
relationship between HR urban topographic details and the features in
aerial images, so that the detailed topographic information could be
added to a ubiquitously available LR DEM. In this study, the trained
network was tested on the study area to upscale the CDEM at 18 m
resolution into a 2 m resolution DEM with the support of aerial imagery
taken in September 2012 before the flood event in the main urban
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Fig. 5. Results of DEM upscaling using CDEM and an aerial imagery in Calgary 2012 in four typical urban land use types. Each tile covers 250 × 250 m. Symbol colours were
assigned per the statistics of each tile (green → red: elevation low → high). The DEM profiles were extracted by the dashed line in the middle of the windows.
area of Calgary. An HR DEM with 0.5 m resolution produced by an
airborne LiDAR sensor in 2012, before the flood event, was used as
a comparison. Some examples of DEM upscaling results are shown in
Fig. 5, where all the images and DEMs were resampled to 2 m resolution
for a fair comparison.

In Fig. 5, samples of four typical urban land use types, including
urban centres with high-density high-rise buildings, mixed areas with
mid-rise residential and commercial buildings, industrial areas with
low-rise buildings with very large footprints, and typical north Ameri-
can residential areas with low-rise buildings, were illustrated, together
with a comparison of elevation profiles in the sample areas. Among
these areas, the high-rise urban regions are often affected by building
8

shadows, and the low-rise residential areas are often partially covered
by vegetation canopies. From the DEM upsampling results, some urban
features which could highly affect urban runoff, including roads and
building footprints, were reconstructed with more details from the
HR aerial imagery and added to the LR CDEM. In areas with low-
rise buildings where the road features are clearly visible, the upscaled
DEMs show stronger correspondence with the geometric features from
the optical imagery, while in areas with high-rise buildings or heavier
vegetation canopy, the reconstructed urban details may be less signif-
icant due to limited correlation between the optical features from the
rooftops or tree canopies and the underlying topography changes. In
light-vegetated urban areas such as the low-rise residential area shown
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Fig. 6. Visible floodwater segmentation evaluation using a small proportion of the training set.
in Fig. 5, some buildings and roads are covered by sparse trees but the
proposed DEM upscaling method can still reconstruct elevation details
reasonably well by comparing the DEM samples and the profile. The
convergence of the network and the improved DEM upscaling results
have validated the assumption that those targeted urban elevation
details could be reconstructed from HR optical images to some degree.
Although significant differences still exist when compared with the
LiDAR DEM, majorly due to the low accuracy and precision of the LR
CDEM, which could not be magically improved without actual field
measurements, the upscaled DEM with reconstructed HR topographic
details would benefit flood mapping at a local scale.

Due to the significant acquisition time difference between the CDEM
collected before 1990 in the study area and the LiDAR DEM, the topog-
raphy may have changed to some degree in urban regions due to urban
redevelopment. More importantly, the vertical precision of 1 m in the
LR CDEM would result in absolute errors of over 1 m compared with
the LiDAR DEM while the local elevation changes are at a much smaller
scale, so a quantitative evaluation of the upscaled DEM in absolute
elevation values is not meaningful to reflect the improvement of DEMs
in this research. Instead, the improvements in DEM by upscaling will
be indirectly compared in the application of urban flood mapping in
Section 3.3. The differences between common types of DEM products
in the study area are discussed further in Section 4.1.

