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A B S T R A C T

With the rapid development of Light Detection And Ranging (LiDAR) systems, the novel dual-channel airborne
LiDAR systems have emerged to provide more complete and precise data than traditional scanners for building
instance extraction since 2013. RIEGL VQ-1560i, launched in 2016, is a state-of-the-art dual-channel LiDAR
system, which is capable of capturing dense points on building rooftops and façades simultaneously, due to the
unique and innovative bidirectional scanning angle. Our proposed method is the first ever to use dual-channel
airborne LiDAR data for subsequent point clouds processing. The main challenges of the new LiDAR data are
significant amount of points, complex data structure and multi-class targets. We proposed a preprocessing-free
building instance extraction method consisting of three steps, i.e., point cloud reorganization, rasterization,
and constraint-based labeling for improving the extraction performance. First, point cloud reorganization,
consisting of point distribution-based slicing, coarse 3D semantic segmentation, and top-down merging, is used
to reorganize point cloud scene into interrelated point groups. This greatly reduces the processing difficulty and
computational burden of complex structures while removing multiple classes of non-building points. Second, we
rasterize the point groups into images to further reduce computational complexity while improving processing
efficiency. Finally, we utilize the upper and lower structural relationship of buildings to label them and then
remap into 3D buildings. Experimental results on six test point cloud scenes demonstrate the outstanding
performance of the proposed preprocessing-free method. For semantic-level performance, our method achieves
95.36% in average recall and 93.59% in average F1-score. While for instance-level performance, our approach
reaches 92.86% and 98.31% in quality on two public test scenes, respectively.
1. Introduction

LiDAR scanning is an active data collection that is less affected by
weather conditions than optical imaging. The rapid development of Li-
DAR technology has provided the surveying and mapping industry with
better and more accurate data. RIEGL VQ-1560i is a state-of-the-art
LiDAR system consisting of two LiDAR channels of same laser wave-
length, a high-grade Applanix AP60 IMU/GNSS system, a PhaseOne
100 MPix camera, and an optional integrated camera (RIEGL, 2019),
as shown in Fig. 1. This dual-channel system can operate at an altitude
of up to 5600 m and has a maximum measurement speed of up to 1.33
million per second (meas.∕s). The specifications of RIEGL VQ-1560i
is detailed in Table 1. Furthermore, the dual-channel design provides
a unique revolutionary front/rear bidirectional simultaneous scanning
function, enabling VQ1560i to more effectively and accurately capture
high point density data from multiple angles within 60 degrees Field
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of View (FoV), the data acquisition illustration is shown in Fig. 2.
Due to its Multiple-Time-Around (MTA) processing of up to 20 pulses
simultaneously in the air, RIEGL VQ-1560i can acquire point clouds
of façades between buildings with angles less than 16 degrees. Hence,
RIEGL VQ-1560i can provide the rooftops and façades point clouds of
buildings simultaneously.

Automated extraction of building instances from point clouds is
playing an increasingly important role in many applications, including
disaster management (Dash et al., 2004), urban analysis (Yu et al.,
2010), cadastral surveying (Rutzinger et al., 2011), change detec-
tion (Qin et al., 2015), urban context-aware visualization (Deng et al.,
2016), and 3D reconstruction (Chen et al., 2017). Traditionally, 3D
building extraction has basically used LiDAR data from various laser
scanning systems. Single-channel Airborne Laser Scanning (ALS) sys-
tems mainly collect points on building rooftops but hardly cover the
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Fig. 1. Architecture of RIEGL VQ-1560i.
Fig. 2. Data acquisition of RIEGL VQ-1560i.
Table 1
Specifications of the RIEGL VQ-1560i.

Average point density (pts/m2) 2 8 20 60

Flight altitude (m) 2000 1370 1000 351
Ground speed (kn) 300 210 115 110
Swath width (m) 2240 1540 1130 400
Productivity (km2/h) 996 480 192 64
Measurement rate (meas./s) 933,000 1.33 million 1.33 million 1.33 million
Camera ground sampling distance (mm) 114 103 75 26
Camera trigger interval (s) 3.5 4.1 5.4 2.0
façades. Terrestrial Laser Scanning (TLS) systems only provide data on
façades, and TLS is difficult to construct large-scale and complex ter-
restrial scans due to the low scanning efficiency. Mobile Laser Scanning
(MLS) systems can acquire detailed data in large-scale urban scenes
other than rooftops. As a result, the traditional LiDAR data-based 3D
building extraction requires separate processing or pre-registration of
rooftop and façade point clouds. However, due to information loss
and inaccurate registration, the extracted building instances suffer
from low completeness and correctness, which is especially obvious
in complex large-scale urban scenes. Compared with other LiDAR sys-
tems, the dual-channel system can provide denser and more accurate
rooftop and facade point clouds of buildings simultaneously, signifi-
cantly increasing the collection of ultra-wide scenes and complex urban
environments (Xie et al., 2020). The comparison of the dual-channel
ALS system and other systems is shown in Table 2.

For a point cloud scene, the point density on the ground is usually
higher than elsewhere because the ground is continuous, flat, and
impenetrable to laser. The non-ground objects have a vertical geometry,
but their point distribution is disorganized and uneven due to different
shapes, reflectivity, and scan angles. In addition, the complex and
incomplete structure of buildings in the real-world, with occlusions
and local similarities between different buildings. Moreover, the laser
scanning process generates sparse outliers due to measurement errors,
which complicates the point cloud local features and leads to processing
2

errors. Compared with other LiDAR data, the dual-channel LiDAR data
provides denser and more detailed point cloud scenes, which presents
more stringent requirements and challenges for 3D building extraction.
(1) How to handle the expensive computation burden raised by the sig-
nificant amount of point clouds. (2) How to extract complete building
from point cloud scenes with complex data structure. (3) How to avoid
the interference of multi-class targets in the point cloud scenes.

Motivated by the above limitations and the emerging processing
requirements of dual-channel LiDAR data, we propose a new approach
to automated extraction of complete buildings, including the rooftops
and façades, from large-scale dual-channel airborne LiDAR point cloud
scenes. We list the contributions of this paper below.

(1) This paper is the first ever to use dual-channel airborne LiDAR
data for building instance extraction that benefits from the rooftops and
façades point clouds.

