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Abstract— The automated monitoring of road pavement con-1

ditions is a challenging subject in intelligent transportation.2

However, the existing studies mostly focus on extracting pavement3

damages such as cracks, while the pavement aging conditions are4

still less investigated. In this paper, a novel method based on a5

modified recurrent neural network is designed for automated6

monitoring of asphalt pavement aging phenomena from fine-7

resolution satellite imagery. A spectral augmentation method8

is proposed to enhance the spectral details of the road pave-9

ments. A novel loss function is also proposed to improve the10

bi-directional gated recurrent unit (Bi-GRU) network in order to11

better classify different degrees of road pavement aging and non-12

pavement objects. In order to demonstrate the outperformance of13

the modified network Bi-GRU+, the Worldview-2 satellite image14

(16360 ∗7728) covering 16 asphalt roads in the southwestern15

suburb of Beijing City is used. The results show that the proposed16

approach has better performance than existing machine learning17

methods, with an overall accuracy of 98.16% and a Kappa18

coefficient of 0.97. The overall processing time of the proposed19

method is 7836 seconds in our case study. The proposed method20

is efficient for large-scale monitoring of road health conditions21

from fine-resolution satellite imagery. It can become a part of22

intelligent transportation and provide a new foundation for large-23

range automated monitoring of road pavement aging conditions.24

Index Terms— Remote sensing, recurrent neural network,25

gated recurrent unit (GRU), asphalt pavement, aging conditions,26

multispectral imagery.27

I. INTRODUCTION28

ROAD networks connecting buildings, villages, cities,29

and countries are the most important transportation30

infrastructure in modern life. The conditions of road pave-31

ments are directly related to the driving experience, traveling32

comfort, and driving safety [1].33

The road pavement conditions can be simply divided into34

two components: pavement aging [2], [3], [4] and pavement35

damages [5], [6], [7], [8], [9]. For flexible pavement sys-36

tems, pavement aging denotes the quality of asphalt pave-37

ment degradation over time caused by weathering, loads,38
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and moisture [2], [10]. The damages such as cracks, alligator 39

cracks, and potholes are likely to appear on the heavily 40

aged pavement. Therefore, road maintenance engineers should 41

regularly assess the road conditions and timely conduct main- 42

tenance to extend the road life [11]. 43

A common method for road pavement condition assessment 44

is field inspection by engineers in order to evaluate the phys- 45

ical and chemical parameters of the pavement using indices 46

such as the pavement condition index, structural index, and 47

overall pavement condition index [3], [12]. In recent years, the 48

advanced pavement management system (PMS) mounted on a 49

vehicle has been used for road pavement inspection. The PMS 50

includes several sensors and equipment, including GIS, GNSS, 51

laser scanners, image acquisition systems, odometers, and 52

ground-penetrating radar [13], [14], [15], in order to instanta- 53

neously evaluate the road health and provide information for 54

maintenance strategies and decision-making [15], [16]. How- 55

ever, the field investigation and the PMS are labor-intensive 56

and have technical limitations, such as single-lane detection, 57

traffic obstruction, road surface destruction, costly large-scale 58

monitoring, and time-consuming and laborious [2], [17]. 59

In recent years, with the advancement of remote sensing 60

technology and computer algorithms, high-resolution satellite 61

imagery and deep learning approaches have been used for 62

pavement conditions mapping [2], [17], [18], [19]. However, 63

most of the existing deep learning algorithms focus on pave- 64

ment damage monitoring and are suitable for fine-scale moni- 65

toring of pavement quality in a small range, but not suitable for 66

monitoring large-scale pavement aging processes. In addition, 67

the conventional shallow machine learning algorithms rely on 68

the manual selection of features or thresholds, while having 69

a low degree of automation and relatively poor accuracy. 70

Therefore, the existing methods fail to combine deep learning 71

and high-resolution satellite imagery well. A method that can 72

detect road aging conditions over a large range with a high 73

automation and generalization ability is not yet developed. 74

A novel method for monitoring asphalt pavement aging 75

conditions based on a deep learning architecture is proposed 76

to solve this problem. The proposed method does not require 77

manual selection of features and thresholds and can be used for 78

large-range asphalt pavement aging monitoring. The proposed 79

deep learning network model is improved on the basis of 80

the gated recurrent unit (GRU) to be suitable for monitoring 81

pavement aging conditions. To the best of our knowledge, it is 82

the first time developing an RNN-based classification model 83
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used to monitor asphalt pavement aging conditions from sub-84