3.2. Results of visible floodwater extraction

A transfer learning strategy with two-stage fine-tuning was proposed
to effectively extract visible floodwater from real-time RGB aerial
imagery with limited human labelling in disaster response scenarios.
The intention is to use as few labelled samples as possible to produce
an acceptable accuracy so that decision-makers can better estimate
flood damages during flood events. 75% of both the aerial image
tiles and the corresponding visible floodwater polygons were selected
with a stratified random sampling of both flooded and non-flooded
tiles to evaluate the performance of the network trained on different
proportions of the training samples (25%, 20%, 15%, 10%, 5% and
3% of the total image tiles). The 𝐼𝑜𝑈s of the experimental results are
hown in Fig. 6. It can be observed that using a larger proportion
f tiles would produce a higher floodwater prediction accuracy and a
aster convergence at the same time. The performance of the network
ignificantly decreases when the portion of training tiles is less than
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0% of the total amount. Given the similar amount of training steps,
which is approximately equivalent to the training time, needed for
each testing case, the fewer number of training samples needed, the
less time would be spent on manual interpretation of the near-real-
time aerial imagery. By comparing the results of the experiment, using
10% of the labelled tiles for transfer learning would be reasonable
to balance the short manual labelling time and the high floodwater
extraction accuracy. In this study, approximately 1500–2000 training
steps were needed for the network to achieve steady performance, and
it takes approximately 10 min on a machine with one NVIDIA RTX
2080 Ti GPU with 11G graphic RAM. Therefore, the visible floodwater
prediction results obtained from the network trained on 10% of the
tiles were adopted as the input of the later floodwater mapping model
to reflect a possible operational environment. In this case, an 𝐼𝑜𝑈 of
80.0% and a producer’s accuracy of 85.2% on the visible floodwa-
ter were achieved. Meanwhile, the 𝑂𝐴 of the floodwater-background
classification achieved 98.6%.

Compared with previous methods where only selected local regions
were tested (Zhang and Crawford, 2020; Hashemi-Beni and Gebrehi-
wot, 2021), the proposed method has extracted the visible floodwater
from the aerial imagery with very high accuracy in the whole study
area in a large scale, especially in regions not affected by the flood.
A detailed visual evaluation of the visible floodwater extraction result
derived from the proposed method is shown in Fig. 7 and four repre-
sentative areas are zoomed in on the right. The areas shown in blue
represent the correct prediction of visible floodwater extent, and the
visual distribution in Fig. 7 demonstrates the high validation 𝐼𝑜𝑈 of
over 80%. Minor floodwater prediction errors can also be observed
with the yellow colour showing the missed predictions and the blue
colour showing the false predictions. From Box 1 and Box 3, it can be
observed that despite the complex shape of vegetation, the predicted
visible floodwater area aligns well with the manual interpretation with
some minor errors in mixed regions contaminated by shadows. From
Box 2, due to the similarity of colour, shallow floodwater is difficult
to be distinguished from concrete impervious surfaces. Moreover, the
prediction of floodwater in bare earth areas of construction sites is
difficult for this method as shown in Box 4, but the water surface in
these areas may not be caused by river overflow in this study area.

3.3. Results of floodwater mapping

A GIS workflow combining several hydrological processes was pro-

posed to predict flood inundation depth at the local basin level using
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Fig. 7. Visual illustration of visible floodwater extraction errors from the imagery of the 2013 Calgary flood. Detailed comparisons of the aerial images and the predictions in
each red box ordered from top to bottom are shown on the right. Each red box covers 250 × 250 m.
visible floodwater polygons and HR DEMs, and local floodwater extent
could be estimated in areas in shadows and under vegetation canopy.
Compared with existing flood depth estimation tools, the proposed GIS
tool can simultaneously produce a floodwater extent map and a flood
depth map. Fig. 8 compares the flood extent prediction results using
both the CDEM at 18 m resolution (Fig. 8(a)) and the upscaled DEM
at 2 m resolution (Fig. 8(b)) according to the predicted floodwater
extent. A reference flood extent prediction using the manually labelled
visible floodwater polygons and the HR LiDAR DEM in 2012 at 0.5 m
resolution (Fig. 8(c)) is shown as a reference to the 2013 Calgary
flood. Although the reference flood extent may have some limitations,
it is the best estimate without a detailed hydraulic model by visually
comparing the floodwater extent and the HR optical imagery during
the flood event. In addition, a flood extent polygon produced by the
City of Calgary is also presented in Fig. 8(d) for a visual comparison.
For a quantitative evaluation of the proposed flood mapping workflow,
the flood extents produced from various floodwater extent sources
and different combinations of flood extent and DEMs are compared
in Table 2. In this table, the floodwater polygons are compared with
the reference flood extent and evaluated in Precision (Eq. (2)), Recall
(Eq. (3)), 𝐼𝑜𝑈 (Eq. (4)), and 𝐹1−𝑆𝑐𝑜𝑟𝑒 (Eq. (5)). In addition, the
flood area differences were also compared both in terms of area and
percentages.