(2) This paper presents the first preprocessing-free building instance
extraction method for large-scale point cloud scenes, which improves
the automation of the algorithm for extracting buildings from point
cloud scenes.

(3) We propose a novel point cloud scene reorganization method,
utilizing a point distribution and top-down merging strategy, which
significantly weakens the influence of outliers and noise in point cloud
scenes and reduces computational complexity of subsequent operations.
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Table 2
Comparison of different LiDAR systems.

Property TLS MLS ALS Dual-channel ALS

Density >100 pts/m2 >100 pts/m2 <20 pts/m2 <60 pts/m2

Accuracy mm-level mm-level <15 cm <20 mm
Area Specific small areas Street areas Wide areas; urban environments Ultra-wide areas; complex urban environments

Data Static objects; vegetation;
building façades

Road objects; vegetation;
building façades

Remote sensing objects; building
rooftops and sparse façades

Remote sensing objects; building rooftops and denser
façades

Application Small-area 3D
reconstruction

HD map; urban monitoring City modeling; urban monitoring;
vegetation monitoring; etc.

City modeling; urban monitoring; vegetation
monitoring; etc.
The rest of this paper is organized as follows. In Section 2, we briefly
eview the building extraction methods for point clouds. In Section 3,
e describe the proposed preprocessing-free building instance extrac-

ion method. The experimental results on six test scenes are presented
nd discussed in Section 4. And Section 5 concludes the paper.

. Related work

With the development of LiDAR technology, various LiDAR systems
merged to provide different LiDAR data. Recently, researchers have
ade important progress in building extraction from different LiDAR
ata, which can be categorized into TLS/MLS data-based methods and
LS data-based methods.
TLS/MLS data-based methods. Since TLS/MLS data provides de-

tailed information about the building façades while can hardly cover
the rooftops, TLS/MLS data-based building extraction methods gen-
erally focus on the extraction of façades. Pu and Vosselman (2009)
proposed a knowledge rules-based building façade recognition method,
but it can hardly be applied to urban scenes (Wang et al., 2020). Yang
et al. (2013a) proposed a projection-based method for 2D building out-
lines extraction, but it suffers from heavy computational burden (Che
et al., 2019). Some methods (Gao and Yang, 2013; Fan et al., 2014)
utilized the spatial distribution patterns to extract buildings, but their
performance was limited by the data quality (Wang et al., 2020). Xia
and Wang (2018) proposed an objected-oriented method to locate and
segment building instances utilize the clues of façades, but the building
components identification is restricted by the scene segmentation. A
semantic-based method was proposed by Wang et al. (2020), utilizing
a Markov Random Field optimization model. However, the extraction
completeness was limited by variable point densities and data gaps.

ALS data-based methods. Due to the sparseness of ALS data,
which only provides incomplete buildings with rooftops and sparse
façades, some ALS data-based building extraction methods take ad-
vantage of Digital Surface Model (DSM) and multi-sensor data. Du
et al. (2017) proposed a feature-retained DSM interpolation method
to extract buildings, but it suffered from interpolation error and in-
formation loss. Awrangjeb et al. (2013) extracted 3D roof from point
clouds and multispectral images, but it is limited by the extracted 2D
features from the orthoimage (Awrangjeb and Fraser, 2014). Huang
et al. (2018) proposed a method to remove non-building points and
extract buildings using topological, geometric and penetrating features,
but it cannot detect low-density or small-area buildings. Nguyen et al.
(2020) proposed a snake model-based method, which use combination
information from point clouds and optical image to extract buildings,
but only the height information of point clouds plays a role during the
processing (Hui et al., 2021). Zhang et al. (2020) extracted buildings
utilizing features from remote sensing images and point clouds, but the
required data fusion not only leads to a decrease in the reliability of
building extraction, but also increases the computational burden.

Some other ALS data-based methods focus on extracting buildings
from the pre-segmented non-ground points. Yang et al. (2013b) utilized
the point marking for building outlines extraction from non-ground
points, but it cannot separate spatially connected buildings. Awrangjeb
and Fraser (2014) constructed a building mask and clustered sim-
ilar surfaces based on coplanarity feature to extract building roofs
3

from non-ground points, but the incomplete vegetation removal results
in low boundary accuracy. Albers et al. (2016) proposed a Hough
transform-based method for building extraction and an energy mini-
mization approach for regularization, but it is limited by the building
orientation and peak detection. Cai et al. (2019) utilized fuzzy C-means
and region growing to extract buildings, but the performance depends
on parameter setting and the geometrical properties (Meng et al.,
2009). Liu et al. (2020) proposed a building extraction method based on
minimum cut and improved post-processing. Hui et al. (2021) proposed
a multi-constraint graph segmentation-based method for object-based
building extraction. However, these methods require multiple pre-
or post-processing to decrease computational cost and improve the
extraction accuracy.

In recent, deep learning frameworks have proven to be effective in
many LiDAR data-based application scenarios. Zhou and Gong (2018)
made the first attempt to combine deep learning networks with ALS
point cloud-based building detection, but the required filter size varies
with the size of the pattern to be captured. Maltezos et al. (2019)
employed a Convolutional Neural Network (CNN) framework to classify
building structures from complex urban areas, but suffers from informa-
tion loss during the feature extraction (Li et al., 2020). Some relevant
methods (Huang et al., 2019; Yuan et al., 2021) used the fusion data
of point clouds and remote sensing images as training data for deep
learning networks. However, they rely on data fusion, and the training
data acquisition is labor-intensive, time-consuming, and costly.

The advent of novel dual-channel ALS systems provides complete
buildings with rooftops and facades. It is urgently necessary to develop
new low-data-dependency building extraction methods, to achieve
complete building extraction from complex dual-channel ALS data.

3. Method

This paper presents a novel instance-level building extraction
method for point cloud scenes collected by a dual-channel airborne
LiDAR system. The input of the proposed method is a raw point
cloud scene, denoted as a point set with three-dimensional coordinates
𝐶 = (𝑋, 𝑌 ,𝑍). The output is a set of 3D building instances 𝐵 =
{

𝐵1, 𝐵2,… , 𝐵𝑁
}

, where 𝑁 represents the number of buildings, 𝐵𝑖 (𝑖 ∈
[1, 𝑁]) denotes the point clouds of a building instance. The proposed
method consists of three modules. (1) Point cloud reorganization. In
this module, the input raw point cloud scene is split into point cloud
slices, which are then segmented and merged into interrelated point
groups. (2) Rasterization and detection. In this module, the interrelated
point groups are rasterized into images, and based on which to detect
candidate 2D buildings. (3) Labeling and extraction. In this module, the
candidate 2D buildings are labeled to extract 3D building instances. The
workflow of our preprocessing-free method is illustrated in Fig. 3.