meter resolution satellite imagery.85

The contributions of this paper are summarized as follows:86

(1) We propose a biGRU-based road pavement aging clas-87

sification method that does not require the manual selection88

of features or thresholds and is highly automated. To our89

knowledge, this is the first approach that uses RNN network90

architecture to develop an algorithm for monitoring asphalt91

pavement aging conditions.92

(2) Combined with the characteristics of the pavement aging93

process, a novel loss function is proposed based on the cross-94

entropy loss. It can allow the model to focus on learning95

“hard samples” and “similar samples” and improve the model’s96

ability to classify different degrees of asphalt pavement aging.97

(3) Using satellite imagery as the data source, an automated98

pavement aging monitoring method including spectral aug-99

mentation and statistical analysis is developed. It allows the100

monitoring of large-range pavement aging conditions.101

The remainder of this paper is organized as follows. The102

Related works are reviewed in Section II. Section III addresses103

the details of the proposed methods. The experiments and104

results of this study are presented in Section IV, and the105

discussion is provided in Section V. Finally, the conclusions106

are drawn in Section VI.107

II. RELATED WORK108

A. Pavement Aging Monitoring109

The asphalt pavement aging conditions can be monitored110

using spaceborne and aerial remote sensing imagery [19].111

Multispectral and hyperspectral image data cover a broad112

spectral range and have a relatively fine spectral resolu-113

tion, allowing the monitoring of the pavement aging process114

[4], [11], [20], [21], [22], [23], [24].115

The pavement quality changes with the composition and116

content of asphalt concrete, which results in changes of the117

pavement spectral reflectance. For instance, the volatilization118

and oxidation of asphalt can be characterized by the absorption119

of iron oxides at 520, 670, and 870 nm, while the slope120

of the spectral curve between the visible and near-infrared121

wavelengths increases as the asphalt pavement ages. Based122

on these characteristics, Herold et al. [3], [4] construct three123

spectral indices to characterize the slope in the visible to near-124

infrared (VNIR) bands, in order to represent the degree of125

pavement aging. However, these indices are less efficient for126

monitoring seriously aged pavements and are only suitable for127

relatively healthy pavements.128

The field investigation demonstrated that the asphalt con-129

tent of pavement decreased with the increase of the service130

life, which results in increasing pavement reflectivity and131

brightness in the images [20]. Therefore, asphalt pavement132

with different aging conditions can be monitored based on133

the pavement brightness [20], [25]. Mettas et al. [23] divide134

the aged pavements into three levels and explore the possi-135

bility of using Landsat7 ETM+ data to monitor the pave-136

ment conditions. They deduced that the three aging levels137

of asphalt pavements had significant spectral differences,138

which demonstrated the potential of using satellite imagery139

to monitor the pavement aging conditions. Mohammadi [26] 140

and Andreou [27] use hyperspectral images as data sources. 141

They deduce that the Spectral Angle Mapper(SAM) is rela- 142

tively efficient and more suitable for pavement aging condi- 143

tions mapping. Pan et al. [28] extracted the aging classes of 144

asphalt pavement using multiple endmember spectral mixture 145

analysis (MESMA) and Worldview-2 images. Their method 146

minimizes the influence of mixed pixels on the classification 147

result. 148

However, these approaches for monitoring pavement aging 149

conditions based on a small sample size have low automation, 150

require threshold selection and have poor generalization ability 151

when the regions of interest or image data change. These 152

problems have limited the application of remote sensing in 153

practical road pavement conditions monitoring. 154

B. Deep Learning 155

Deep learning is a data-driven approach which provides high 156

accuracy, automation, and high generalization performance for 157

massive samples [29]. Researchers have discovered the poten- 158

tial of deep learning in road pavement conditions monitoring. 159

Most of the existing deep learning architectures for monitoring 160

road pavement conditions focus on extracting cracks and other 161

pavement damages. They can be grouped into three categories. 162

The first category is the image classification into healthy 163

and damaged road sections [30], [31], [32]. This type of 164

method has a high classification accuracy and demonstrates 165

the potential of deep learning for pavement monitoring. It is 166

often combined with other methods to detect road damage. For 167

instance, Pan et al. [33] perform multi-scale segmentation of 168

road images and use the AlexNet to obtain different damage 169

categories. 170

The second category is the object detection, which deter- 171

mines the road damage in very fine resolution imagery using 172

a detection box [34], [35], [36]. It includes the one-step 173

methods that directly detect the damage [9], [37], [38], and 174

the two-step methods that use a detection step following 175

classification [39], [40], [41], [42]. These methods generally 176

used rectangular boxes to locate the detected damaged objects. 177

Due to the fact that road pavement damages have irregular 178

shapes, these methods have limited identification accuracy 179

and cannot obtain the shape of the damaged sections for 180

subsequent road health assessment. 181

The third category is the image segmentation, which 182

classifies each pixel into healthy and damaged pavement 183

[29], [33], [43], [44], [45], [46]. In general, pavement damages 184

comprise a relatively small area in road pavement images. 185

Thus, these methods suffer from the sample imbalance prob- 186

lem. In addition, some studies propose improvements in the 187

network structure, such as the feature pyramid and hierarchical 188

boosting network (FPHBN) [43], in which the samples are 189

weighted layer by layer. The model focuses on learning 190

difficult samples (i.e., hard samples), minimizing the sample 191

imbalance problem. Thus the approach performs well on 192

multiple sample sets. Kang et al. [18], [47], [48] perform 193

crack segmentation in complex environments and different 194

lighting conditions by integrating three independent computer 195
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Fig. 1. Framework for asphalt pavement aging monitoring from fine-resolution satellite imagery using the Bi-GRU+ network.

