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A B S T R A C T   

The manual extraction of land disturbances associated with oil exploration, which normally includes resource 
roads, mining facilities, and well pads, presents significant challenges in terms of cost and time. Accurate 
monitoring and mapping of land disturbances resulting from oil exploration plays a crucial role in conducting 
comprehensive environmental assessments and facilitating effective land reclamation initiatives. However, 
prevailing deep learning methodologies in the realm of oil and gas exploration primarily focus on oil spill 
detection, neglecting the critical aspect of land disturbances resulting from oil exploration, thus overlooking the 
impact on land. Furthermore, given that the well sites are scattered and relatively diminutive compared to other 
land covers, their detection poses substantial difficulties. This paper proposes an automatic error-correcting 
(AEC) algorithm to address deficiencies in ground truth data quality. This AEC method was integrated into 
the deep-learning framework for land disturbance extraction, specifically tailored for land disturbances analysis 
associated with oil exploration. The efficacy of our method was validated on a dataset collected in Alberta 
covering an area of oil sand mining sites. The application of the AEC algorithm significantly enhanced the ac
curacy of land disturbance analysis, thereby contributing to a more effective hydrocarbon exploration impact 
analysis and facilitating the timely planning by the Alberta government. The results demonstrate notable im
provements in both average pixel accuracy (AA) and mean intersection over union (mIoU), ranging from 8.3% to 
15.4% and 0.5% to 5.8%, respectively. These enhancements, which have profound implications for the precision 
of land disturbance detection, prove that the proposed AEC algorithm can serve a dual purpose: correcting errors 
in the dataset and efficiently detecting land disturbance features in the oil exploration area.   

1. Introduction 

Precise and up-to-date maps of mining development footprints are 
crucial data for diverse planning endeavors in both urban and rural 
areas, including region conservation, emergency response, and land 
cover restoration (Safari et al., 2011; Liu et al., 2022; Li et al., 2022; 
Chen et al., 2022; Khorrami et al., 2023; Fu et al., 2023; Habibi et al., 
2023 ). This research focuses specifically on Northern Alberta’s oil sands 
mining region, a dynamic landscape with different backgrounds and 

extensive land disturbances resulting from oil and gas exploration ac
tivities. As oil infrastructure develops and transportation increases, the 
transition of forest or grassland areas into bare ground due to oil 
exploration poses a challenge in tracking, monitoring, and mapping. 
This transition is what we define as oil-exploration-related land distur
bances. The dynamic nature of oil exploration operations adds 
complexity, making it a formidable challenge to accurately assess the 
environmental impacts and ensure effective reclamation (Laurence and 
Balmford, 2013; Kosari et al., 2020; Abdelfatah, 2023). Oil and gas 
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exploration-related lands undergo changes through development, 
abandonment, or reclamation, and mapping these disturbances over 
vast areas, especially considering their rapid evolution, remains a sig
nificant challenge (Jordaan et al., 2009; Rokosh et al., 2012; Laurence 
and Balmford, 2013; Zhang et al., 2017; Thiessen and Achari, 2022). 
Despite the dispersed and comparatively diminutive nature of well sites 
established for oil exploration compared to other land covers, the cu
mulative alterations resulting from these scattered land disturbances can 
be substantial (Kearney et al., 2020; Hu, 2021). Contemporary research 
endeavors frequently emphasize oil spill detection, such as wind field 
corrections when oil spills (Li et al., 2022). However, there is a notice
able gap in the current research landscape, wherein the precise mapping 
of land disturbances attributable to oil exploration activities is inade
quately addressed. This aspect assumes paramount importance in 
achieving a comprehensive environmental evaluation of oil exploration 
impacts. Despite the vital importance of comprehending the effects 
stemming from land disturbance associated with oil exploration, 
research endeavors in this domain have been notably constrained. In- 
situ oil/gas mining activities, which usually appear as small footprints 
in resource roads and well sites, are easily ignored or mistakenly 
detected. Therefore, it is crucial to procure accurate maps that detail the 
footprint extraction of land disturbances resulting from oil exploration. 

This research uses deep learning (DL) methods and high-resolution 
satellite imagery to address these challenges for accurate land distur
bance detection. Convolutional neural networks (CNNs)-based networks 
have demonstrated state-of-the-art results in relevant detection tasks 
(Maggiori et al., 2016; Ševo and Avramović, 2016; He et al., 2016; 
Máttyus et al., 2017; Sun et al., 2017; Volpi and Tuia, 2017; Chen et al., 
2018; Dimitrovski et al., 2023). DL and CNN models are effective as they 
can rely significantly on the data quality used for training and testing, 
particularly when it comes to tasks like detecting land disturbances. 
Therefore, ensuring the accuracy of the examples can elevate the per
formance during image processing. However, if the examples contain 
errors, CNNs can learn to make incorrect generalizations and erroneous 
predictions (Simonyan and Zisserman, 2014; Yeh et al., 2020; Yekeen 
et al., 2020; Ma et al., 2021). To enhance model performance, an 
automatic error-correcting (AEC) algorithm is introduced in this study. 
The algorithm aims to improve the accuracy of the training dataset by 
rectifying potential errors, thereby enhancing the model’s ability to 
generalize effectively when mapping labelled datasets. 