3.1. Point cloud reorganization

First of all, we propose a Point Distribution-Based Slicing (PDBS)
method to split the raw point cloud scene into slices. Then, we propose
a Coarse 3D Semantic Segmentation (C3DSS) method to segment build-
ing points from each slice. Finally, these slices are merged into point
groups based on a top-down strategy.
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Fig. 3. Workflow of the proposed preprocessing-free building extraction method, consists of three modules: (1) point cloud reorganization module (green dashed area), (2)
rasterization and detection module (blue dashed area), and (3) labeling and extraction module (purple dashed area). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
3.1.1. Point distribution-based slicing

The proposed PDBS method splits the raw point cloud scene 𝐶 into
𝑆 =

{

𝑆1, 𝑆2,… , 𝑆𝑛
}

, which is detailed below.

(1) Define a unit height of 𝐶 as ℎ𝑢 and calculate the number of unit
height 𝑁ℎ𝑢 as follows:

𝑁ℎ𝑢 = 𝑟𝑜𝑢𝑛𝑑
(

⌈𝑓𝑚𝑎𝑥 (𝑍) − 𝑓𝑚𝑖𝑛 (𝑍)⌉
ℎ𝑢

)

(1)

where 𝑟𝑜𝑢𝑛𝑑 (⋅) calculates the nearest integer of input value, ⌈⋅⌉ rounds
input value upwards to the next integer, 𝑓𝑚𝑎𝑥 (⋅) and 𝑓𝑚𝑖𝑛 (⋅) calculate
the maximum and minimum value, respectively.

(2) Define a point number vector 𝐶ℎ𝑢 , a probability vector 𝑃ℎ𝑢 , and
𝐶ℎ𝑢 (𝑖) is the number of points that located in the 𝑖𝑡ℎ unit height in
𝐶. For 𝐶 𝑖 , its corresponding point distribution probability 𝑃 𝑖 is
4

ℎ𝑢 ( ) ℎ𝑢 ( )
calculated as follows:

𝑃ℎ𝑢 (𝑖) =
𝑛𝑢𝑚

(

𝐶ℎ𝑢 (𝑖)
)

𝑛𝑢𝑚 (𝐶)
, 𝑖 ∈

[

1, 𝑁ℎ𝑢

]

(2)

where 𝑛𝑢𝑚 (⋅) counts the points number.
(3) Define a cumulative probability vector 𝑃ℎ𝑢 , for 𝑃 (𝑖)ℎ𝑢 ∈ 𝑃ℎ𝑢 ,

calculated as follows:

𝑃ℎ𝑢 (𝑖) = ∪𝑖
1𝑃ℎ𝑢 (𝑖) , 𝑖 ∈

[

1, 𝑁ℎ𝑢

]

(3)

(4) Define a candidate probability set 𝑃𝑐𝑎𝑛, calculated as follows:

𝑃𝑐𝑎𝑛 (𝑗) =

⎧

⎪

⎨

⎪

𝑃ℎ𝑢 (𝑗) ,
∑𝑗−1

𝑗−𝑠𝑑 𝑃ℎ𝑢 (𝑘)
∑𝑗+𝑠𝑑⋅𝑠𝑐

𝑗 𝑃ℎ𝑢 (𝑘)
> 2, 𝑗 ∈

[

𝑠𝑑 + 1,
⌊𝑁ℎ𝑢

2

⌋]

(4)
⎩

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Fig. 4. Illustration of the proposed C3DSS method. (a) Slice obtained through PDBS. (b) Density-based spatial clustering results, with different colors representing different clusters.
(c) Dimension-based classification results. Green, red, and blue represent building, non-building, and other points. (d) Building slice. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
where ⌊⋅⌋ rounds input value down to the previous integer, 𝑠𝑑 and 𝑠𝑐
are constants, and 𝑠𝑑 denotes the stride, 𝑠𝑑 <

𝑁ℎ𝑢
2 − 1, and 𝑠𝑐 denotes

the repeat number.
(5) Define the point probability of 𝑆𝑛 as 𝑃𝑠𝑙𝑖 (𝑛), calculated as

follows:

𝑃𝑠𝑙𝑖 (𝑛) = 𝑓𝑚𝑎𝑥
(

𝑃𝑐𝑎𝑛
)

(5)

(6) Assuming that the maximum height of slice 𝑆𝑛 located in the 𝑘𝑡ℎ
unit height, then the maximum height of 𝑆𝑛 equals to 𝑘 × ℎ𝑢. Denote
the 𝑘𝑡ℎ value of 𝑃ℎ𝑢 as 𝑃ℎ𝑢 (𝑘), which is almost equals to 𝑃𝑠𝑙𝑖 (𝑛). Based
on which to obtain the value of 𝑘. And then, a set of value 𝑍𝑠𝑝𝑙 can be
calculated as follows:

𝑍𝑠𝑝𝑙 (𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑓𝑚𝑎𝑥 (𝑍) − 𝑖 ⋅
𝑓𝑚𝑎𝑥(𝑍)−𝑍𝑠𝑝𝑙 (𝑛−1)

𝑛−1 , 1 ≤ 𝑖 < 𝑛 − 1

𝑘 ⋅ ℎ𝑢, 𝑖 = 𝑛 − 1
(6)

(7) 𝐶 is segmented into 𝑛 slices using 𝑛 − 1 horizontal planes, each
determined by a value in 𝑍𝑠𝑝𝑙. The slices are referred from top to
bottom as to

{

𝑆1,… , 𝑆𝑛
}

. In the following processing, 𝑆𝑛 is called the
basis slice, and

{

𝑆1,… , 𝑆𝑛−1
}

the target slices.
The proposed PDBS method has significant advantages compared

to slicing at constant intervals along the 𝑧-axis. (1) PDBS can divide
almost all (but not only) ground points into the basis slice according
to iterative point distribution calculation, avoiding ground filtering
preprocessing. (2) PDBS dynamically determines the height of each
target slice. Thinner slices in dense regions reduce structural complex-
ity, mutual interference of objects, and computational burden. Slices of
sparse regions are thicker to preserve local structural features, helping
to obtain more complete building segmentation results. (3) PDBS is
robust and its results are not disturbed by outliers or noise.