vision algorithms and developed a new encoder with an196

attention module. Choi et al. [49] propose a real-time crack197

segmentation DL architecture, referred to as SDDNet-V1,198

which can greatly improve the time efficiency and identify199

relatively vague cracks.200

These deep learning models are mainly based on two-201

dimensional convolutional neural networks (2DCNNs). Their202

high image processing ability ensures the detection of pave-203

ment damages (e.g. cracks) with distinguishing spatial char-204

acteristics. However, different pavement aging degrees are205

characterized by spectral characteristics, and 2DCNNs are not206

well suited for fully using the abundant spectral information207

in multispectral or hyperspectral data. In addition, the spatial208

resolution of the remotely sensed data required for pavement 209

aging monitoring is often not sufficient for damage monitor- 210

ing, and the spatial information is less, which further limits 211

the application of 2DCNN in pavement aging monitoring. 212

Therefore, these existing deep learning methods cannot be 213

applied to road pavement aging mapping. Therefore, new deep 214

learning architectures are required to monitor pavement aging 215

conditions from fine-resolution satellite imagery. 216

III. FRAMEWORK AND METHODS 217

A. Framework Architecture 218

The proposed framework (Fig. 1) is composed of three 219

parts: data preprocessing, Bi-GRU+ network-based pavement 220
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classification and decision support. The satellite image is221

