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A B S T R A C T

The bi-temporal change detection (CD) is still challenging for high-resolution optical remote sensing data
analysis due to various factors such as complex textures, seasonal variations, climate changes, and new
requirements. We propose an attention-based multiscale transformer network (AMTNet) that utilizes a CNN-
transformer structure to address this issue. Our Siamese network based on the CNN-transformer architecture
uses ConvNets as the backbone to extract multiscale features from the raw input image pair. We then
employ attention and transformer modules to model contextual information in bi-temporal images effectively.
Additionally, we use feature exchange to bridge the domain gap between different temporal image domains
by partially exchanging features between the two Siamese branches of our AMTNet. Experimental results on
four commonly used CD datasets – CLCD, HRSCD, WHU-CD, and LEVIR-CD – demonstrate the effectiveness
and efficiency of our proposed AMTNet approach. The code for this work will be available on GitHub.1
1. Introduction

Bi-temporal change detection (CD) is a crucial task in remote sens-
ing (RS), which involves comparing and identifying changes between
co-registered RS images of the same area at different times. It has
numerous applications, including disaster assessment, urban planning,
agricultural surveys, resource management, and environmental moni-
toring. With the rapid development of Earth observation technology,
vast numbers of high-resolution optical RS images have drawn sig-
nificant attention to CD technology. However, this emergence also
presents new challenges for CD technology due to various factors such
as complex textures, seasonal variations, climate changes, and evolving
requirements. Despite progress made with deep learning techniques on
large-scale high-resolution RS images, bi-temporal CD remains one of
the most challenging tasks for analyzing such data.

In recent decades, researchers have designed methods for optical
RS image CD to address these challenges. Traditional CD methods with
handcrafted features can achieve good results in simple scenes but
typically perform poorly in complex scenes. Deep learning-based algo-
rithms perform better than traditional counterparts because they can
learn discriminant features from vast amounts of high-quality samples.
Among these deep learning-based algorithms are those based on deep
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convolutional neural networks (ConvNets) or transformer networks,
which perform better.

Deep ConvNets have been extensively used in CD to extract discrim-
inative features recently. These deep feature extractors include classical
ConvNets and their extended architectures, such as ResNet (He et al.,
2016), UNet (Ronneberger et al., 2015), and HRNet (Sun et al., 2019).
There are two commonly used feature extraction strategies: single-
branch structures (Gao et al., 2020; Wang et al., 2018) and Siamese
networks (Zhan et al., 2017; Wang et al., 2022). The single-branch
CD networks adopt an early fusion strategy to fuse the input images
before inputting them into the CD network. The Siamese network
employs a late fusion strategy that typically fuses features extracted
from two independent subnetworks. The Siamese structure has been
more commonly used in recent years because it performs better than
single-branch structures.

Deep ConvNets need to model context information in both spatial
and temporal domains to capture changes in RS images effectively.
Various methods have been developed to integrate feature aggregation
or attention mechanisms into ConvNets, further improving the CD
performance. The single-branch structure typically uses concatenation,
difference, or summation operations for image-level feature fusion. On
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the other hand, the dual-branch Siamese structure usually employs
single-scale (Zhan et al., 2017; Chen et al., 2019b, 2020; Mesquita et al.,
2019; Liu et al., 2019; Xiang et al., 2021) or multiscale (Bao et al.,
2020; Zhang and Shi, 2020; Chen et al., 2019a; Lin et al., 2021; Chen
et al., 2022) feature fusion strategies.

Attention mechanisms can enhance feature representation by direct-
ing the network’s focus toward information associated with changed ar-
eas. An attention-based CD network automatically highlights important
information related to changed areas and suppresses features associated
with unchanged areas in positions or channels. Consequently, recent
works (Wang et al., 2022) have incorporated attention mechanisms into
CD tasks. Typically, these attention mechanisms are implemented in
three ways: spatial attention (Zhang et al., 2020; Peng et al., 2020),
channel attention (Liu et al., 2020; Jiang et al., 2020), and self-
attention (Chen and Shi, 2020; Zhou et al., 2022). Although previ-
ous studies have shown promising results using self-attention mecha-
nisms for modeling long-range dependencies, they are computationally
inefficient.

The transformer structure has gained attention in computer vision
(CV) tasks such as image classification, semantic segmentation, and
object detection. It efficiently models global contextual information
through an encoder–decoder architecture compared to pure ConvNets.
This success has motivated the development of a few CD algorithms
based on transformers with impressive results (Chen et al., 2021;
Bandara and Patel, 2022; Wang et al., 2022; Liu et al., 2022). How-
ever, while the transformer structure is widely used in NLP tasks, its
application in CD needs improvement. Specifically, further research is
needed to combine multiscale strategy and attention mechanism with
the transformer structure for better performance.

Inspired by recent advancements in CD, we developed an attention-
based multiscale transformer network (AMTNet) that combines the
strengths of ConvNets, transformers, multiscale modules, and attention
mechanisms. The AMTNet is a Siamese Network that utilizes the CNN-
transformer structure with ResNet (He et al., 2016) as its backbone to
extract multiscale features from input image pairs. We then employ
attention and transformer modules to model contextual information in
bi-temporal images. Additionally, we use feature exchange to bridge
the domain gap between different temporal image domains by partially
exchanging features between the two Siamese branches.

The following summarizes the main contributions of this paper.

1. To emphasize important information in channels or positions
automatically, the proposed framework effectively integrates
the attention mechanisms and the transformer, combining the
advantages of ConvNets, transformers, multiscale, and attention
mechanisms.

2. To bridge the domain gap between different temporal image
domains, we apply feature exchange to our AMTNet and analyze
the impact of different settings of the feature exchange module
on the performance of the proposed framework.

3. We devise a channel attention module to make the multiscale
CD network more focused on channels that significantly impact
the change analysis.

4. We performed comprehensive experiments on four widely used
CD datasets: CLCD (Liu et al., 2022), HRSCD (Daudt et al.,
2019), WHU-CD (Ji et al., 2018), and LEVIR-CD (Chen and Shi,
2020). Our results demonstrate that our CD framework outper-
forms the most advanced CD frameworks currently available,
and effectively improves the representation of changed features.

2. Related work

Recently, many CD works have achieved impressive results based on
feature fusion or transformers. Most of these studies for CD tasks focus
on feature aggregation, attention mechanisms, and transformers. In this
section, we introduce the relevant work from three aspects: feature
600

aggregation, attention mechanism, and transformer.
2.1. Feature aggregation

Modeling the context information in both spatial and temporal
domains is crucial to capture changes in RS images. Many efforts have
been made to model the context information to integrate feature aggre-
gation into ConvNets. The single-branch structure typically performs
feature fusion directly at the image level using operations such as
difference, concatenation, or summation. There are two methods of
feature fusion for the Siamese network structure (Jiang et al., 2022),
including single-scale fusion (Chen et al., 2019b; Zhan et al., 2017;
Chen et al., 2020; Mesquita et al., 2019; Liu et al., 2019; Xiang et al.,
2021) and multiscale fusion (Bao et al., 2020; Xuan et al., 2021; Zhang
and Shi, 2020; Chen et al., 2019a; Wang et al., 2022).