3.1.2. Coarse 3D semantic segmentation
We proposed the C3DSS method to segment building points from

each target slice, the workflow of C3DSS is shown in Fig. 4. Firstly, the
target slice (Fig. 4(a)) was separated into different clusters (Fig. 4(b))
through a density-based spatial clustering. Secondly, each cluster was
classified into building, non-building, and other points (Fig. 4(c)) ac-
cording to the dimension-based features in the cluster. Finally, discard
all the non-building and other points to obtain the building slice
(Fig. 4(d)).
5

(1) Density-based spatial clustering. Define the minimum coverage
rectangle of 𝐶 = (𝑋, 𝑌 ,𝑍) on 𝑥𝑦-plane as Eq. (7). The raster scalar
𝛩𝑠𝑐𝑎𝑙𝑎𝑟 is defined according to the geometric features of 𝐶 as follows:

𝑅𝑒𝑐𝑡(𝐶) =
[

𝑓𝑚𝑖𝑛 (𝑋) , 𝑓𝑚𝑖𝑛 (𝑌 ) , 𝑓𝑚𝑎𝑥 (𝑋) , 𝑓𝑚𝑎𝑥 (𝑌 )
]

(7)

𝐴𝑟𝑒𝑎 (𝑅𝑒𝑐𝑡 (𝐶)) = 𝑅𝑎𝑛𝑔𝑒 (𝑋) ⋅ 𝑅𝑎𝑛𝑔𝑒 (𝑌 ) (8)

𝛩𝑠𝑐𝑎𝑙𝑎𝑟 =

√

𝑛𝑢𝑚 (𝐶)
𝜎𝑛𝑢𝑚

+

√

𝐴𝑟𝑒𝑎 (𝑅𝑒𝑐𝑡 (𝐶))
𝜎𝑎𝑟𝑒𝑎

(9)

where 𝑅𝑎𝑛𝑔𝑒(⋅) calculates the value of 𝑓𝑚𝑎𝑥 (⋅) − 𝑓𝑚𝑖𝑛 (⋅), 𝜎𝑛𝑢𝑚 and 𝜎𝑎𝑟𝑒𝑎
are constants related to point number and area of the point cloud scene,
respectively. Then, the clustering method DBSCAN (Ester et al., 1996)
is performed for each target slice, ensuring that the distance between
any points in any two clusters is not less than 𝐷𝑚𝑖𝑛 = 2𝛩𝑠𝑐𝑎𝑙𝑎𝑟.

(2) Dimension-based hierarchical classification. Firstly, define a
hierarchical threshold 𝜃𝑛𝑢𝑚 (𝑖), 𝑖 ∈ [1, 𝑛 − 1] as follows:

𝜃𝑛𝑢𝑚 (𝑖) = 𝑟𝑜𝑢𝑛𝑑
(

𝑙𝑜𝑔
(

𝐴𝑟𝑒𝑎
(

𝑅𝑒𝑐𝑡
(

𝑆𝑖
))

⋅ 𝑅𝑎𝑛𝑔𝑒
(

𝑍𝑆𝑖

)))

(10)

Secondly, for a cluster 𝒸𝑖𝑗 ∈ 𝑆𝑖, 𝑖 ∈ [1, 𝑛 − 1], ∀𝑞𝑗 ∈ 𝒸𝑖𝑗 , we use
the 𝑘-Nearest Neighbors (𝑘-NN) to search for the 𝜃𝑛𝑢𝑚 (𝑖) neighbors
in 𝒸𝑖𝑗 for 𝑞𝑗 , denotes as 𝒩

(

𝑞𝑗
)

⊂ 𝒸𝑖𝑗 . The eigenvalues 𝜆1, 𝜆2, and
𝜆3

(

𝜆1 ≥ 𝜆2 ≥ 𝜆3
)

are generated through principal component analysis,
and the 3D features can be calculated as follows:
(

𝑎1𝐷, 𝑎2𝐷, 𝑎3𝐷
)

=
(

𝜆1 − 𝜆2
𝜆1

,
𝜆2 − 𝜆3

𝜆1
,
𝜆3
𝜆1

)

(11)

where 𝑎1𝐷 + 𝑎2𝐷 + 𝑎3𝐷 = 1.
Through observing, when 𝑎2𝐷 > 𝑎3𝐷, 𝑞𝑗 is often in a plane structure,

such as rooftop and façade, and we classify 𝑞𝑗 to a building point. While
for a stereoscopic structure, such as vegetation point, has 𝑎2𝐷 < 𝑎3𝐷,
and 𝑞𝑗 is classified into a non-building point. Otherwise, the other
points.

Finally, we define a approximate rate of cluster 𝒸𝑖𝑗 as follows:

𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑛𝑢𝑚 (𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠)

𝑛𝑢𝑚
(

𝒸𝑖𝑗
) (12)

𝑛𝑜𝑛-𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑛𝑢𝑚 (𝑛𝑜𝑛-𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠)

𝑛𝑢𝑚
(

𝒸𝑖𝑗
) (13)

For the cluster 𝒸𝑖𝑗 , with a given threshold 𝜃𝑟𝑎𝑡𝑒, all points in 𝒸𝑖𝑗 will
be classified as building points if 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 > 𝜃 , while all points in
𝑟𝑎𝑡𝑒
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Fig. 5. Description of the rasterization details from point cloud to raster image and the point-pixel transformation relationship.
𝒸𝑖𝑗 will be classified as non-building points if 𝑛𝑜𝑛-𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 > 𝜃𝑟𝑎𝑡𝑒.
Based on the classification results, discard all non-building points and
obtain the candidate building slices

{

�̂�1,… , �̂�𝑛−1
}

.