processed to produce a road reflectance image in the data pre-222

processing part. In addition, a nonlinear function is proposed223

for spectral augmentation and the field investigation is per-224

formed within three months of the satellite image acquisition225

from which the true aging conditions of the road pavements226

are collected. The Bi-GRU+ network is developed and used227

to classify the augmented reflectance image pixel by pixel.228

After the statistical analysis of the classification results, the229

pavement aging conditions of each road are derived. They230

can be used as decision support for the road maintenance231

department232

B. Data Preprocessing233

In order to meet the requirements of large-scale road234

pavement aging monitoring, the proposed framework uses235

fine spatial resolution multispectral satellite images as the236

data source. The spatial resolution should be less than one237

meter, and the spectrum should cover at least visual and near-238

infrared (VNIR) bands. A radiometric correction of the image239

is performed using the gain and offset data provided in the240

image metadata. In addition, an atmospheric correction is241

performed using the Fast Line-of-sight Atmospheric Analysis242

of Hypercubes (FLAASH). The resultant reflectance images243

are then clipped to contain only the road pavements, in order244

to reduce the influence of non-pavement areas on the clas-245

sification process. A field investigation within three months246

of the image acquisition date is performed to collect the true247

conditions of road pavement aging in the study area.248

The aging of asphalt pavement is a gradual process. The249

field investigations demonstrated that the aging of asphalt250

pavement can be divided into three categories [2], i.e., slightly251

aged, moderately aged, and heavily aged. The slightly aged252

pavement refers to a small reduction in the asphalt content253

due to volatilization, oxidation, absorption, and photochem-254

ical reactions. The asphalt oil film has mostly disappeared.255

However, the gravel aggregate has not been exposed (Fig. 2b).256

In moderately aged pavement, friction damage occurs due to257

the traffic load and physical weathering, causing the exposure258

of gravel aggregate in the asphalt mixture (Fig. 2c). When the259

exposed gravel aggregate is subjected to ongoing friction and260

pressure of vehicle loads and weathering, the coarse aggregate261

breaks and drops, which results in heavily aged pavement262

(Fig. 2d). During the aging processes, the deformability and263

structural strength of the road pavement is degraded. Eventu-264

ally, a wide range of road pavement damage occurs in different265

forms, such as cracks, potholes, etc.266

The Munsell neutral value scale card (MNVSC) is used in267

the field investigation as a quantitative reference to describe268

asphalt pavement aging conditions. The MNVSC divides the269

gray color from pure black to pure white into 37 levels270

according to the ISCC-NBS international standard [50]. Each271

level has a value, which is a dimensionless number. Field272

comparisons and visual discriminations are performed on the273

color of the asphalt pavement of different aging degrees,274

in order to obtain the gray values of the underlying asphalt275

pavement. The three categories of aging conditions (Table I)276

TABLE I

ISCC-NBS COLOR NAMES, VALUES AND SPECTRAL REFLECTANCE OF
THE MNVSC FOR THREE ASPHALT AGING CONDITIONS

correspond to the grayscale values: slightly aged asphalt 277

pavement ([N0.5/-N4.25/]), moderately aged asphalt pave- 278

ment ([N4.25-N6.75/]), and heavily aged asphalt pavement 279

([N6.75/-N8.75/]). The level [N8.75/N9.5/] is white, and it 280

is ignored because it does not correspond to any asphalt 281

pavement. 282

An analytical spectral devices full range (ASD Field Spec- 283

FR, ASD Corporation) is used to record spectral data. The 284

instrument has three detectors covering the RGB, near-infrared 285

(VNIR) and a short-wave infrared (SWIR1 and SWIR2) band, 286

with a spectral sampling interval of 1.4 nm for the VNIR detec- 287

tor and 2.0 nm for the SWIR. A field spectral measurement is 288

performed between local time 11:00 and 13:00 under a clear 289

sky, and the dark current is removed at every beginning of a 290

measurement. The optical fiber bundle collects the reflected 291

radiation with a 25-deg conical field of view at 50 cm above 292

the pavement, which corresponds to a 22 cm×22 cm region. 293

Besides the ground targets, a white reference is measured 294

with the Spectral on Panel (Lab sphere Inc., North Sutton, 295

New Hampshire) to standardize and calculate the spectral 296

reflectance of all the ground targets. The spectrum of every 297

target, including the white reference, is recorded five times 298

per measurement, and then the mean of five spectra was used 299

in further processing. In addition to the asphalt pavement, 300

the spectral information of other related objects including 301

vegetation, cement sidewalks, traffic lines, and bare soil was 302

also collected. Based on the field investigation, the pavement 303

features are categorized into three aging conditions (slightly 304

aged, moderately aged and heavily aged), vegetation, shadows 305

and others six categories. The others category includes traffic 306

lines, skyways and so on. 307

The spectral characteristics of the categories are summarized 308

as follows: 309

1) As the pavement ages, the reflectance of the asphalt 310

pavement increases. The reflectance values of the slightly 311

aged pavement range from 5% to 10%, those of the mod- 312

erately aged pavement range from 12% to 20%, and that of 313

the heavily aged pavement range from 14% to 35%. 314
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Fig. 2. Illustration of the aging processes of asphalt pavement over time. (a) Fresh pavement, (b) Slightly aged, (c) Moderately aged, (d) Heavily aged,
and (e) Pavement damages (e.g. crack, pothole, etc.). The pavement photos were captured by Canon 500, and the spectral curves were made from the in-situ
measurements of pavement spectra using the portable ASD device.

2) When the pavement ages, the slope of the reflectance315

curve in the VNIR bands increases.316

3) The reflectance values of the pavement surface and other317

related objects range from 0% to 40%.318

In general, the spectral characteristics of different aging319

conditions are quite clear. The specific environment may affect320

them. For example, the spectral characteristics of shadows321

and heavily aged pavement are relatively similar. Therefore,322

a spectral augmentation method is proposed in this paper.323

Equation (1) is used for spectral augmentation.324

x = − (ρ − 1)2 + 1 (1)325

where ρ� [0, 1] is the original reflectance and x� [0, 1] is the326

augmented spectral reflectance.327

Equation (1) can enlarge the value of ρ� [0, 0.4] to 328

x� [0, 0.64] without changing the value range of ρ, which can 329

enlarge the spectral characteristics of different categories. 330

C. Bi-GRU+ Network-Based Pavement Classification 331

In contrast to the traditional feed-forward neural networks 332

such as CNNs, the hidden layers of an RNN are connected 333

between nodes and form a directed graph along a sequence. 334

Therefore, an RNN has a high performance for sequential 335

data analysis, and it has been widely used in natural language 336

processing [51]. However, the RNN is problematic for spectral 337

data, which results in gradient disappearance and the inability 338

to obtain spectral contextual information [52]. To address 339

these problems, a Bi-GRU+ network model is proposed. 340
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Fig. 3. Diagram of the proposed Bi-GRU+ network.