Some detailed comparisons between the predicted flood extent
with the proposed workflow (Fig. 8(b)) and the reference flood extent
(Fig. 8(c)) are shown in the lower right corner in Fig. 8. It can be
observed that building shadows and vegetation canopy are prevalent
in urban areas, which resulted in the significant underestimation of the
flood extent by using optical images only, so an HR DEM input into the
10
proposed flood mapping tool is indispensable to delineate flooded areas
accurately. The predicted flood extent from the proposed framework
using the upscaled DEM and the image-extracted visible floodwater
extent is very similar in visual comparison with the reference flood
extent, and this demonstrated that the upscaled DEM could reconstruct
some topographic details that highly resemble the LiDAR DEM. In Box
B, the shadows of the high-rise buildings limits the identification of
floodwater extent from optical images, but with the detailed recon-
struction of building footprints and roads, a more accurate flood extent
can be estimated. In Box C and D, many cases can be found where
the roads are flooded while the houses above the curbs are unaffected,
which proves that roads may act as channels for floodwater flow and
road curbs may play an essential role in dividing local flood basins. The
improved flood extent estimation can be attributed to the successful
reconstruction of topography details of urban roads during the DEM
upscaling process. In Box D and the upper half of Box B, it can be
observed that the performance of DEM upscaling is not compromised
with sparse urban vegetation, but the improvement under more dense
vegetation is less significant as shown in the lower half of Box B.
However, some overestimation of floodwater extent prediction using
the upscaled DEM is also observed in the four boxes, but they are much
less significant compared with the results from the LR CDEM. Moreover,
some flood extent prediction errors can also be observed in areas north
of Box A, west of Box C and D, and some other areas away from the
rivers, by comparing Figs. 8(b) and 8(c). These errors are mostly due
to the visible floodwater extraction errors illustrated in Fig. 7.

After analysing the floodwater extent prediction results both quali-
tatively and quantitatively, some observations worth noting were made.
First of all, it was found that extracting urban floodwater extent from
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Fig. 8. Comparison of floodwater extents from different sources and predicted by different combinations of DEMs and visible floodwater extent polygons. Zoomed-in comparisons
of the predicted floodwater extent in each red box A-D are shown in the lower right in the four columns, where the three rows from top to bottom represent the RGB aerial
imagery, flood extent predicted from the upscaled DEM and the image-extracted visible floodwater extent (b), flood extent predicted with LiDAR DEM and the reference visible
extent (c). Each red box covers 500 × 500 m.
Table 2
Quantitative evaluation of floodwater extent from different sources and predicted by different combinations of DEMs and visible floodwater extent polygons compared with the
reference floodwater extent.