3.1.3. Top-down slices merging
To enhance the structural relevance of non-ground objects among

nearby slices,
{

�̂�1,… , �̂�𝑛−1
}

are merged into point groups 𝐺 =
{

𝐺1,… ,
𝐺𝑛−1

}

in a top-down manner as follows:

𝐺𝑖 = ∪𝑖
1�̂�𝑖, 𝑖 ∈ [1, 𝑛 − 1] (14)

Obviously, among the point groups exist internal relationships re-
lated to their sequence order, that is 𝐺𝑖 ⊂ 𝐺𝑗 (𝑖 < 𝑗). For a building
instance, its integrity gradually increases from the rooftop to the façade
as the number of slices increases during the merging. The contextual
association retained in the point groups, including the structural con-
nection sequence and location relationships of building segments, helps
achieve complete extraction of building instances.

3.2. Rasterization and detection

This module consists of a rasterization operation and a proposed
context-based 2D detection method. The first operation rasterizes the
point groups 𝐺 and the basis slice 𝑆𝑛 into raster images 𝐼 =

{

𝐼1,… , 𝐼𝑛
}

.
Geometric building features are utilized in context-based 2D detection
to find 2D candidate buildings in image 𝐼 .

3.2.1. Rasterization
First, define the rasterization basis as 𝐺𝑏𝑎𝑠𝑒 = 𝑅𝑒𝑐𝑡 (𝐶), based on

which all point groups and 𝑆𝑛 are rasterized to raster images. 𝐺𝑏𝑎𝑠𝑒
ensures that the corresponding raster images of 𝐺 and 𝑆𝑛 have the
same resolution. The resolution of each raster image is defined as
𝑓𝑟 (𝑋) × 𝑓𝑟 (𝑌 ) with a constant 𝑟0, and 𝑓𝑟 (⋅) is defined as follows:

𝑓𝑟(⋅) = 𝑟𝑜𝑢𝑛𝑑
(

𝑟0 ⋅ 𝛩𝑠𝑐𝑎𝑙𝑎𝑟 ⋅ 𝑅𝑎𝑛𝑔𝑒 (⋅)
𝑓𝑚𝑎𝑥 ([𝑅𝑎𝑛𝑔𝑒 (𝑋) , 𝑅𝑎𝑛𝑔𝑒 (𝑌 )])

)

(15)

Then, for each point set, we project points satisfying the same
conditions onto the same grid, with each grid representing one pixel
in the corresponding raster image. If a grid is empty, assign its pixel
value to 0 and record the pixel as invalid; otherwise, assign the pixel
value to 1 and record it as a valid pixel. Take 𝐺𝑖 (𝑖 ∈ [1, 𝑛 − 1]) as an
example, 𝐼𝑖 is the corresponding raster image of 𝐺𝑖. For point 𝑞𝑔𝑖 ∈ 𝐺𝑖,
𝑞𝑔𝑖 = (𝑥, 𝑦, 𝑧), the pixel position of 𝑞𝑔𝑖 in 𝐼𝑖 is

(

𝑋𝑖, 𝑌𝑖
)

, which can be
calculated according to Eqs. (16) and (17).

𝑋𝑖 =

⌊(

𝑥 − 𝑓𝑚𝑖𝑛 (𝑋)
)

⋅
(

𝑓𝑟 (𝑋) − 1
)⌋

𝑅𝑎𝑛𝑔𝑒 (𝑋)
+ 1 (16)

𝑌𝑖 =

⌊(

𝑦 − 𝑓𝑚𝑖𝑛 (𝑌 )
)

⋅
(

𝑓𝑟 (𝑌 ) − 1
)⌋

𝑅𝑎𝑛𝑔𝑒 (𝑌 )
+ 1 (17)

Perform the above operations on
{

𝐺1,… , 𝐺𝑛−1
}

and 𝑆𝑛 to obtain a
set of raster images 𝐼 =

{

𝐼1,… , 𝐼𝑛
}

. 𝐼𝑛 corresponds to 𝑆𝑛 and looks like
a large polygon with multiple internal holes. The largest polygon in 𝐼
6

𝑛

corresponds to the largest land-covered area in 𝐺𝑛. The raster images
{

𝐼1,… , 𝐼𝑛−1
}

, corresponding to
{

𝐺1,… , 𝐺𝑛−1
}

, which all appear to
be a combination of several separated solid polygons of different shapes
and sizes. Each inner hole in 𝐼𝑛 and each solid polygon in 𝐼𝑖 corresponds
to a non-ground object.

We preserve the transformation relationship between each point and
its corresponding pixel, on the basis of which each valid pixel can be
reduced to one or more points. To better explain the point-to-pixel
transformation relationship, we illustrate it with a simple example,
which is shown in Fig. 5.

3.2.2. 2D building detection
We propose a hierarchical 2D building detection method to detect

2D building boundaries on raster images. First, we use the classical
filtering method (Lim, 1990) to reduce the noise in each raster image.
Then, we perform the modified Moore-Neighbor tracing method (Gon-
zalez et al., 2004) to detect 2D building boundaries. In particular, for
𝐼𝑛, we perform an erosion operation before detection to enlarge the
coverage area of each inner hole in 𝐼𝑛. We detect the boundaries of each
inner hole in 𝐼𝑛 and discard the 2D boundary corresponds to the largest
land-covered area of 𝐺𝑛. For 𝐼𝑖, 𝑖 ∈ [1, 𝑛), we detect the 2D boundary
of each solid polygon. Next, we define the area of a 2D boundary as
the total number of pixels within and on the boundary. We drop those
boundaries whose area is smaller than a given hierarchical threshold
𝜃𝑖. The value of 𝜃𝑖 increases with 𝑖 and can be calculated according to
Eqs. (18), (19), and (20):

𝜃𝑑𝑖𝑠𝑡 =
4
√

𝛩𝑎𝑟𝑒𝑎 ⋅ 𝑓𝑚𝑎𝑥 ([𝑅𝑎𝑛𝑔𝑒 (𝑋) , 𝑅𝑎𝑛𝑔𝑒 (𝑌 )])
𝑟0 ⋅ 𝛩𝑠𝑐𝑎𝑙𝑎𝑟

(18)

𝜔𝑝𝑖𝑥 =

⌈

𝜃𝑑𝑖𝑠𝑡 ⋅ 𝑛𝑢𝑚
(

𝑆𝑖
)

𝑛𝑢𝑚 (𝐶)

⌉

(19)

𝜃𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑖 ⋅ 𝜔𝑝𝑖𝑥, 𝑖 < 𝑛

(𝑖 − 1) ⋅ 𝜔𝑝𝑖𝑥, 𝑖 = 𝑛
(20)

where 𝛩𝑎𝑟𝑒𝑎 is a constant.
Taking 𝐼𝑖 as an example, if the area of a 2D boundary in 𝐼𝑖 is

smaller than 𝜃𝑖, this boundary will be discarded, which means all pixels
belonging to this boundary will be converted to invalid pixels. Then,
we get a candidate 2D building set of 𝐼𝑖, 𝑅𝑖 =

{

𝑅𝑖
1, 𝑅

𝑖
2,… , 𝑅𝑖

𝑚𝑖

}

,
𝑖 ∈ [1, 𝑛], with 𝑚𝑖 denotes the number of candidate 2D buildings in
𝑅𝑖. Perform the above operations on all the raster images to get 𝑅 =
{

𝑅1, 𝑅2,… , 𝑅𝑛}.