The proposed network is less affected by gradient disap-341

pearance, has fewer parameters and higher efficiency than342

the long short-term memory network (LSTM) [53]. It can343

also extract contextual information from spectral sequence344

data to learn spectral characteristics, which makes it suitable345

for multispectral or hyperspectral image data. In addition,346

the proposed loss function is improved using cross-entropy,347

in order to be suitable for pavement aging monitoring.348

The architecture of the proposed network is shown in349

Fig. 3. Each pixel of a multispectral or hyperspectral image350

is considered as a spectral sequence x = (x1, x2, . . . . . . , xn),351

where xt represents the pixel value in band t . Consequently,352

the remote sensing images can be transformed into spectral353

sequence data as input into the network. The input spectral354

sequence data contains contextual information between the355

spectra. This information is learned using the forward and356

backward hidden layers and is input into a fully connected357

layer to obtain the spectral features. The Softmax classifier is358

then used to predict the classes.359

Complex environments can cause problems such as sample360

imbalance or mixed pixels in actual scenes. For example, the361

proportion of different aging conditions on the road pavement362

is often different, which causes the problem of sample imbal-363

ance. These problems make some pixels, denoted by “hard364

samples”, difficult to classify. On the other hand, the aging of365

asphalt pavement is a gradual process. Thus some pixels are366

difficult to classify between two different aging conditions,367

denoted by “similar samples”.368

To solve these problems, the cross-entropy function is 369

improved as (2). 370

Lloss=
C−1�
i=0

(α ∗ �
1− pi

� ∗ pi−
�
1− pi

�2 ∗ yi ∗ log pi) (2) 371

where Lloss is the improved cross-entropy loss function, 372

C is the number of categories, yi is the one-hot encoding 373

of the i-th category, and pi is the predicted probability of 374

the i-th category. Compared with the original cross-entropy 375

loss function Lcross , the modulating factor
�
1− pi

�2
is used 376

to make the model focus on training the hard samples. 377

As pi → 1, the factor tends to 0 and the loss for well-classified 378

samples is down-weighted. Moreover, an additional item α ∗ 379�
1− pi

� ∗ pi is added to improve the classification result of 380

similar samples, where α ≥ 0 is the tunable hyperparameter. 381

As pi → 0.5, the item increases and the loss for similar 382

samples is up-weighted. 383

The advantage of the GRU is that hidden states can be 384

selectively reset and updated by the reset gate and update gate. 385

The advantage of the proposed network is that it can focus on 386

the feature bands to distinguish between different objects. The 387

network hidden layer is computed as: 388⎧⎨
⎩
−→
Rt = σ

�
xt
−−→
Wxr + Ht−1

−−→
Whr +−→br

	
−→
Zt = σ

�
xt
−−→
Wxz + Ht−1

−−→
Whz +−→bz

	 (3) 389

−̃→
Ht = tanh

�
xt
−−→
Wxh +

�−→
Rt � Ht−1

	−−→
Whh +−→bn

	
(4) 390
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Fig. 4. Calculation of the forward hidden layers.

−→
Ht = −→Zt � Ht−1 +

�
1−−→Zt

	
�
−→

Ht (5)391

Equations (3)-(5) are used for the forward hidden layers,392

where xt is the input data, and
−→
H t is the output at step t393

(Fig. 4).394

In (3),
−→
Rt and

−→
Zt represent the reset gate and update gate of395

the forward hidden layer, H t−1 is the previous hidden state,396 −−→
W xr ,

−−→
Whr ,

−−→
W xz , and

−−→
Whz are the weight parameters,

−→
br and397 −→

bn are the biases, and σ represents the sigmoid activation398

function. More precisely, the reset gate
−→
Rt controls how the399

hidden state of the previous step flows into the candidate400

hidden state of the current step. In addition, the hidden state401

of the previous step contains all the historical information402

of the sequence data up to the previous step. Therefore, the403

reset gate can be used to drop prediction-irrelevant historical404

information, as expressed in (4). The update gate
−→
Zt helps to405

capture partial long-term dependencies in the sequence data,406

as shown in (5). Equation (4) is used to calculate the candidate407

hidden state.
−−→
W xh and

−−→
Whh are the weight parameters,

−→
bn is408

the biases, � denotes the multiplication by the element, and409 �−→
Rt � H t−1

	
represents the output of the reset gate of the410

current step and the hidden state of the previous step. If the411

element value in the reset gate is close to 0, the reset gate412

corresponds to the hidden state element of 0. That is, the413

hidden state of the previous step is discarded. If the element414

value is close to 1, the hidden state of the previous step is415

retained. Subsequently, the element multiplication of the result416

is used to link to the input of the current step. The candidate417

hidden state is calculated by the fully connected layer with the418

tanh activation function.419

Equation (5) is used to calculate the hidden state in the420

current step. Since (4) uses the sigmoid activation function,421

the update gate
−→
Zt ranges between 0 and 1.