Single-scale fusion usually fuses features from the top level of the
two Siamese branches. Multiscale Siamese networks typically fuse fea-
tures at multiple levels in a low-to-high manner. In RS images, changed
objects are usually irregular and multiscale. Compared with single-scale
fusion, multiscale fusion combining the hierarchical feature maps can
efficiently detect change regions at various scales and achieve good
results. Compared with the shallow features of neural networks, the
deep features in the neural networks contain richer semantic infor-
mation. Because of the semantic difference between deep and shallow
features, directly using logical operations to fuse features at different
levels can easily confuse features. Moreover, most existing multiscale
models cannot model contextual relationships, which are crucial for
identifying changes of interest in RS images.

2.2. Attention mechanism

An attention-based CD network can automatically highlight impor-
tant information related to the changed areas and suppress features
associated with unchanged areas in positions or channels. Therefore,
various CD works have introduced attention mechanisms into CD tasks
recently. These attention mechanisms are typically implemented in
three ways, including spatial attention (Zhang et al., 2020; Peng et al.,
2020), channel attention (Liu et al., 2020; Jiang et al., 2020; Fang et al.,
2021), and self-attention (Chen et al., 2020; Chen and Shi, 2020).

Attention-based methods can effectively model context information
compared with purely convolution-based approaches. DTCDSCN (Liu
et al., 2020) designs a dual attention module to enhance the feature
representation. DTCDSCN combines the advantages of channel and spa-
tial attention well. To reconstruct the change map, DSIFN/IFN (Zhang
et al., 2020) uses image difference features to fuse multiscale deep fea-
tures of the input bi-temporal images with attention modules. SNUNet
(Fang et al., 2021) models contextual information and improves the
representation of intermediate features with ensemble channel atten-
tion. In order to provide adaptive weight for feature fusion, MFP-
Net (Xu et al., 2021) utilizes a channel attention algorithm to generate
a channel-wise weight vector. There are also some efforts (Chen et al.,
2020; Wang et al., 2022) to combine spatial attention and channel
attention to improve feature representation.

However, it is still difficult for most of these methods to model the
long-range context information in space–time. The existing attention-
based CNN methods either employ attention mechanisms to each
temporal image/feature separately to enhance its feature representa-
tion (Liu et al., 2020) or directly utilize a channel or spatial attention
module to reweight the fused features (Jiang et al., 2020). Some recent
works design self-attention-based architectures (Chen et al., 2020; Zhou
et al., 2022; Chen and Shi, 2020) to model the contextual-semantic
relations between arbitrary pairs of pixels in space–time and obtain
promising results. However, these algorithms are computationally inef-
ficient. Their computational complexity increases exponentially as the
number of pixels increases. Changed objects in RS images vary in size
and type. It is often difficult to set the appropriate patch size for the
best performance only using attention mechanisms.
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Fig. 1. The framework of the proposed scheme. The proposed framework efficiently combines attention mechanisms and transformers, leveraging the benefits of ConvNets, multiscale
processing, and attention mechanisms. For more details, please view in color and zoom in.
2.3. Transformer-based network

Transformers were first introduced to solve problems for sequence-
to-sequence learning and have been increasingly widely used in the
field of natural language processing (NLP). Transformer modules have
the strong ability to model long-range context dependencies with ease.
Transformer-based CD methods have shown comparable or even better
performance than CNN-based counterparts in a series of CV tasks in
recent years, including image classification (Vaswani et al., 2017; Wu
et al., 2020), object detection (Ding et al., 2019; Carion et al., 2020),
and semantic segmentation (Strudel et al., 2021; Zheng et al., 2021).

Because of its remarkable performance on NLP and CV tasks, the
transformer structure has received increasing attention in the RS com-
munity to improve performance on various RS data analysis tasks,
such as image time-series classification (He et al., 2019; Yuan and
Lin, 2020), scene classification (Bazi et al., 2021), hyperspectral image
classification (Li et al., 2020), and CD (Liu et al., 2022; Wang et al.,
2022). The transformer structure typically takes tokens or patches as
inputs and makes the tokens or patches interact with each other and
figure out where more attention is needed. The CD network BIT (Chen
et al., 2021) models context relationships by incorporating a feature
differencing-based network with a transformer module. It encodes the
input image into several patches that contain rich contextual infor-
mation. PSTNet (Song et al., 2022) gradually extracts changed parts
in the image through an iterative sampling method by continuously
extracting and optimizing feature information. MSCANet (Liu et al.,
2022) first uses CNN backbones to extract hierarchical features from the
bi-temporal pair and then uses a transformer module to further model
and aggregate semantic information. MTCNet (Wang et al., 2022)
designs a multiscale transformer for obtaining features at different
scales in bi-temporal images. Changer (Fang et al., 2022) is a Siamese
network, extracts multilayered features from the input images and then
uses feature change operations to exchange features between the two
branches of the CD network.

Although the transformer structure has achieved impressive re-
sults in remote sensing CD tasks, its application in CD still needs
improvement. In this work, we combine the advantages of ConvNets,
transformers, multiscale, and attention mechanisms to enhance the
representation of the change features. Extensive experiments on four
CD datasets, CLCD (Liu et al., 2022), HRSCD (Daudt et al., 2019), WHU-
CD (Ji et al., 2018), and LEVIR-CD (Chen and Shi, 2020), demonstrate
the effectiveness of our method.
601
3. The proposed method

3.1. Overview

As shown in Fig. 1, our AMTNet is a Siamese structure combining
CNN, multiscale, transformer, and the attention mechanism. It uses
ResNet (He et al., 2016) as the backbone to extract multiscale features
from the raw input image pair. Then, it uses the attention and trans-
former modules to further model contextual information in bi-temporal
images. In addition, we use feature exchange to bridge the domain
gap between different temporal image domains by partially exchanging
bi-temporal features between the two Siamese branches of the network.