3.3. Labeling and extraction

First, the proposed constraint-based labeling method is used to
detect the candidate 2D buildings belonging to the same building
in the raster images, as shown in the Algorithm 1. We assume that
candidate 2D buildings with the same label belong to the same building
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instance. Since the point cloud reorganization might result in different
numbers of candidate 2D buildings belonging to the same building in
raster images. The commonly used Euclidean distance makes it difficult
to distinguish whether these candidate 2D buildings belong to the
same building. Therefore, we use Chebyshev distance to achieve better
building instance extraction performance.

Second, duplicate pixels of candidate 2D buildings are removed
according to the labels. The remaining pixels are converted to points
according to the point-pixel transformation relationship retained during
rasterization.

Finally, the points are grouped according to the labels to obtain the
set of building instances 𝐵 =

{

𝐵1, 𝐵2,… , 𝐵𝑁
}

, where 𝐵𝑖 ∈ 𝐵 represents
building instance and 𝑁 represents the number of building instances.

Algorithm 1 Constraint-based Labeling
Input:
1: The set of candidate 2D building sets : 𝑅 =

{

𝑅1, ..., 𝑅𝑛}

2: Signle candidate 2D building : 𝑅𝑖
𝑗 ∈ 𝑅𝑖; 𝑅𝑠

𝑡 ∈ 𝑅𝑠

3: Distance threshold : 𝜃𝑑𝑖𝑠𝑡; Overlap threshold : 𝜃𝑜𝑣𝑒𝑟𝑙𝑎𝑝
utput: The set of labeled 2D building sets 𝐿(𝑅) =

{

𝐿
(

𝑅1) , ..., 𝐿 (𝑅𝑛)
}

Initialization:
4: 𝐿𝑅𝑖

𝑗
=
∑𝑖−1

𝑘=1 𝑚𝑘 + 𝑗

5: 𝐿
(

𝑅𝑖
𝑗

)

=
(

𝑅𝑖
𝑗 , 𝐿𝑅𝑖

𝑗

)

6: 𝐶𝑒𝑛𝑡
(

𝑅𝑖
𝑗

)

=
[

𝑓𝑚𝑒𝑎𝑛
(

𝑋𝑅𝑖
𝑗

)

, 𝑓𝑚𝑒𝑎𝑛
(

𝑌𝑅𝑖
𝑗

)]

Constraints:
7: (𝑎) 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣

(

𝐶𝑒𝑛𝑡
(

𝑅𝑠
𝑡
)

, 𝐶𝑒𝑛𝑡
(

𝑅𝑖
𝑗

))

≤ 𝜃𝑑𝑖𝑠𝑡

8: (𝑏) 𝑅𝑎𝑡𝑖𝑜𝑜𝑣𝑒𝑟𝑙𝑎𝑝
(

𝑅𝑒𝑐𝑡
(

𝑅𝑠
𝑡
)

, 𝑅𝑒𝑐𝑡
(

𝑅𝑖
𝑗

))

≥ 𝜃𝑜𝑣𝑒𝑟𝑙𝑎𝑝

9: (𝑐) 𝑅𝑒𝑐𝑡
(

𝑅𝑠
𝑡
)

⊆ 𝑅𝑒𝑐𝑡
(

𝑅𝑖
𝑗

)

∨ 𝑅𝑒𝑐𝑡
(

𝑅𝑠
𝑡
)

⊇ 𝑅𝑒𝑐𝑡
(

𝑅𝑖
𝑗

)

Loop:
10: for 1 ≤ 𝑖 ≤ 𝑛 − 1, 1 ≤ 𝑗 ≤ 𝑚𝑖 do
11: for 𝑖 < 𝑠 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚𝑠 do
12: if 𝑅𝑠

𝑡 satisfies (𝑎) ∨ (𝑏) ∨ (𝑐) then
13: 𝐿

(

𝑅𝑠
𝑡
)

=
(

𝑅𝑠
𝑡 , 𝐿𝑅𝑖

𝑗

)

14: end if
15: end for
16: end for

4. Experiments

In this section, the performance of our method was evaluated and
compared with several methods in both single- and dual-channel air-
borne LiDAR point cloud scenes. The information of test scenes is
detailed in Section 4.1. Section 4.2 describes the semantic and instance
evaluation metrics. Section 4.3 details the implementation information
of the proposed method. In Section 4.4, we present the experimental
results and analysis.

4.1. Dataset description

In this paper, six ALS point cloud scenes are used for testing,
including four scenes from our own dataset and two from public
datasets. DCS 1–4 were selected from the LiDAR data collected by a
RIEGL VQ-1560i dual-channel system, and the LiDAR data of DCS 1–4
are raw point cloud scenes. We manually annotated all the 782,809
points of DCS 1–4 to create the ground truth. Specifically, we labeled
all points to instance-level building points and non-building points
(including ground, plants, cars and other non-building objects) using
the open source point cloud software CloudCompare. VAIHI-1 and
DALES-1 were selected from different public benchmark datasets, and
their LiDAR data are building points that segmented from raw point
cloud scenes (Niemeyer et al., 2014). Specifically, VAIHI-1 was from
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the ISPRS benchmark dataset1 (Rottensteiner et al., 2012), which were
collected with a Leica ALS50 single-channel system. DALES-1 was from
the DALES datasets (Varney et al., 2020), which were obtained by a
RIEGL Q1560 dual-channel system. These six test scenes differ in area,
number of points, density and height. Details of these scenes are shown
in Table 3.