Floodwater extent Precision Recall IoU F1-Score Area error (m2) Area error

Image-extracted visible flood extent 93.86% 38.58% 37.63% 54.68% −2,743,261 −58.90%
Reference visible flood extent 97.80% 43.38% 42.96% 60.61% −2,614,459 −55.65%
City of Calgary flood extent 72.28% 85.88% 64.60% 78.49% +724,288 +18.81%
CDEM + extracted flood extent 21.88% 88.19% 21.26% 35.06% +11,860,471 +303.02%
CDEM + ref. flood extent 45.65% 88.96% 43.20% 60.34% +3,714,234 +94.89%
Upscaled DEM + extracted flood extent 59.33% 76.92% 50.37% 66.99% +1,141,152 +29.64%
Upscaled DEM + ref. flood extent 69.62% 83.03% 60.95% 75.74% +742,108 +19.27%
LiDAR DEM + extracted flood extent 61.21% 79.95% 53.06% 69.33% +1,425,879 +30.61%
11
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Fig. 9. Floodwater depth prediction results.
optical images could lead to a significant underestimation of over 50%
of the actual flood extent due to various factors such as occlusion from
building shadows and tree canopies. Therefore, a high-quality HR DEM
in urban regions is indispensable for producing HR floodwater maps.
The flood extent and flood depth mapping methods that do not infer in-
undated areas under occlusions in optical images may also significantly
underestimate flood damage in urban areas. Second, it can be observed
that the use of LR CDEM resulted in a significant overestimation of
the flood extent as shown in Fig. 8(a), especially in the high-density
downtown area in the west and in the eastern part of the city away from
the river. An LR DEM does not meet the requirement to produce accu-
rate flood maps in urban regions due to the lack of urban topographic
details and the limited elevation accuracy, and the LR DEMs are more
prone to errors in visible floodwater extraction. Third, by comparing
Figs. 8(d) and 8(c), it can be observed that the manually produced
flood map by experts also overestimated the flood impact by over 18%.
This flood map from the city may focus more on the total affected
boundary rather than a detailed inundation map, so a flood map with
a higher level of detail is still preferable in more detailed flood damage
assessment. Finally, the predicted flood extent in Fig. 8(b) using the
proposed flood mapping framework is significantly more accurate than
that of LR CDEM in both qualitative and quantitative evaluation. The
accuracy of floodwater extent mapping is reliant on the precision of
both visible floodwater extraction and DEM. By comparing the flood
extent prediction with different combinations of the two factors in
Table 2, if the errors in the visible floodwater extraction could be
reduced, the proposed flood mapping framework could produce a flood
extent that is nearly as precise as the manually created flood map by the
City of Calgary. Furthermore, when comparing the flood extent results
using predicted visible floodwater extent, consistent performance can
be observed in Table 2, regardless of whether an upscaled DEM or
LiDAR DEM is used. As a result, the experiments indirectly proved
that the urban topographic features reconstructed in the upscaled DEM
could effectively delineate urban drainage basins, and could bring
significant improvement over predictions with LR CDEM.

In addition to the floodwater extent, the proposed flood mapping
tool also produces flood inundation depth estimation maps. A compar-
ison of floodwater depth prediction results is illustrated in Fig. 9. From
the comparison, the CDEM produced unsatisfactory results (Fig. 9(a))
in depth estimation with significant errors, especially in the downtown
areas, compared with the predicted results using the upscaled DEM
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(Fig. 9(b)) despite using the same extracted floodwater extent. Fig. 9(b)
has a few much deeper flood depth predictions compared with the
reference flood depth map produced with the manually labelled flood-
water extent and the LiDAR DEM 9(c). These errors may be attributed
to both the visible floodwater extent extraction errors and the absolute
errors between the CDEM and the LiDAR DEM. Different from previous
research on floodwater depth mapping which evaluates absolute depth
accuracy with the same flood extent polygons (Cohen et al., 2022), the
flood extent predictions will be different when using different DEMs.
Moreover, given the limited resources, ground-truth flood depth maps
produced by a high-quality hydraulic model is not available. As the
profile lines compared in Fig. 5, the absolute differences between the
CDEM and the LiDAR DEM are much larger than the scale of the
reconstructed elevation details by the proposed DEM upscaling method,
adding the differences in floodwater extent estimation, a quantitative
flood depth evaluation is not sensible due to the limitations of DEMs.
The estimated floodwater depth map produced by the proposed method
could be used in emergency response as a more effective reference
compared to depth maps produced by LR DEMs.