−→
Zt � H t−1 and422 �

1−−→Zt

	
� 
−→

H t represent the network with the memory and423

the forgotten sequences of the above and current information,424

respectively.425

The backward hidden layer structure is similar to the426

forward hidden layer structure. It extracts the following infor-427

mation of the sequence data using (6) ∼ (8).428

⎧⎨
⎩
←−
R t = σ

�
xt
←−−
Wxr + Ht+1

←−−
Whr +←−br

	
←−
Zt = σ

�
xt
←−−
Wxz + Ht+1

←−−
Whz +←−bz

	 (6)429

←̃−
Ht = tanh

�
xt
←−−
Wxh +

�←−
Rt � Ht+1

	←−−
Whh +←−bn

	
(7) 430

←−
Ht =←−Zt � Ht+1 +

�
1−←−Zt

	
�
←−

Ht (8) 431

The forward state
−→
H t and back hidden state

←−
H t are merged 432

into H t and sent H t to the fully connected layer. The final 433

classification results are obtained using the Softmax classifier. 434

D. Decision Support 435

The classification map is achieved using the abovemen- 436

tioned approach. Some statistical analysis can be extracted 437

from the classification map so as to obtain the pavement 438

aging conditions in the study area. The aging conditions and 439

their distribution on each road pavement will serve as further 440

decision support for the road maintenance department. The 441

heavily aged road pavements are often accompanied by cracks 442

and other damages, which seriously affect driving safety and 443

should be maintained as soon as possible. There is a risk 444

of further deterioration of moderately aged road pavements, 445

which also requires attention. The proportion of pixels with 446

different aging degrees on each road is counted, and they 447

are weighted as 0.05, 0.3, and 0.65 corresponding to slightly, 448

moderately, and heavily aged, so as to calculate the pavement 449

aging index of each road. The larger the index value, the more 450

serious the aging condition of the road pavement. If the index 451

value is greater than 0.5, the road surface is heavily aged and 452

needs maintenance. 453

E. Accuracy Assessment 454

The overall accuracy (OA), average accuracy (AA), class 455

accuracy, Kappa coefficient K , Macro Precision, Macro 456

Recall, and Macro F1 are used to evaluate the classification 457

performance of the proposed network on the test dataset. The 458

OA is the ratio between the number of correctly classified 459

pixels and the total number of pixels in the test set, while the 460

AA is the average of the class accuracies. The K is an index 461

used to determine whether the model prediction results and 462

actual classification results are consistent, as defined in (9). 463

K = O A −
�

k nk1∗nk2

N2

O A +
�

k nk1∗nk2

N2

(9) 464

where N is the sum of the confusion matrix elements, nk1 is 465

the sum of elements in row k, nk2 is the sum of elements in 466

col k. 467

Macro Precision, Macro Recall, and Macro F1 are the 468

averages of the Precision, Recall, and F1 of all the classes, 469

respectively. The larger the values of the metrics, the better 470

the performance. 471

IV. EXPERIMENTS AND RESULTS 472

All the experiments are implemented on a Windows 473

Server with Python3.6, Pytorch1.8.1 [54] and scikit-learn [55] 474

(CPU: Intel Xeon Silver 4116@2.1GHz; RAM: 128GB; GPU: 475

NVIDIA RTX 1080TI). 476
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Fig. 5. Worldview-2 satellite image and roads in the study area.

A. Study Area and Sample Set477

Part of Fangshan district, southwest of Beijing City, China,478

is considered as the study area. This area is relatively spacious,479

with light traffic, no tall buildings and little shadow on roads.480

Thus, it is suitable for monitoring road aging conditions from481

satellite remote sensing data. There are 16 asphalt-paved roads482

located in the study area, covering high-grade roads and urban483

secondary roads (Fig. 5). For the convenience of description,484

the roads accordingly are coded from No.1 to No.16. The field485

investigation shows that these road pavements are in different486

aging conditions.487

Worldview-2 satellite image data covering the study area are488

used to evaluate the proposed framework. The Worldview-2489

sensor has eight bands with wavelengths covering visible and490

near-infrared bands (0.4–1.04μm). The image was acquired491

on 21 September 2013. The Gram-Schmidt algorithm is used492

to pan sharpen the panchromatic and multispectral image. The493

resultant reflectance images have a spatial resolution of 0.5 m.494

Combined with the field investigation results, 17000 pixels495

in total are selected on the five road images for the categories496

of different aging degrees (Road 1, Road 3, Road 12, Road 13,497

and Road 16) by visual interpretation and field investigation.498

The train and validation sets are randomly generated using499

a ratio of 7:3, and 49000 pixels on the remaining roads are500

extracted to generate a test set (Table II).501

B. Hyperparameter Setting502

The three main hyperparameters (the learning rate, the factor503

α in the loss function and the hidden state unit) significantly504

TABLE II

NUMBER OF TRAIN/VALIDATION/TEST SAMPLES

affect the results. The impact of different hyperparameters on 505

the model performance is evaluated. The adaptive moment 506

estimation (Adam) [56] optimizer is used. In extreme cases, 507

a large learning rate may lead to fluctuations in the model 508

accuracy during training, and a small learning rate may result 509

in an inability of model fitting. In this study, three initial 510

learning rates of 0.000001, 0.0001, and 0.001 are assessed, 511

and the optimal initial learning rate is 0.001. 512

The factor α can control how much the model focuses on 513

the similar samples. The larger the value of α is, the more the 514

model will focus on the learning of similar samples, but it may 515

affect the learning effect of ordinary samples. It is deduced that 516

α = 0.1 leads to the best results in the experiments. 517

The hidden unit determines the number of neurons in 518

the implied hidden layer. The larger the number, the more 519

difficult the training, while a small number of hidden units 520

may also reduce the model performance. The hidden unit 521

variable is determined as the exponent of two (i.e. 32, 64, 522
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Fig. 6. Classification of road pavement conditions from the Worldview-2 images using the Bi-GRU network. The zoom-in images are satellite images and
classification results in the A, B and C locations.