4.2. Evaluation criteria

Since the semantic evaluation is insufficient to evaluate the per-
formance of building extraction at instance level. Our extraction algo-
rithm for building instances is based on both semantic and instance
evaluation.

4.2.1. Semantic-based evaluation
We evaluate the semantic-level building extraction performance

utilizing recall, precision and F1-score, calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑝𝑜𝑖𝑛𝑡

𝑇𝑃𝑝𝑜𝑖𝑛𝑡 + 𝐹𝑁𝑝𝑜𝑖𝑛𝑡
(21)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑝𝑜𝑖𝑛𝑡

𝑇𝑃𝑝𝑜𝑖𝑛𝑡 + 𝐹𝑃𝑝𝑜𝑖𝑛𝑡
(22)

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(23)

where 𝑇𝑃𝑝𝑜𝑖𝑛𝑡, 𝐹𝑃𝑝𝑜𝑖𝑛𝑡 and 𝐹𝑁𝑝𝑜𝑖𝑛𝑡 are the number of true positive, false
positive and false negative extracted building points, respectively.

4.2.2. Instance-based evaluation
Furthermore, we follow the instance-level evaluation of Wu et al.

(2020) and Zhang et al. (2021) and same definitions of IoU (intersection
over union). Since the semantic-based evaluation is not sufficient to
evaluate the results of building extraction at the instance level. For each
building instance, the IoU is calculated as follows:

𝐼𝑜𝑈 =
𝑝𝑜𝑖𝑛𝑡𝑐 ∩ 𝑝𝑜𝑖𝑛𝑡𝑔
𝑝𝑜𝑖𝑛𝑡𝑐 ∪ 𝑝𝑜𝑖𝑛𝑡𝑔

(24)

where 𝑝𝑜𝑖𝑛𝑡𝑐 represents automatically segmented building instance
point clouds and 𝑝𝑜𝑖𝑛𝑡𝑔 represents building instance point clouds in the
round truth.

In this paper, we set the minimum IoU threshold as 0.75. If IoU is
reater than 0.75, the building instance is correctly extracted. When
oU is less than 0.75, if the ground truth of the building instance
ontains only one building instance, it is over-extracted; otherwise, it is
nder-extracted. We evaluate instance-level building extraction perfor-
ance of point cloud scenes using IoU-based completeness, correctness,

nd quality (Rutzinger et al., 2009). They are calculated as follows:

𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑃𝑖𝑛𝑠

𝑇𝑃𝑖𝑛𝑠 + 𝐹𝑁𝑖𝑛𝑠
(25)

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑃𝑖𝑛𝑠

𝑇𝑃𝑖𝑛𝑠 + 𝐹𝑃𝑖𝑛𝑠
(26)

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑇𝑃𝑖𝑛𝑠

𝑇𝑃𝑖𝑛𝑠 + 𝐹𝑃𝑖𝑛𝑠 + 𝐹𝑁𝑖𝑛𝑠
(27)

where 𝑇𝑃𝑖𝑛𝑠, 𝐹𝑃𝑖𝑛𝑠 and 𝐹𝑁𝑖𝑛𝑠 are the number of correctly extracted,
under-extracted and over-extracted building instances in the point
cloud scene, respectively.

1 https://www.isprs.org/education/benchmarks.aspx.

https://www.isprs.org/education/benchmarks.aspx
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Table 3
Information on the six test scenes.

Scene Sensor type Data type Points Area (m2) Height (m) Density (pts/m2)

DCS 1 Dual-channel Raw scene 55,700 5808 15 10
DCS 2 Dual-channel Raw scene 41,371 4813 15 9
DCS 3 Dual-channel Raw scene 263,258 15,393 23 17
DCS 4 Dual-channel Raw scene 422,480 23,126 30 18
VAIHI-1 Single-channel Building points 69,562 26,753 21 –
DALES-1 Dual-channel Building points 77,498 258,556 14 6
Fig. 6. Semantic-level building extraction results on DCS 1–4. 1st row: point cloud scenes. 2nd row: semantic-level ground truth. 3rd row: instance-level ground truth. 4th row:
results of the LASclassify (Isenburg, 2019). 5th row: results of the proposed method. In 1st, 2nd, and 4th rows, points are displayed in different colors according to the heights.
In 3rd and 5th rows, different building instances are spotted in different colors. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
4.3. Implementation details

The proposed method is implemented in MATLAB R2021a, Win-
dows 10, Intel (R) Core (TM) i7-6700 CPU @ 3.40 GHz, 24.0 GB
memory. In this paper, all the experiments share the same parameter
settings and detailed below. During the point distribution-based slicing,
we set the unit height ℎ𝑢 = 0.5 m, the stride 𝑠𝑑 = 5, and the repeat
number 𝑠𝑐 = 3. Considering the heights of various objects are multiples
of 0.5 m, selecting ℎ𝑢 = 0.5 m can cover the structural features of
objects with different heights, which helps in more reasonably dividing
the point cloud scene and retaining the structural features in the point
cloud slices while avoiding redundant calculations. During the coarse
3D semantic segmentation, the point number coefficient of 𝐶 is 𝜎𝑛𝑢𝑚 =

106, the area coefficient of 𝐶 is 𝜎𝑎𝑟𝑒𝑎 =
(

2
5

)2
⋅𝜎𝑛𝑢𝑚, and the approximate

rate 𝜃𝑟𝑎𝑡𝑒 = 0.7. During the rasterization, the image basis resolution is
𝑟0 = 256. During the constraint-based labeling, the overlap threshold
𝜃𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 0.4.

4.4. Results and analysis

We evaluate the semantic-level building extraction performance
with LASclassify (Isenburg, 2019) on DCS 1–4. And the instance-level
performance was evaluated with several methods on VAIHI-1 and
8

Table 4
Comparison of semantic building extraction results obtained by LASclassify (Isenburg,
2019) vs. our method (%).

Scene LASclassify OURS

Recall Precision F1-score Recall Precision F1-score

DCS 1 80.13 94.33 86.65 90.60 91.92 91.26
DCS 2 86.02 98.92 92.02 99.35 84.20 91.15
DCS 3 86.81 99.93 92.91 93.17 99.03 96.01
DCS 4 71.22 94.29 81.14 98.32 93.70 95.96

Avg. 81.04 96.87 88.18 95.36 92.21 93.59

DALES-1. The instance-level performance was evaluated with several
methods on VAIHI-1 and DALES-1.