Specifically, let 𝐼1 and 𝐼2 denote images of the same area taken at
two different times, respectively. Let 𝑋𝑖(𝑖 ∈ {1, 2}) ∈ R3×𝐻×𝑊 represent
the raw feature map of image 𝐼𝑖(𝑖 ∈ {1, 2}). The CNN backbones of two
subnetworks of the CD network share the same weights. The following
summarizes the process of the AMTNet:

1. First, for image 𝑋𝑖(∀𝑖 ∈ {1, 2}) ∈ R3×𝐻×𝑊 , three feature maps
𝐹 1(1)
𝑖 , 𝐹 2(1)

𝑖 and 𝐹 3(1)
𝑖 with different scales are extracted from the

ResNet backbone.
2. Next, the above feature map 𝐹 𝑗(1)

𝑖 (∀𝑗 ∈ {1, 2, 3}) is partially
exchanged with the feature of the same scale from the other
branch of the Siamese network, and then fed into a spatial
attention module (SAM), and the feature map 𝐹 𝑗(2)

𝑖 is obtained.
3. Then, the feature map 𝐹 𝑗(2)

𝑖 is merged with the other two feature
maps derived from the input image 𝑋𝑖 by sampling and addition,
and the fused feature map 𝐹 𝑗(3)

𝑖 is obtained.
4. Afterwards, 𝐹 𝑗(3)

𝑖 is input into the transformer and the channel
attention module (CAM) successively, and the feature map 𝐹 𝑗(4)

𝑖
is obtained.

5. Finally, feature maps of the same scale from the two subnet-
works are concatenated pairwise along the channel dimension
and input into the corresponding CNN-based classifiers to get
three predicted change maps 𝑃1, 𝑃2, and 𝑃3. Only 𝑃1 will be used
as the predicted change map during the testing process.

Different modules of this algorithm can complement each other.
Specifically, the attention mechanisms can enhance the feature rep-
resentation by making the network focus on information related to
the changed areas. The transformer module can handle long-range
dependencies with ease. The multiscale structure can derive features
of various scales, which helps detect changed objects of diverse scales.

Because of the semantic difference between deep and shallow features,
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Fig. 2. Illustration of feature exchange. The left and right subgraphs represent spatial exchange and channel exchange, respectively. In both subgraphs, two features on the left
are partially exchanged to obtain the corresponding two features on the right.
directly using logical operations to fuse features at different levels can
easily cause feature confusion. The proposed SAM and the CAM can ef-
fectively emphasize the informative regions and channels, respectively.
The following introduces the critical components of the AMTNet in
detail.

3.2. Multiscale CNN backbone

As shown in Fig. 1, the AMTNet employs ResNet (He et al., 2016)
with the initial fully connected layer removed as the backbone to
extract multiscale features from the input images 𝐼1 and 𝐼2. The ResNet
backbone comprises five main blocks, including a 7 × 7 convolutional
layer and four residual blocks. For simplicity, these five building blocks
will be referred to as Conv1, Res2, Res3, Res4, and Res5, respectively.
Res3 and Res4 perform downsampling with a stride of 2. For the input
bi-temporal image 𝑋𝑖(∀𝑖 ∈ {1, 2}) ∈ R𝐻×𝑊 ×𝐶 , three feature maps 𝐹 1(1)

𝑖 ,
𝐹 2(1)
𝑖 and 𝐹 3(1)

𝑖 with different scales are extracted from Res2, Res3 and
Res5, respectively.

3.3. Feature exchange

Differences in solar illumination, observational weather, sensor, or
season often create domain gaps between different temporal image
domains. To address this issue, we utilize parameter-free feature ex-
change (Fang et al., 2022) to partially exchange bi-temporal features
with the same scale between the two Siamese branches in either the
channel or spatial dimensions. This mixing of features results in a more
similar distribution of features between the two branches and helps
bridge the domain gap.

As illustrated in Fig. 2, we exchange the elements of the corre-
sponding positions of two feature maps, which are the same size and
come from different branches of the Siamese network (such as 𝐹 1(1)

1
and 𝐹 1(1)

2 ). Feature exchange between the feature maps 𝐹 𝑗(1)
1 and 𝐹 𝑗(1)

2
(∀𝑗 ∈ {1, 2, 3}) in the channel or spatial dimensions can be formulated
as:

𝐹 𝑗(1)
𝑖 (𝑛, 𝑐, ℎ,𝑤) =

{

𝐹 𝑗(1)
𝑖 (𝑛, 𝑐, ℎ,𝑤), 𝑀(𝑛, 𝑐, ℎ,𝑤) = 0,

𝐹 𝑗(1)
22−𝑖

(𝑛, 𝑐, ℎ,𝑤), 𝑀(𝑛, 𝑐, ℎ,𝑤) = 1,
(1)

where 𝑛, 𝑐, ℎ, and 𝑤 correspond to the batch, channel, height, and
width dimensions, respectively. 𝑀 is an exchange mask composed of
only 1 and 0, indicating whether to perform the feature exchange
operation at the corresponding position. We implement feature ex-
change between features 𝐹 1(1)

1 and 𝐹 1(1)
2 , 𝐹 2(1)

1 and 𝐹 2(1)
2 , 𝐹 3(1)

1 and 𝐹 3(1)
2 ,

respectively. Intuitively, feature maps with high spatial resolution are
more suitable for spatial exchange (SE) in the spatial dimension. For the
large-scale feature 𝐹 3(1)

𝑖 , we adopt the SE operation. For the small-scale
features 𝐹 1(1)

𝑖 and 𝐹 2(1)
𝑖 , we adopt the channel exchange (CE) operation
602

in the channel dimension.
3.4. Spatial attention module

With the exchanged feature being mixed, the obtained feature
map 𝐹 𝑗(1)

𝑖 passes through the subsequent spatial attention module
(SAM) (Woo et al., 2018). The SAM automatically emphasizes the
important information related to the feature map 𝐹 𝑗(1)

𝑖 in positions.
As presented in Fig. 3, the SAM implements an element-wise mul-
tiplication operation on each channel of 𝐹 𝑗(1)

𝑖 with the 2D spatial
attention 𝑀𝑠(𝐹

𝑗(1)
𝑖 ) ∈ R𝐻×𝑊 . Meaningful features associated with the

changes in positions are assigned with greater weights. In this way, the
SAM effectively highlights the change regions and suppresses irrelevant
regions’ features in bi-temporal images.

To obtain the spatial attention 𝑀𝑠(𝐹
𝑗(1)
𝑖 ), we implement average-

pooling and max-pooling operations along the channel axis and then
concatenate the results of pooling operations to generate 𝑀𝑠(𝐹

𝑗(1)
𝑖 ).

Let 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 and 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 denote max-pooling and average-pooling,
respectively. The spatial attention process with respect to 𝐹 𝑗(1)

𝑖 can be
formulated as:

𝑀𝑠(𝐹
𝑗(1)
𝑖 ) = 𝜎(𝑓 ([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹 𝑗(1)

𝑖 );𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹 𝑗(1)
𝑖 )])), (2)

where 𝜎 represents the Sigmoid function, 𝑓 represents the convolution
kernel operation.

Then, the feature map 𝐹 𝑗(2)
𝑖 is obtained through the SAM as follows:

𝐹 𝑗(2)
𝑖 = 𝐹 𝑗(1)

𝑖 ⊗𝑀𝑠(𝐹
𝑗(1)
𝑖 ), (3)

where ⊗ indicates element-wise multiplication. For each channel of
the feature map, we use the same weight matrix (Ms) to highlight the
information, by broadcasting 𝑀𝑠 along the channel dimension during
the multiplication.