4. Discussions and limitations

The production of accurate near-real-time flood maps during dis-
aster response scenarios requires both accurate HR DEM and accurate
visible floodwater extent extraction. This research attempted to utilize
deep learning methods to produce the two critical components with the
DEM upsampling network and the floodwater extraction network in the
proposed framework. This attempt is intended for a proof of concept
with basic CNN network structures applied, and implementing more
advanced networks, such as vision transformers (Dosovitskiy et al.,
2021), would likely further improve the results. As shown in Figs. 8 and
9, the proposed framework has shown significant improvement over
manual processing of the aerial optical imagery and the flood mapping
with the LR CDEM in the 2013 Calgary flood mapping, but there are
still some limitations and areas for improvement in these two processes.

4.1. DEM upscaling

The proposed DEM upscaling network is specifically designed for
urban areas with limited vegetation canopy coverage to reconstruct
urban features for floodwater mapping. This proposed method only



Remote Sensing of Environment 301 (2024) 113956W. Tan et al.
Fig. 10. Comparison of profiles of different DEM products.
adds urban topographical details, such as roads and building footprints,
inferred from HR optical images, and the base DEM itself is not involved
in the network, so the quality of flood maps produced by the proposed
flood mapping workflow heavily relies on the accuracy and precision
of the DEM products. As the results in Table 2 showed that DEMs with
lower spatial resolutions may be more sensitive to visible floodwater
extraction errors. The accuracy of floodwater extent and depth mapping
also relies on the absolute elevation accuracy or the relative accuracy
of flood-related topographic features. As shown in Fig. 5, the proposed
DEM upsampling method can reconstruct urban topographic details
from HR optical imagery and add it to the base DEM to better support
flood mapping purposes. However, this method does not fix errors and
uncertainties in the base LR DEMs. In this study, the low elevation
precision of 1 m in CDEM may lead to abrupt elevation changes in
the upscaled DEMs as shown in Fig. 5. Cohen et al. (2022) pointed
out that the acquisition and processing quality of DEMs could be
more important than spatial resolution in generating accurate flood
depth estimation. Fig. 10 compares two common global DEM products,
Shuttle Radar Topography Mission (SRTM) 1 arc-second DEM, and
ASTER Global DEM (GDEM), together with CDEM and the LiDAR DEM
in the same profile lines as the samples in Fig. 5. The CDEM has
a spatial resolution of approximately 18 m, while SRTM and ASTER
GDEM have a spatial resolution of approximately 30 m. Compared with
the LiDAR DEM produced in 2012, ignoring the data collection time
differences, the LR DEMs do have significant elevation errors, making
them difficult to delineate HR urban flood mapping results. Among
these DEMs, CDEM has the most consistent and reliable result, with
errors usually within 2 m, even though it is the oldest product collected
before the 1990s. The SRTM and ASTER GDEM have similar error
rates to CDEM in low-rise urban environments but very large errors
of over 20 m in high-rise urban environments. Therefore, the DEM
products either by radar interferometry or digital photogrammetry do
not provide reliable results in high-density urban regions. As a result,
even though the LR CDEM is outdated, it can still reliably represent
the underlying terrain surface in Canadian urban regions, so improved
HR flood maps could be produced by the proposed DEM upsampling
method with support from HR optical imagery.