TABLE III

CONFUSION MATRIX OF THE CLASSIFICATION ON THE TEST SAMPLE SET

128, 256, 512,1024, and 2048), in order to find the optimal523

hyperparameters. The results show that 512 hidden units lead524

to the best performance in the study area.525

C. Results and Accuracy Validation526

The classification results of the road surface aging condi-527

tions from the Worldview-2 images of the 16 roads in the study528

area are presented in Fig. 6. The different aging conditions in529

the road images and the different categories of image elements530

are accurately classified with OA of 98.16%, AA of 98.49%,531

Kappa coefficient of 0.97, Macro Precision of 96.17%, Macro 532

Recall of 98.67%, and Macro F1 of 97.17% (Table III). 533

After the statistical analysis, the pavement ageing index 534

of each road is calculated to quantitatively assess the aging 535

conditions of the asphalt pavement in the study area (Fig. 7). 536

Consistent with the field investigations, Road 12 has the best 537

road condition with an aging index value of 0.1515. Roads 538

7 and 15 are also in good condition, with aging index values 539

of 0.251 and 0.2965 respectively. On the contrary, Roads 14, 540

9, 13, 16, 11, and 10 are heavily aged, with aging index 541
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TABLE IV

COMPARISON BETWEEN THE CLASSIFICATION ACCURACIES (%) OF DIFFERENT METHODS ON THE TEST SAMPLE SET

values greater than 0.5, and should be maintained as soon as542

possible. The information obtained by the proposed method is543

valuable for management departments to facilitate the efficient544

and timely road maintenance.545

D. Comparative Study546

The proposed Bi-GRU method is compared with sev-547

eral widely used state-of-the-art methods, including SAM,548

MESMA, ResNet18, ResNeXt50 and 1DCNN in order to549

demonstrate its efficiency.550

SAM is a physically-based spectral classification that uses551

an n-D angle to match pixels to reference spectra. This method552

is often used to monitor pavement aging conditions with hyper-553

spectral imagery [26], [27]. MESMA [2] is currently the state-554

of-the-art method for monitoring aging from satellite imagery.555

This method divides Vegetation into Others. ResNet [57] and556

has a high performance in image classification. ResNeXt [58]557

combined the advantages of Inception [59] and ResNet. It has558

been widely used for image classification. In this paper,559

ResNet18 and ResNeXt50 are used to test whether the tra-560

ditional CNN network can be applied to aging monitoring.561

The sample set of ResNet18 and ResNeXt50 is the patches562

generated by the initial sample set, in which each pixel is563

converted into a 3∗3 patch. A one-dimensional convolutional564

neural network (1DCNN) is designed for comparison. Its565

architecture is shown in Fig. 8. The random seed is set to 0566

in the experiments to avoid the effect of randomness on the567

model accuracy.568

The classification accuracies obtained by different methods569

are presented in Table IV. The classification result obtained570

by the SAM method is poor, which proves that it is not571

suitable for multispectral satellite imagery. Although MESMA572

is the state-of-art method, it is far less accurate than the573

proposed method. The ResNet18 and ResNeXt50 have the574

worst performance and are mainly unable to distinguish each575

category. More precisely, they have a serious over-fitting576

phenomenon. This is mainly because satellite images cannot577

provide enough geometric information of pavement aging.578

This confirms that 2DCNN can’t be directly applied to pave-579

ment aging monitoring, as previously mentioned. The 1DCNN580

model achieved accuracy second only to the proposed method581

Bi-GRU+. However, the classification accuracy for heavily582

Fig. 7. Pavement aging index value for each road in the study area.

aged and vegetation was poor. Compared with the proposed 583

method, 1DCNN can’t learn well the contextual information 584

between spectra. 585

The proposed Bi-GRU+ model achieves better performance 586

for learning spectral contextual information from different 587

bands than the CNN methods, allowing it to distinguish classes 588

with similar spectral features. Thus, the Bi-GRU+ achieves the 589

highest OA, AA, Kappa coefficient, Macro Precision, Macro 590

Recall, and Macro F1. Moreover, it is more important that 591

the proposed model can identify severely aging target roads 592

in practical applications. Therefore, although the accuracy of 593

1DCNN is relatively close to Bi-GRU+, our method is still 594

the best one and most suitable for practical applications. 595

E. Ablation Study 596

The Bi-GRU+ learns the contextual features of the spec- 597

tral bands for extracting spectral features. It can distinguish 598

different aging conditions from satellite images. Tackling the 599

problem of “hard samples” and “similar samples” in road 600

condition monitoring, an improved loss function based on the 601

cross-entropy function is proposed. The influence of each mod- 602

ule of the proposed Bi-GRU+ Network on the classification 603

performance on the test set is evaluated. 604

The detailed classification results with different modules 605

are presented in Table V. Noted that GRU denotes the 606
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Fig. 8. The architecture of 1DCNN.