3.5. Channel attention module

As shown in Fig. 1, 𝐹 𝑗(2)
𝑖 is fused with the other two features of

image 𝑋𝑖 at different scales successively by sampling and addition
to generate the fused feature 𝐹 𝑗(3)

𝑖 . After that, the fused feature goes
through the transformer module and the CAM to generate the feature
map 𝐹 𝑗(4)

𝑖 . Transformers utilize encoder and decoder blocks. Various
transformer modules (Wang et al., 2022; Liu et al., 2022) are plug-
and-play in the proposed CD network. This paper uses the SAM and
the transformer to model spatial context information and global con-
text information, respectively. The CAM models the channel context
information by highlighting the channels related to the changes. We
describe the CAM in detail below.

As illustrated in Fig. 4, the multiple features share the same channel
attention 𝑀𝑐 for image 𝑋𝑖. To compute the channel attention, first,
we fuse feature maps of the same scale of the two Siamese branches
by element-wise summation and then apply max-pooling along the
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Fig. 3. Illustration of the spatial attention process. The role of the SAM is to automatically emphasize the important information related to the feature map 𝐹 𝑗(1)
𝑖 in positions.
Fig. 4. Description of the channel attention module (CAM). The CAM models the contextual information by highlighting the channels related to the changes.
spatial dimension of the fused results. Next, we employ element-wise
summation again to merge the multiscale results of the max-pooling
operation and pass the fused result through a multi-layer perception
(MLP) to obtain the channel attention 𝑀𝑐 . The MLP consists of a
full convolution layer followed by a ReLU activation function and a
full convolution layer followed by a Sigmoid activation function. The
following formulates the process in detail.

Let 𝑇 (𝐹 𝑗(3)
𝑖 ) denote the feature map obtained by passing 𝐹 𝑗(3)

𝑖
through the transformer module. The result of max-pooling of the fused
603
feature of 𝑇 (𝐹 𝑗(3)
1 ) and 𝑇 (𝐹 𝑗(3)

2 ) can be represented as:

𝑀𝑗 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑇 (𝐹 𝑗(3)
1 )⊕ 𝑇 (𝐹 𝑗(3)

2 )), (4)

where ⊕ denotes element-wise summation. Let 𝑟 denote the reduction
ratio of the channels. The channel attention map is:

𝑀𝑐 = 𝑚𝑙𝑝(𝑀1 +𝑀2 +𝑀3)

= 𝜎(𝐖2(𝑅𝑒𝐿𝑈 (𝐖1(𝑀1 +𝑀2 +𝑀3)))),
(5)

𝐶∕𝑟×𝐶 𝐶×𝐶∕𝑟
where 𝐖1 ∈ R and 𝐖2 ∈ R .
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Finally, the feature map 𝐹 𝑗(4)
𝑖 is obtained through the CAM as

follows:

𝐹 𝑗(4)
𝑖 = 𝑇 (𝐹 𝑗(3)

𝑖 )⊗𝑀𝑐 . (6)

3.6. Overall loss function

As shown in Fig. 1, we concatenate the feature maps of the same
scale of the two Siamese branches along the channel dimension. Three
fused feature maps 𝐹 1, 𝐹 2, and 𝐹 3 obtained by pairwise concatenation.
Then, these three fused feature maps are upsampled to the original im-
age size and fed into their respective CNN-based classifiers, separately.
The three classifiers have the same structure. Finally, three predicted
maps 𝑃1, 𝑃2, and 𝑃3 are obtained from the CNN-based classifiers. Let 𝑌
denote the ground truth, then the overall loss function for the CD task
based on the cross-entropy (CE) loss is:

𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑒(𝑃1, 𝑌 ) + 𝑐𝑒(𝑃2, 𝑌 ) + 𝑐𝑒(𝑃3, 𝑌 ), (7)

where 𝑐𝑒(𝑃1, 𝑌 ) is the CE loss between the predicted change map 𝑃1
and the ground truth 𝑌 , likewise 𝑐𝑒(𝑃2, 𝑌 ) and 𝑐𝑒(𝑃3, 𝑌 ).

4. Experiments

4.1. Datasets and metrics

This paper conducts experiments on four popular CD datasets, in-
cluding CLCD (Liu et al., 2022), HRSCD (Daudt et al., 2019), WHU-
CD (Ji et al., 2018), and LEVIR-CD (Chen and Shi, 2020).

CLCD: The CLCD dataset is a public farmland dataset comprising
600 pairs of cropland change samples from Gaofen with size 512 × 512
pixels. These bi-temporal image pairs were taken in 2017 and 2019 in
China’s Guangdong Province. The spatial resolution of these images is
in the range of 0.5 m to 2 m. There are two images and a binary label
of cropland change for each sample group. All samples were divided
into the training set, the validation set, and the testing set in a ratio
of 6:2:2. Therefore, the sizes of the training set, the validation set, and
the testing set are 360, 120, and 120, respectively.

HRSCD: The HRSCD dataset consists of 291 HR aerial image pairs of
size 10,000 × 10,000 pixels. There is a binary ground truth change map
for each bi-temporal pair. These samples were captured from rural and
urban areas in Rennes and Caen, French. The original HR samples were
cropped without overlapping, resulting in 4398 bi-temporal pairs with
the size 512 × 512 pixels for cropland CD. Of the cropped bi-temporal
pairs, 2639 are utilized for training, and 880 are utilized for testing.

WHU-CD: It is a public dataset for building CD, containing a pair
of HR bi-temporal aerial images with a resolution of 0.2 m and a size
of 32,507 × 15,354 pixels. It covers areas that have had earthquakes
and have been rebuilt over the years, mainly building renovations.
Following the typical setting on this dataset (Bandara and Patel, 2022),
we crop the images into non-overlapping patches with a resolution of
256 × 256 pixels. The sizes of the training set, the validation set, and
the test set are 5947, 744, and 744, respectively.

LEVIR-CD: The LEVIR-CD dataset is a public building CD dataset
captured from the Google Earth. It comprises 637 HR bi-temporal
pairs with a size of 1024 × 1024 pixels. These image pairs have
a spatial resolution of 0.5 m, and span 5 to 14 years. The dataset
includes complex changes in villa dwellings, small garages, high-rise
apartments, and large warehouses. All bi-temporal image pairs are
annotated utilizing binary labels. The images are cropped into non-
overlapping patches with a resolution of 256 × 256 pixels. These patch
pairs are randomly split into training/validation/testing sets with sizes
of 7120/1024/2048.