4.4.1. Semantic-level building extraction results
To validate the semantic-level performance, we compare the per-

formance of our method with LASclassify (Isenburg, 2019) on DCS
1–4. The experimental results were evaluated with recall, precision,
and F1-score. The quantitative results are detailed in Table 4, showing
that our method significantly outperforms LASclassify in all test scenes.
Specifically, the proposed method achieves 95.36% in average recall,
which reaches an improvement of 14.32% over LASclassify. In addition,
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Table 5
Performance comparison of semantic-level building extraction results (%).

Scene MV ES2D ES3D LCCP UBIS OURS

VAIHI-1
Completeness 83.33 71.43 24.73 17.02 100.00 100.00
Correctness 80.65 78.13 90.00 90.57 92.31 92.86
Quality 69.44 59.52 24.06 16.72 92.31 92.86

DALES-1
Completeness 37.14 49.53 4.70 5.22 98.28 100.00
Correctness 94.55 96.36 89.83 89.83 100.00 98.31
Quality 36.36 48.62 4.67 5.19 98.28 98.31
Fig. 7. Instance-level building extraction results on VAIHI-1 (first row) and DALES-1 (second row). (a) Upper: original aerial image corresponding to VAIHI-1; lower: point clouds
of the entire scene corresponding to DALES-1. (b) Point clouds of VAIHI-1 (upper) and DALES-1 (lower). Points in (a) and (b) are colored by heights. (c) Instance-level ground
truth. (d) Extraction results of our method. In (c) and (d), different building instances are displayed with different colors. (e) Main differences between the extraction results of
our method and the ground truth (yellow: correctly extracted; blue: over-extracted). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
the proposed method achieves 93.59% in average F1-score, which
improves 5.41% than the 88.18% provided by LASclassify.

Benefit from the structural connection sequence and location re-
lationships of building segments retained in the point groups. Our
method has the capability to extract complete facade points of building
instances. We can learn from the visualization results shown in Fig. 6
that our method achieves outstanding performance in all test scenes.
The buildings extracted by our method are more complete than those
extracted by LASclassify, especially for the building façades. More
specifically, most of the façade points and rooftop points near the edges
of the footprints were missed in the results of LASclassify, while some
low and flat bushes were incorrectly extracted as buildings.

4.4.2. Instance-level building extraction results
To validate the instance-level performance, we conducted the pro-

posed method on VAIHI-1 and DALES-1. The extraction results of our
method for various types of buildings in VAIHI-1 and DALES-1 is
shown in Fig. 7, with Fig. 7(e) shows the main differences between
the proposed method results and the ground truth. The detailed views
of the over-extracted buildings on VAIHI-1 and DALES-1 are shown in
Fig. 8. It is obvious that our method achieves outstanding instance-level
performance on VAIHI-1 and DALES-1.

Furthermore, we compared the proposed approach with different
state-of-the-art methods for instance-level building extraction, includ-
ing ES3D (Wang et al., 2015; Ramiya et al., 2017), ES2D (2D version
of ES3D), MV (Sampath and Shan, 2007; Awrangjeb et al., 2013),
LCCP (Stein et al., 2014), and UBIS (Zhang et al., 2021). We report the
9

corresponding experiment results of Zhang et al. (2021) and compare
them with our method in the same test scenes and evaluation metrics.

The experimental results were evaluated with instance-based eval-
uation. The quantified results that presented in Table 5 show that
our approach outperforms the benchmark methods on VAIHI-1 and
DALES-1. More specifically, for VAIHI-1, the completeness, correctness
and quality of our method is better than all the others. For DALES-
1, the completeness and quality of our method is higher than all
the others, and the correctness higher than that of the MV, ES2D,
ES3D and LCCP. Therefore, the proposed method significantly improves
the instance-level performance of instance-level building extraction in
different scenes. Since the proposed constraint-based labeling method
can effectively distinguish candidate 2D buildings belonging to differ-
ent buildings, while associating candidate 2D buildings of the same
building.

5. Conclusion

This paper is the first ever to use dual-channel airborne LiDAR
point clouds to extract the instance building. Dual-channel LiDAR can
provide rooftops and façades simultaneously for more detailed and
complete building data than traditional scanners. In addition, our novel
method is the first to construct building instance extraction without
preprocessing. Our proposed method consisted of (1) point cloud re-
organization module, (2) rasterization and detection module, and (3)
labeling and extraction module. The first module, taking advantage
of a point distribution-based slicing and a top-down merging strategy,
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Fig. 8. Detailed views of the over-extracted buildings on VAIHI-1 and DALES-1. The corresponding instance-level ground truth, extracted results, and their differences are shown
in separate rows from top to bottom. (a) to (d) belong to the over-extracted buildings on VAIHI-1 and (e) on DALES-1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
reorganizes the raw point cloud scene into interrelated point groups.
The second module rasterizes point groups into raster images for detect-
ing 2D buildings, making use of the association between point groups
and building geometric features, improving the accuracy of building
detection while avoiding redundant computations. The last module
utilizes a constraint-based labeling method to label 2D buildings and
then extract 3D building instances. Our method has several advantages
over other building extraction methods. First, the proposed method
avoids preprocessing (ground filtering, noise removing or downsam-
pling) commonly used by most existing ALS point cloud processing
approaches. Therefore, the proposed method can be more automated
and reliable for practical applications. Furthermore, our method can
extract 3D geometric information of both rooftops and façades, which
is not the case for other existing LiDAR-based building extraction meth-
ods. Experimental results on six test point cloud scenes demonstrate the
outstanding performance of the proposed preprocessing-free method.
For semantic-level performance, our method achieved 95.36% in aver-
age recall and 93.59% in average F1-score on four test scenes from our
own dataset in the semantic-level performance. As for the instance-level
performance, our approach reached 92.86% and 98.31% in quality on
two test scenes from public datasets, respectively. Since the proposed
method can hardly extract all buildings from point cloud scenes with
large slopes, our future work will utilize the normal-based plane and
slope transformation to increase the building extraction quality from
such scenes.
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