There are also some limitations of the proposed DEM upscaling
method that need to be addressed to make it more generalized to
achieve a broader range of applicability. First, the proposed DEM
upscaling network is specifically designed for urban areas with limited
vegetation canopy coverage to reconstruct urban features for floodwa-
ter mapping, so that road networks and building footprints are the main
HR features that the method intends to extract from the HR optical
images. Meanwhile, optical images with thick vegetation coverage or
dense high-rise buildings do not provide enough relevant features for
topographic reconstruction, so this method works best in low-to-mid-
rise urban areas. As the results shown in Fig. 5, the improvements under
high-rise buildings and thick vegetation are very limited due to the
limitation of optical images. HR synthetic aperture radar (SAR) imagery
could be an alternative in densely vegetated areas, but new solutions
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are needed to tackle high-rise urban areas. Second, the training data
utilized in this research have spatial and temporal limitations. Spatially,
the training data are all distributed in Southern Ontario, which may
limit the spatial diversity in terrain, building, and vegetation types.
The testing area, Calgary, AB, is far from the training area with over
15 km2 of an urban area, which is much larger than some similar
research that tests algorithms on small image patches. The convergence
of the network means that some identifiable features such as roads and
building footprints do hold some consistency across regions in Canada,
showing cross-regional compatibility to some degree. The proposed
DEM upscaling method may not be directly applied in other regions due
to different building codes and infrastructure types, and constructing a
DEM dataset covering different countries similar to OpenGF (Qin et al.,
2023b) would increase the spatial adaptability. Temporally, the three
selected datasets were all collected in early spring leaf-off seasons, and
data augmentation techniques could not compensate for the lack of
diversity of the vegetation canopy. The aerial imagery of Calgary in this
study was taken in late September 2012, when leaves of deciduous trees
had fallen, so some image features are closely related to the training set
despite some differences in vegetation colours. To apply this method to
an area with imagery taken in leaf-on season, a more diverse training
set would be ideal for contributing to the robustness of this method.
Finally, the resolution of the base DEM and the target upscaling reso-
lution will limit the performance of the proposed method. The proposed
process chose the CDEM product at 18 m resolution as the base DEM
due to the high quality and availability of the CDEM in Canada, and any
other Canadian urban regions without HR LiDAR DEMs or researchers
studying historical events would greatly benefit from the outcomes of
this research. Additionally, there could be pixel alignment problems
during the upsampling and downsampling process (OpenDEM, 2021).
This study chose the 9 (from 18 m to 2 m) as the scale of resampling
during the training data preparation to minimize the alignment issue,
but some errors caused by pixel alignment when applying the proposed
DEM upscaling method could not be neglected to some extent. As
a result, directly applying this method on base DEMs at a different
resolution, in a different geographical region, or in a different season
may not produce the best performance depending on the use case.

4.2. Visible floodwater extraction

The proposed visible floodwater extraction network took advantage
of an existing open accessible HR flood dataset, FloodNet (Rahnemoon-
far et al., 2021), to perform a transfer learning strategy in order to
extract visible floodwater from the 2013 flood in Calgary successfully.
However, FloodNet only covers HR optical images in one flood event,
limiting the diversity of floodwater characteristics. With the emergence
of more and more open datasets for disaster management, such as
the SpaceNet-8 dataset (Hänsch et al., 2022), a more diversified train-
ing dataset for flood monitoring could be assembled to improve the
performance of the proposed method. The FloodNet and SpaceNet-
8 datasets mostly cover clear water floods, while the 2013 flood in
Calgary is a fluvial flood with mostly turbid floodwater with a very
different spectral signature in optical images. Due to the similarity in



Remote Sensing of Environment 301 (2024) 113956W. Tan et al.
the spectral response of all water bodies in the RGB aerial imagery
used in this research, floodwater and permanent water bodies were not
treated separately in the floodwater extraction process. Flood events
with diversified floodwater types and permanent water bodies with
different spectral characteristics would need more diversified training
sample labelling to ensure the performance of the proposed method,
and these complex flood events need to be further tested in future
studies. Despite the difficulties of obtaining HR optical images during
flood events due to weather reasons, the increasing availability of UAV
sensors worldwide may contribute to the quantity and quality of flood
images for the development of better flood mapping techniques.