To analyze the performance of our AMTNet and the comparison
algorithms, we utilize the four most commonly used metrics for CD
tasks, including precision, recall, F1-score, and Intersection over Union
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(IoU).
4.2. Baselines

In this paper, we compare our method with a series of most
advanced bi-temporal CD networks, including pure CNN-based net-
works (Daudt et al., 2018; Xu et al., 2021; Fang et al., 2022), attention-
based networks (Liu et al., 2020; Zhang et al., 2020; Fang et al., 2021),
and transformer-based networks (Chen et al., 2021; Wang et al., 2022;
Liu et al., 2022; Bandara and Patel, 2022).

1. FC-EF (Daudt et al., 2018) is a pure CNN network based on U-
Net. It performs fusion at the image level. The CD network takes
as input the concatenation of the bi-temporal image pair.

2. FC-Siam-conc (Daudt et al., 2018) is a variation on FC-EF. It is a
Siamese Network sharing weights to extract multilevel features
from bi-temporal images. Then, the multilayered features are
fused using two fully connected layers.

3. FC-Sima-diff (Daudt et al., 2018) is also a variation on FC-EF. It
performs fusion at the feature level by using a Siamese network
to derive multilevel features for CD.

4. DTCDSCN (Liu et al., 2020) consists of two semantic segmenta-
tion sub-networks and a CD sub-network. It is a Siamese network
based on a dual attention module using channel and spatial
attention to improve the feature representation.

5. DSIFN/IFN (Zhang et al., 2020) merges image difference fea-
tures with fused multiscale features of the input images through
attention modules to reconstruct the change map.

6. SNUNet (Fang et al., 2021) models contextual information and
improves the representation of intermediate features with en-
semble channel attention. It is a densely connected Siamese
network.

7. MFPNet (Xu et al., 2021) is an attention-based Siamese network
that uses a multidirectional fusion pathway and an adaptive
weighted fusion strategy to fuse features.

8. BiT (Chen et al., 2021) models context relationships by incorpo-
rating a feature differencing-based network with a transformer
module. It encodes the input image into several patches that
contain rich contextual information.

9. ChangeFormer (Bandara and Patel, 2022) uses a hierarchically
structured transformer and an MLP as encoder and decoder.
It consists of a hierarchical transformer encoder, four feature
difference modules, and a light MLP decoder.

10. MTCNet (Wang et al., 2022) is a multiscale CNN transformer-
based network that incorporates the attention mechanism. The
convolutional block attention module consists of multiple spatial
and channel modules.

11. MSCANet (Liu et al., 2022) is a multiscale CNN-transformer
network in which a CNN is used to extract hierarchical fea-
tures. Then, it uses a multiscale context aggregation based on
the transformer structure to encode and decode the context
information.

On each dataset, for the comparison algorithms that provided re-
sults, we cite results directly from the relevant papers; for the compar-
ison algorithms that did not offer results, we use official or commonly
used unofficial codes (if available) to reproduce the related algorithms
as much as possible. To make the analysis more comprehensive, we
also evaluate our method with different ResNet backbones, including
ResNet-18 and ResNet-50.

4.3. Implementation details

We implement the proposed AMTNet and all the baselines in Py-
Torch, utilizing an NVIDIA GeForce RTX 3090 GPU. The AMTNet
employs ResNets pre-trained on ImageNet (Krizhevsky et al., 2017) as
the CNN backbone. The transformer module can be any commonly used

transformer structure. Without losing generality, we use a transformer
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Table 1
Comparison results on the CLCD dataset (%).

Method CLCD

P R F1 IoU

FC-EF* (Daudt et al., 2018) 71.7 47.6 57.22 40.07
FC-Siam-conc* (Daudt et al., 2018) 73.27 52.91 61.45 44.35
FC-Sima-diff* (Daudt et al., 2018) 64.26 52.33 57.69 40.54
DTCDSCN (Liu et al., 2020)* 54.49 66.23 59.79 42.64
DSIFN/IFN (Zhang et al., 2020) 79.07 63.79 70.61 54.58
SNUNet*(Fang et al., 2021) 70.82 62.37 66.32 49.62
MFPNet (Xu et al., 2021) 76.42 60.74 70.22 54.11
BiT (Chen et al., 2021) 61.42 62.75 62.08 45.01
ChangeFormer (Bandara and Patel, 2022) 69.11 51.75 59.18 42.03
MTCNet (Wang et al., 2022) – – – –
MSCANet (Liu et al., 2022) 75.36 67.64 71.29 55.39
AMTNet-18 (ours) 75.93 71.92 73.87 58.57
AMTNet-50 (ours) 78.64 75.06 76.81 62.35

The symbol ‘‘*’’ indicates unofficial re-implemented results. The symbol ‘‘–’’ indicates
that the relevant algorithm does not report the result and has no official or commonly
used unofficial code. Color convention: best, 2nd-best, and 3rd-best.

Table 2
Comparison results on the HRSCD dataset (%).

Method HRSCD

P R F1 IoU

FC-EF*(Daudt et al., 2018) 72.75 50.3 59.48 42.33
FC-Siam-conc*(Daudt et al., 2018) 72.23 47.53 57.34 40.19
FC-Sima-diff*(Daudt et al., 2018) 74.19 46.19 55.59 38.49
DTCDSCN*(Liu et al., 2020) 75.79 48.83 59.39 42.24
DSIFN/IFN (Zhang et al., 2020) 77.0 54.27 63.66 46.7
SNUNet*(Fang et al., 2021) 70.53 53.63 60.93 43.81
MFPNet (Xu et al., 2021) 76.42 54.98 63.95 47.01
BiT (Chen et al., 2021) 71.3 52.23 60.30 43.16
ChangeFormer (Bandara and Patel, 2022) 73.39 52.39 61.16 44.03
MTCNet (Wang et al., 2022) – – – –
MSCANet (Liu et al., 2022) 70.17 59.97 64.67 47.79
AMTNet-18 (ours) 70.31 62.07 65.93 49.18
AMTNet-50 (ours) 69.31 65.01 67.09 50.48

The symbol ‘‘*’’ indicates unofficial re-implemented results. The symbol ‘‘–’’ indicates
that the relevant algorithm does not report the result and has no official or commonly
used unofficial code. Color convention: best, 2nd-best, and 3rd-best.

module similar to MSCANet in the experimental comparison. The main
difference is that our method does not use context aggregation between
different transformer branches. For the convolution kernel in the SAM,
we use a 7 × 7 convolution kernel performed with 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 3.
We train the framework with the input size of 512 × 512 pixels
or 256 × 256 pixels, using a batch size of 8 and an initial learn-
ing rate of 1e-4. We optimize the model’s parameters utilizing the
AdamW optimizer (Loshchilov and Hutter, 2018) and set the weight
decay to 0.01. We perform general data augmentation on the input bi-
temporal images. The data augmentation operations include random
rotation, vertical flip, and horizontal flip. We set the reduction ratio 𝑟
of the channel attention module to 1. We train the AMTNet for 100
epochs. Using ResNet-50 as the backbone, the optimization process
takes around 1 h, 7 h, 3.5 h, and 4.5 h on CLCD, HRSCD, WHU-CD, and
LEVIR-CD, respectively. During the testing phase, no data augmentation
operation is applied. We only use 𝑃1 as the predicted change map
during testing.