TABLE V

ABLATION EXPERIMENT ON THE SAMPLE SET

normal GRU, Bi-GRU means the bi-directional GRU, and607

“+” represents the improved Network with the proposed loss608

function Lloss .609

It can be inferred from Table V that both bi-directional net-610

works and Lloss improve the accuracy of GRU towards classi-611

fication, and the proposed Bi-GRU+ achieved the best results612

in the most indicators. The high performance of the Bi-GRU+613

on the moderately aging roads and shadow categories fur-614

ther proves the effectiveness of Lloss . Both the GRU+ and615

Bi-GRU+ models improve the classification accuracy with616

the moderately aged, which proves that Lloss can enhance the617

learning effect of the model for similar samples. The AA of618

the Bi-GRU+ model is slightly lower than that of Bi-GRU,619

which might be caused by the decrease of accuracy of the620

slightly aged. This actually demonstrated that the Bi-GRU+621

model could perform better in the learning of similar samples622

of the moderately and heavily aged. In practical application,623

moderately aged and heavily aged are more noteworthy, thus624

we believe that a slight decrease in the accuracy of the slightly625

aged is acceptable.626

The classification results show that the proposed Bi-GRU+ 627

network is efficient, provides high-level automation and has 628

higher accuracy than the existing methods. Thus, the proposed 629

framework is more suitable for large-scale road pavement 630

quality monitoring. 631

V. DISCUSSION 632

A. Applicability of Aerospace Remote Sensing 633

Dense vehicles will interfere to a certain extent with satel- 634

lites and other aerospace remote sensing platforms on traffic 635

busy roads. However, most roads do not always have heavy 636

traffic, and high-resolution satellite imagery is usually acquired 637

between 10:00 am and 2:00 pm, which is usually not as dense 638

as in the morning and evening rush hours. In addition, the 639

UAV remote sensing can be used as an auxiliary, and it is 640

more convenient to choose the time window to obtain pure 641

road pavement images. In future work, we aim at combining 642

the advantages of UAV and satellite remote sensing. 643

On the other hand, according to the field investigation, 644

secondary roads in suburban areas and rural roads are more 645

likely to be ignored by road managers than high-grade roads. 646

There are relatively few vehicles on secondary roads and rural 647

roads, and satellites can sufficiently obtain pure road pavement 648

images. 649

Therefore, the proposed method has applicability in pave- 650

ment aging conditions mapping. 651

B. Practical Contribution 652

Previous studies on the monitoring of road pavement condi- 653

tions from remote sensing images mainly focus on road dam- 654

ages such as cracks, while the pavement aged conditions are 655

currently less assessed. Therefore, we proposed a novel frame- 656

work for the highly automated monitoring of asphalt pavement 657

aging conditions. This framework can use fine-resolution satel- 658

lite remote sensing images as data sources and has the potential 659
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for large-scale monitoring applications. With the populariza-660

tion of high-resolution multi-spectral satellite remote sensing661

images, we believe that the proposed framework can become662

an important part of intelligent transportation.663

C. Limitations664

This study still has some limitations. Firstly, non-pavement665

objects such as shadows of trees on both sides of the road666

may change the spectral characteristics of the road pavement,667

masking the road conditions. A comprehensive analysis of668

multi-seasonal remote sensing images may solve this problem.669

In addition, due to the fact that the proposed method is a pixel-670

based classification method, the “salt and pepper” phenomenon671

occurs. One possible solution consists in using images with the672

higher spatial resolution to allow the use of spatial information.673

Another solution consists in combining CNN and RNN to674

develop spatial-spectral neural network classification models.675

Furthermore, the mixed pixels may also affect the classification676

result. Further studies necessary on combining deep learning677

and mixed pixel decomposition for monitoring aging road678

pavements are crucial.679

VI. CONCLUSION680

This study presented a Bi-GRU+ method for monitoring681

asphalt pavement aging conditions from fine-resolution682

satellite imagery. To the best of our knowledge, this is the first683

designed RNN-based extraction and classification method,684

to evaluate the asphalt pavement health conditions. This685

method uses a nonlinear function for spectral augmentation686

and the Bi-GRU+ with the improved loss function in687

order to generate a classification map of road pavement688

aging conditions. The experiments were performed using a689

Worldview-2 satellite image (16360 ∗7728) of the study area690

covering 16 roads in southwest Beijing, and the processing691

time is 7836 seconds in the experimental environment.692

Since pavement aging is a relatively long-term process693

in months or even years, the mapping accuracy is more694

important than the processing time. Compared with different695

state-of-the-art algorithms, the results show that the proposed696

method achieves better performance than the other methods697

for distinguishing pavement conditions with similar spectral698

characteristics. The Bi-GRU+ model achieves the best699

classification of the Worldview-2 images with OA of 98.16%700

and the Kappa coefficient of 0.97. The resultant pavement701

aging index for each road in the study area was also consistent702

with the field investigation.703

The proposed framework demonstrates the efficiency of the704

RNN for road aging monitoring from satellite multispectral705

imagery. With the continuous advancement of spaceborne706

remote sensing technology, it is expected that it will become707

possible to obtain more inexpensive high-spatial resolution708

multispectral satellite imagery and allow the practical applica-709

tion of the framework.710

In future work, more experiments will be performed, such711

as monitoring road aging conditions and road damages by712

combining UAV-acquired multispectral/hyperspectral images.713

The spectral mixture of image pixels will also be investigated.714
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