The proposed visible floodwater mapping method takes 10% of
the flooded image tiles from the aerial imagery and achieved over
80% IoU by adopting a transfer learning procedure. According to the
quantitative results provided in Table 2, there are still a lot of room
for improvement in accurate delineation of visible floodwater. The
simple network structure and transfer learning procedure provide a
viable solution for a quick preliminary result during disaster response,
and higher accuracy in visible floodwater extraction could be obtained
by adopting a more advanced neural network structure or training
scheme. A very recent study by He et al. (2022) utilized a semi-
supervised method to extract visible open floodwater as well as areas
under building and vegetation shadows in the same study area, and
over 90% IoU was achieved with 5% of the annotated tiles. Although
only using a small proportion of the labelled training set could result in
high accuracy in visible floodwater extent prediction, transfer learning
or semi-supervised learning still require full pixel-wise annotation of
floodwater to train the deep neural network. In real-world disaster
response scenarios, despite flood experts may select higher-quality and
higher-diversity data for detailed annotation, which could result in a
better performance for this proposed method where random stratified
sampling was adopted for demonstration purposes, it is often not
realistic to accurately perform pixel-wise labelling. Therefore, apply-
ing weakly-supervised methods would be more practical in disaster
response scenarios with limited resources (Bonafilia et al., 2020).

Last but not least, the extraction of visible floodwater extent is
intended to estimate local flood elevation to guide the floodwater
mapping tool to infer floodwater extent and depth from the HR DEM.
Additional data sources, including water gauges, public cameras and
social media, would help refine flood estimation from remote sensing
images to achieve improved real-time flood monitoring (Huang et al.,
2018). More advanced and hydraulic-incorporated inundation estima-
tion models can also be introduced to correct errors in floodwater
extent extraction from remote sensing imagery (Bryant et al., 2022).

5. Conclusions

This research proposed a novel multi-sensory urban flood mapping
framework to enable rapid near-real-time HR urban flood mapping.
The proposed framework addressed the limitation of the existing flood
mapping methods that only consider the visible floodwater extent in
optical images by utilizing an upscaled HR DEM. It utilizes a DEM
upscaling procedure to fill the data gap in urban regions without HR
DEMs by reconstructing urban topographic details from HR optical
imagery. The proposed framework consists of three major components:
(1) A new DEM upscaling network with deep learning and image fusion
by taking existing HR RGB aerial imagery to reconstruct HR urban
topographic details, (2) A rapid visible floodwater extent extraction
semantic segmentation network with a transfer learning strategy that
requires a minimal amount of human labelling, (3) An accurate flood-
water extent and flood depth estimation tool built with GIS hydrology
analysis that takes both the visible floodwater extent and the upscaled
HR DEM.

Through the case study on the flood event in Calgary in 2013, where
HR aerial imagery was taken during the peak of the flood event, it can
be found that: (1) The proposed DEM upscaling method can reconstruct
14
HR urban topography details from an HR RGB aerial optical imagery to
enhance the existing LR CDEM at 18 m resolution into 2 m resolution
DEM products to support flood mapping. (2) The proposed visible
floodwater extraction method takes advantage of an open-source flood
mapping dataset to accurately extract visible floodwater at over 80%
IoU from the real-time VHR RGB aerial imagery with only labelling
10% of the area and about 10 min of training time. (3) The proposed
GIS-based flood mapping tool predicted floodwater extent and flood
depth estimation using the extracted visible floodwater extent and the
upscaled DEM achieved significant improvement over estimations using
the LR CDEM.

The proposed framework could benefit urban regions without HR
LiDAR DEMs to better respond to potential future flood events or
perform retrospective studies on historical flood events, and it can be
applied in a large-scale urban setting effectively with limited manual
processing. The case study conducted in this research is a proof-of-
concept of the proposed framework to show the practicality of using
real-world data, and extensive testing is still required to make it an
operational tool for disaster response. Given that near-real-time HR
flood images and corresponding HR DEMs are not often available, as
more and more HR geospatial data are becoming publicly accessible,
the proposed framework will be further tested in other major urban
areas in Canada. The intention of this research is to propose a flood
mapping framework with simple network structures to demonstrate the
feasibility of the concept without relying on the complicated advanced
neural network structures. Future research will address the several
limitations in the process discussed in the previous section, and more
advanced deep learning structures will be explored to improve the
performance of the proposed framework.
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