4.4. Comparison results and discussion

4.4.1. Performance on CLCD
As shown in Table 1, our method AMTNet-50 significantly performs

better than all the baselines on the CLCD dataset in terms of recall, F1,
and IoU. Specifically, AMTNet-50 attains the best recall, F1, and IoU
of 75.06%, 76.81%, and 62.35%, respectively. It is challenging to have
both precision and recall high simultaneously. However, our AMTNet-
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50 obtains a very high precision of 78.64%. Our method AMTNet-18
Table 3
Comparison results on the WHU-CD dataset (%).

Method WHU-CD

P R F1 IoU

FC-EF*(Daudt et al., 2018) 80.87 75.43 78.05 64.01
FC-Siam-conc*(Daudt et al., 2018) 68.62 87.30 76.84 62.39
FC-Sima-diff*(Daudt et al., 2018) 70.45 77.62 73.86 58.56
DTCDSCN*(Liu et al., 2020) 82.72 88.44 85.49 74.65
DSIFN/IFN (Zhang et al., 2020) 91.47 81.57 86.36 75.99
SNUNet*(Fang et al., 2021) 83.25 91.35 87.11 77.17
MFPNet (Xu et al., 2021) 88.44 89.02 88.73 79.74
BiT (Chen et al., 2021) 83.05 88.80 85.83 75.18
ChangeFormer (Bandara and Patel, 2022) 92.89 85.60 88.82 79.89
MTCNet (Wang et al., 2022) – 91.90 82.65 70.43
MSCANet (Liu et al., 2022) 91.10 89.86 90.47 82.60
AMTNet-18 (ours) 91.99 89.96 90.96 83.42
AMTNet-50 (ours) 92.86 91.99 92.27 85.64

The symbol ‘‘*’’ indicates unofficial re-implemented results. The symbol ‘‘–’’ indicates
that the relevant algorithm does not report the result and has no official or commonly
used unofficial code. Color convention: best, 2nd-best, and 3rd-best.

Table 4
Comparison results on the LEVIR-CD dataset (%).

Method LEVIR-CD

P R F1 IoU

FC-EF*(Daudt et al., 2018) 86.91 80.17 83.40 71.53
FC-Siam-conc*(Daudt et al., 2018) 91.99 76.77 83.69 71.96
FC-Sima-diff*(Daudt et al., 2018) 89.53 83.31 86.31 75.92
DTCDSCN*(Liu et al., 2020) 88.53 86.83 87.67 78.05
DSIFN/IFN (Zhang et al., 2020) 94.02 82.93 88.13 78.77
SNUNet*(Fang et al., 2021) 89.18 87.17 88.16 78.83
MFPNet (Xu et al., 2021) 93.16 89.08 91.08 83.62
BiT (Chen et al., 2021) 89.24 89.37 89.31 80.68
ChangeFormer (Bandara and Patel, 2022) 92.05 88.80 90.40 82.48
MTCNet (Wang et al., 2022) – 89.62 90.24 82.22
MSCANet (Liu et al., 2022) 91.30 88.56 89.91 81.66
AMTNet-18 (ours) 90.62 89.00 89.80 81.49
AMTNet-50 (ours) 91.82 89.71 90.76 83.08

The symbol ‘‘*’’ indicates unofficial re-implemented results. The symbol ‘‘–’’ indicates
that the relevant algorithm does not report the result and has no official or commonly
used unofficial code. Color convention: best, 2nd-best, and 3rd-best.

also performs better than all the comparison algorithms according to
recall, F1, and IoU. It attains the second-best recall, F1, and IoU of
71.92%, 73.87%, and 58.57%, respectively. Although its recall rate
drops to 75.93%, it has the third highest recall rate among these
algorithms.

4.4.2. Performance on HRSCD
Table 2 presents the quantitative evaluation results on the HRSCD

dataset. As presented in Table 2, similar to the performance on the
CLCD dataset, AMTNet-18 and AMTNet-50 show obvious superiority
over all the comparison algorithms according to recall, F1, and IoU.
Specifically, AMTNet-50 attains the best recall, F1, and IoU of 65.01%,
67.09%, and 50.48%, respectively. AMTNet-18 attains the second-best
recall, F1, and IoU of 62.07%, 65.93%, and 49.18%, respectively.
AMTNet-50 and AMTNet-18 achieve a precision of 69.31% and 70.31%,
respectively.

4.4.3. Performance on WHU-CD
Table 3 presents the comparative results on the WHU-CD dataset.

The attention-based method MFPNet and the transformer-based meth-
ods can achieve good results on this dataset. Our AMTNet-50 ob-
tains the best recall, F1, and IoU of 91.99%, 92.27%, and 85.64%,
respectively. It also gets the second-best precision of 92.86%. AMTNet-
18 achieves the second-best F1 and IoU of 90.96% and 83.42%, re-
spectively. It achieves the third-best precision and recall of 91.99%
and 89.96%, respectively. The multiscale transformer-based method
MSCANet obtains very high precision, recall, F1, and IoU of 91.10%,
89.86%, 90.47%, and 82.60%, respectively.
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Fig. 5. Qualitative results for the CLCD, HRSCD, WHU-CD, and LEVIR-CD datasets are presented in the following images. True positives (TP) are represented by white pixels,
while true negatives (TN) are black. False positives (FP) are green and false negatives (FN) are red. A better result is indicated by fewer red and green pixels. The images from
left to right show: (a) Image 1, (b) Image 2, (c) ground truth, followed by the results of various models, including FC-EF, FC-Siam-conc, FC-Sima-diff, DTCDSCN, DSIFN, SNUNet,
BIT, ChangeFormer, MFPNet, MSCANet, ResNet18-AMT, and ResNet50-AMT. For more details, please view in color and zoom in.
4.4.4. Performance on LEVIR-CD
Table 4 presents the comparative experimental results on the LEVIR-

CD dataset. MFPNet and the transformer-based methods can achieve
good results on this dataset. MFPNet performed very well, attain-
ing precision, recall, F1, and IoU of 93.16%, 89.08%, 91.08%, and
83.62%, respectively. Its high performance is attributed to its com-
plex multi-scale feature fusion structure and attention mechanism. Our
AMTNet-ResNet obtained very high precision, recall, F1, and IoU of
91.82%, 89.71%, 90.76%, and 83.08%, respectively. Using ResNet as
the CNN backbone, its precision, recall, F1, and IoU dropped slightly
to 90.62%, 89.0%, 89.8%, and 81.49%, respectively. The transformer-
based Siamese network ChangeFormer also performed well, achieving
precision, recall, F1, and IoU of 92.05%, 88.8%, 90.40%, and 82.48%,
respectively. Like MFPNet, ChangeFormer is also a heavy multiscale
Siamese network.
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4.4.5. Visualization comparison
To analyze and compare the effects of various CD algorithms, we

visually compared different methods on four datasets: CLCD, HRSCD,
WHU-CD, and LEVIR-CD. Fig. 5 shows that our AMTNet outperforms
the comparison algorithms. Specifically, AMTNet-18 and AMTNet-50
produce significantly fewer red elements than most of the comparative
algorithms on CLCD and HRSCD. Additionally, our algorithm can detect
unlabeled changes in ground truth as demonstrated by the last bi-
temporal image pairs of CLCD and HRSCD in Fig. 5. On building CD
datasets WHU-CD and LEVIR-CD, the performance of AMTNet-18 and
AMTNet-50 is comparable to or better than that of the best comparison
algorithms. Most comparison algorithms struggle to accurately detect
changes in irregular buildings with varying sizes; however, as shown
in Fig. 5, both our AMTNet-18 and AMTNet-50 can still clearly identify
building boundaries.
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Table 5
Efficiency comparison analysis with different input sizes.

Method 512 × 512 256 × 256

FLOPs (G) Params (M) FLOPs (G) Params (M)

FC-EF (Daudt et al., 2018) 14.29 1.35 3.58 1.35
FC-Siam-conc (Daudt et al., 2018) 21.29 1.55 5.33 1.55
FC-Sima-diff (Daudt et al., 2018) 18.91 1.35 4.73 1.35
DTCDSCN (Liu et al., 2020) 52.83 31.26 13.22 31.26
DSIFN/IFN (Zhang et al., 2020) 329.06 50.44 82.26 50.44
SNUNet (Fang et al., 2021) 219.33 12.03 54.83 12.03
MFPNet (Xu et al., 2021) 514.93 85.97 128.85 85.97
BiT (Chen et al., 2021) 42.37 3.49 8.75 3.49
ChangeFormer (Bandara and Patel, 2022) 230.25 32.03 202.79 41.03
MTCNet (Wang et al., 2022) – – – 5.80
MSCANet (Liu et al., 2022) 59.08 16.42 14.80 16.42
AMTNet-18 (ours) 58.85 16.44 14.71 16.44
AMTNet-50 (ours) 86.23 24.67 21.56 24.67

The symbol ‘‘–’’ indicates that the relevant algorithm does not report the related information, and there
is no official or commonly used unofficial code to re-implement the algorithm.
Table 6
Ablation results on the CD datasets (%). FE denotes feature exchange. The symbol ‘‘×’’ indicates that the corresponding module is removed. We use bold fonts to highlight the
est results.
Model Transformer Multiscale FE SAM CAM CLCD HRSCD WHU LEVIR

F1 IOU F1 IoU F1 IOU F1 IoU

AMTNet × ✓ ✓ ✓ ✓ 76.04 61.35 66.06 49.32 91.27 83.93 90.46 82.57
AMTNet ✓ × ✓ ✓ ✓ 45.27 29.26 49.20 32.62 82.45 70.15 86.90 76.84
AMTNet ✓ ✓ × ✓ ✓ 76.29 61.66 67.00 50.37 91.74 84.73 90.66 82.91
AMTNet ✓ ✓ ✓ × ✓ 75.68 60.87 66.55 49.87 91.94 85.08 90.57 82.77
AMTNet ✓ ✓ ✓ ✓ × 76.50 61.94 66.44 49.74 91.68 84.63 90.47 82.60
AMTNet ✓ ✓ ✓ ✓ ✓ 76.81 62.35 67.09 50.48 92.27 85.64 90.76 83.08
4.4.6. Model efficiency
To compare model efficiency, we further analyze all comparison

algorithms regarding the number of floating point operations (FLOPs)
and parameters (Params). We use FLOPs and Params to measure the
model’s computational and space complexities, respectively. Table 5
presents the two metrics given the image input sizes 512 × 512 pixels
and 256 × 256 pixels. As seen from Table 5, FC-EF, FC-Siam-conc, and
FC-Sima-diff have the lowest FLOPs and Params. These three pure CNN-
based models have very small computational and spatial complexities
due to their simple structures. MFPNet, which performs very well on the
HSRCD and LEVIR-CD datasets, has the highest numbers of FLOPs and
Params because of the complicated multiscale strategy. ChangeFormer
has the highest numbers of FLOPs and Params among the transfer-based
networks due to the hierarchical transformer encoder. With the input
size of 512 × 512 pixels, our AMTNet-18 has 58.85G FLOPs and 16.44M
Params. AMTNet-50 has 86.23G FLOPs and 24.67M Params. With the
input size of 256 × 256 pixels, our AMTNet-18 has 14.71G FLOPs and
16.44M Params. AMTNet-50 has 21.56G FLOPs and 24.67M Params.
Table 5 further indicates that the proposed CD scheme can obtain state-
of-the-art performance and have very low FLOPs and Params at the
same time.

4.4.7. Discussion
Based on the experimental results mentioned above, we have made

three observations: (1) Transformer-based CD methods outperform
pure CNN-based and attention-based counterparts across all four CD
datasets. (2) Our transformer-based method is more effective than BiT,
ChangeFormer, MTCNet, and MSCANet as it achieves better F1 and IoU
scores. (3) Our algorithm delivers good performance while maintaining
high efficiency.

4.5. Ablation experiments

We performed ablation studies to confirm the effectiveness of each
key component in the proposed method using ResNet-50 as the CNN
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backbone. To assess the significance of each component, we removed
the related module from the CD network. Table 6 shows the experi-
mental results on the four datasets. In addition, we also discussed the
impact of pre-training of the ResNet-50 backbone on the ImageNet.

4.5.1. Transformer
To assess the effectiveness of the transformer module, we conducted

an ablation study by removing it from our network. The results in
Table 6 indicate a slight decrease in F1 scores on CLCD, HRSCD,
WHU-CD, and LEVIR-CD datasets to 76.04%, 66.06%, 91.27%, and
90.46% respectively with a drop of only 0.77%, 1.03%, 1.00%, and
0.30%. Similarly, there is a reduction in IoU on all four datasets after
removing the transformer module. Compared to attention mechanisms,
transformers are better equipped to handle long-range dependencies.
The comparison results highlight the importance of this module in our
network architecture.

4.5.2. Multiscale
Remote sensing images often contain objects of varying sizes that

have undergone changes. The multiscale structure can extract features
of different scales, which is advantageous for detecting these changed
objects. To demonstrate the effectiveness of this mechanism, we re-
moved the branches corresponding to the CNN building blocks res2
and res3 from one branch in each of the two subnetworks in the CD
network. As a result, its F1 score dropped significantly to 45.27%,
49.20%, 82.45%, and 86.90%, respectively, without multiscale mecha-
nism compared to with it, where it is only reduced by 31.54%, 17.89%,
9.82%, and 3.86%. Similarly, its IoU also decreases by a significant
margin when the multiscale mechanism is not used (29.26%,32 62%,
70.15%, and 76.84%) as opposed to when it is used (62.35%, 50.48%,
85.64%, and 83.08%). These experimental results clearly indicate that
the multiscale structure has a significant impact on CD network perfor-
mance and explain why recent successful CD algorithms typically adopt
multiscale structures.
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Table 7
The effect of different feature exchange settings (%).

Model Setting CLCD HRSCD WHU LEVIR

Level_1 Level_2 Level_3 F1 IoU F1 IoU F1 IoU F1 IoU

AMTNet SE CE SE 74.13 58.89 65.44 48.63 91.82 84.88 90.24 82.21
AMTNet CE SE SE 76.18 61.53 66.51 49.83 91.85 84.92 90.52 82.68
AMTNet CE CE CE 76.50 61.94 66.04 49.30 91.78 84.81 90.70 82.98
AMTNet SE SE SE 69.24 52.96 65.60 48.81 91.72 84.70 90.40 82.48
AMTNet CE CE SE 76.81 62.35 67.09 50.48 92.27 85.64 90.76 83.08
Table 8
The effect of ImageNet pre-training for the CNN backbone (%).

Dataset Pre-training P R F1 IoU

CLCD w/o 55.54 70.93 62.30 45.24
w 78.64 75.06 76.81 62.35

HRSCD w/o 70.57 58.06 63.71 46.74
w 69.31 65.01 67.09 50.48

WHU w/o 81.97 90.41 85.98 75.41
w 92.86 91.99 92.27 85.64

LEVIR w/o 90.10 87.87 88.97 80.14
w 91.82 89.71 90.76 83.08

4.5.3. Feature exchange
Feature exchange can make the feature distributions of the two

branches similar and achieve domain adaptation between the two
branches to some extent. The feature exchange module partially ex-
changes feature in the channel or spatial dimensions between the two
Siamese branches of the proposed AMTNet. We conducted ablation
experiments by removing the feature exchange operations from our CD
network. As seen from Table 6, feature exchange can improve F1 by
0.52%, 0.09%, 0.53%, and 0.10%, respectively. It can improve IoU
by 0.69%, 0.11%, 0.91%, and 0.17%, respectively. Table 6 indicates
that feature exchange can improve the feature representation of our
AMTNet.

In addition, we also evaluated the effect of using different feature
exchange settings. As presented in Table 7, Level_1, level_1, and level_3
correspond to the feature maps of the three scales from small to large,
respectively. Using the settings of CE, CE, and SE for Level_1, level_2,
and level_3, respectively, our AMTNet achieves the best performance
on all four datasets. Table 7 indicates that features with high spatial
resolution are more suitable to use SE; and vice versa. Based on this
observation, we adopt SE to the feature maps 𝐹 3(1)

1 . For the other two
airs of feature maps, we adopt the CE operation.

.5.4. SAM
The SAM automatically emphasizes the vital information related to

he feature maps in positions. We experiment with ablation by deleting
he SAM from our network. Table 6 demonstrates that the proposed
ethod has a small decrease in IoU and F1 on the four datasets without

he SAM. Specifically, its F1 drops by 1.13%, 0.54%, 0.33%, and 0.19%
n the four datasets, respectively. Its IoU drops by 1.48%, 0.61%,
.56%, and 0.31%, respectively. The experimental results show that the
AM is a key component in the CD network.

In addition, we also analyzed the impact of using kernels of different
izes in the SAM. As presented in Table 9, we evaluated three settings:
3×3, 𝑓 5×5, and 𝑓 7×7, performed with 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 2, and
𝑎𝑑𝑑𝑖𝑛𝑔 = 3, respectively. Table 9 indicates that the setting 𝑓 7×7 with
𝑎𝑑𝑑𝑖𝑛𝑔 = 3 achieves the best performance on all four datasets.

.5.5. CAM
The CAM makes the network focus on channels that greatly impact

he change analysis. To validate the importance of CAM in the network,
e experimented with ablation by deleting the CAM. As is shown

n Table 6, in the absence of CAM, the performance of the AMTNet
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eclines slightly across the four datasets according to both IoU and F1.
The CAM can improve F1 by 0.31%, 0.65%, 0.59%, and 0.29% on the
four datasets, respectively. It can improve IoU by 0.41%, 0.74%, 1.01%,
and 0.48% on the four datasets, respectively. Table 6 shows that the
CAM plays an important role in the proposed CD network.

4.5.6. Pre-training on the ImageNet dataset
As presented in Table 8, using the pretrained ResNet-50 back-

bone can improve the model’s overall performance. Compared with
the results on the LEVIR-CD dataset, the performance improvement
on the CLCD dataset using the pre-trained model is obvious. Specif-
ically, regarding precision, recall, F1, and IoU, the pre-training can
achieve 23.10%, 4.13%, 14.51%, and 17.11% improvement on the
CLCD dataset, respectively. It can obtain 1.72%, 1.84%, 1.89%, and
2.94% improvement on the LEVIR-CD dataset, respectively. The signif-
icant difference in performance improvement between the two datasets
may stem from the significant difference in the size of the two training
sets of LEVIR-CD and CLCD. The training set sizes for CLCD and LEVIR-
CD are 360 and 7120, respectively. With sufficient training data, our
AMTNet can achieve high performance on LEVIR-CD without using
the pretrained backbone. Therefore, pre-training has a more significant
effect on the CLCD dataset.

5. Conclusion

The aim of this paper is to devise an attention-based multiscale
CNN-transformer framework that combines the benefits of ConvNets,
transformers, multiscale and attention mechanisms. The different mod-
ules in this algorithm complement each other. Spatial attention and
channel attention can enhance feature representation by focusing on
information related to changed areas, while the transformer module
handles long-range dependencies with ease. The multiscale structure
derives features of various scales. Additionally, we use feature exchange
to bridge the domain gap between different temporal image domains by
partially exchanging features in either the channel or spatial dimension
between the two Siamese branches.

Our method outperforms advanced CD methods based on a series of
quantitative and qualitative comparisons on four popular CD datasets.
In future research, we plan to apply AMTNet in weakly supervised
learning for CD tasks, particularly domain-adaptive ones. We hope our
work inspires researchers to explore combining convolutional neural
networks, attention mechanisms, and transformers or utilize our model
for CD applications.
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Table 9
Effect of using convolution kernels of different sizes in the SAM (%).

Model Setting CLCD HRSCD WHU LEVIR

kernel padding F1 IOU F1 IOU F1 IOU F1 IOU

AMT 3 × 3 1 76.1 61.42 66.21 49.49 91.48 84.3 90.36 82.41
AMT 5 × 5 2 76.33 61.72 66.13 49.4 91.38 84.12 90.56 82.74
AMT 7 × 7 3 76.81 62.35 67.09 50.48 92.27 85.64 90.76 83.08
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