In particular, we acknowledge that prior methodologies, such as 
FastICA (Sharifi and Amini, 2015; Sharifi et al., 2015), multivariate 
relevance vector regression (MVRVR) (Sharifi et al., 2016), relevance 
vector machine (RVM) (Sharifi, 2020), and multi-scale dual-branch re
sidual spectral-spatial network (MDBRSSN) (Sharifi, 2021; Ghader
izadeh et al., 2022; Tariq et al., 2022; Farmonov et al., 2023), used on 

accurate mapping in rural or forested regions, experience significant 
challenge in improving performance when the detected target is small 
scale or when the dataset’s quality is limited. Despite ongoing im
provements in OpenStreetMap and crowdsource mapping efforts for 
paved roads, there remains a lack of accurate maps for unpaved service 
roads located in rural or forested regions. This gap in the available data 
can pose significant challenges for navigation and logistics planning 
(Shao et al., 2021). One of the particularly challenging tasks is mapping 
land disturbances, including service roads, well sites, and well pads, 
during and after oil exploration. Manually labelling roads and well pads 
is a process susceptible to errors, characterized by time consuming 
procedures, and often entails considerable expenses (Yang et al., 2018). 
For example, the detection of roads and well pads in rural areas is sus
ceptible to errors and subjectivity (Fig. 1) due to the absence of regular 
mapping (Chowdhury et al., 2021). Furthermore, the ongoing expansion 
of resource road networks and well pads poses a challenge for detection 
tasks due to rapid infrastructure development. However, small-scale 
resource road networks and well pads have proven challenging to 
detect accurately in land disturbance mapping, leading to erroneous 
government monitoring and management (Laurence and Balmford, 
2013). Through the identification and rectification of potential errors 
within the training examples, the AEC algorithm improves the model’s 
capability to generalize effectively when mapping labelled datasets. 
Through this novel approach, our research contributes to the ongoing 
efforts in land disturbance detection and provides a clear perspective on 
the specific problems we aim to solve as compared to existing methods. 

Moreover, we employed the imagery sourced from the state-of-the- 
art RapidEye satellite system. Renowned for its exceptional high- 
resolution capabilities, this satellite delivers a detailed perspective of 
the Alberta oil sands mining sites. The 500 × 500 pixel patches provide a 
finely detailed view of the terrain, enabling a nuanced comprehension of 
the features present. Within the dataset, a meticulous categorization has 
been executed, specifically focusing on identifying the presence of un
paved roads and well pads. These crucial components of the oil sands 
infrastructure are distinctly outlined within the images, adding a layer of 
specificity to the dataset. Notably, the dataset utilized in the research is 
annotated with labels for unpaved roads and well pads. To further enrich 
the contextual understanding of the dataset, it has been systematically 
divided into two subsets based on the background landscape. This is 
discussed in more detail in the methodology section. Nevertheless, the 
research presented in this paper employed the oil sands mining region in 
Northern Alberta as its study area, given its varied landscape historical 
backgrounds and the land disturbances arising from oil and gas explo
ration activities. A summary and related work on land disturbance 
mapping and error correction are presented in Section 2. Then, Section 3 
focuses on presenting the automatic error-correcting (AEC) algorithm 

Fig. 1. Examples of image (left) and “ground truth” (right) pair with missing or incorrect labels.  
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used to enhance model performance by correcting bad examples in the 
training set during learning. The effectiveness of the AEC algorithm with 
improved performance when mapping the labelled dataset is explained 
in Section 4. Following the experiments, results were analyzed, and the 
capability of the AEC algorithm is further discussed in Section 5. In the 
final section, the research and the results of the research are 
summarized. 

2. Related works 

2.1. Land disturbance mapping 

Land disturbances on the Earth’s surface exhibit a high degree of 
diversity and randomness (Senf et al., 2015). Specially, land distur
bances related to oil and gas exploitation and exploration has mainly 
resulted from drill pad construction, common well equipment mainte
nance, and multiple roads connecting the drill pad (Wang et al., 2020a). 
The resulting land disturbance related to oil and gas developments can 
cause environmental damage, including vegetation withering, serious 
erosion, stream degradation, habitat fragmentation, and even some 
permanent land cover changes (Doley and Audet, 2013; Wang et al., 
2020b). Given its profound significance in environmental management, 
continuous and relevant research efforts have been dedicated to un
derstanding and mitigating these impacts. 

Current land disturbance mapping is divided into two types: spectral 
trajectory-based detection methods and machine/deep learning-based 
methods. Spectral trajectory-based detection methods have been 
commonly used for mapping land disturbances. Recent studies have 
included the Landsat-based detection of trends in disturbance and re
covery (LandTrendr) (Kennedy et al., 2010), continuous change detec
tion and classification (CCDC) (Zhu and Woodcock, 2014), continuous 
subpixel monitoring (CSM) (Deng and Zhu, 2020), and continuous 
monitoring of land disturbance (COLD) (Ye et al., 2023). The LT-GEE 
algorithm (GEE-version Landsat-based detection of trends in distur
bance and recovery) was used to detect land disturbances, which mainly 
referred to the conversion from vegetation to other impervious surfaces 
(Wang et al., 2020b). LandTrendr could detect the change situation and 
smooth the entire trend from the image time series stacks (Deng and 
Zhu, 2020). Although a variety of methods have been applied in land 
disturbance mapping, efficiency and accuracy can still be further 
improved. 

When focusing on research related to quantifying the impact of 
surface mining activity and reclamation, except for field surveys, 
research in the early stage mainly used machine learning algorithms 
such as random forest (RF), support vector machines (SVMs), and CNN- 
based networks. The performances with SVMs on land disturbances 
detection caused by drilling need improvement (Temitope et al., 2020), 
while CNNs-based models, such as mask-region-based convolutional 
neural networks (mask R-CNNs), were mainly used in oil spill detection. 
Specifically, with the combination of ResNet and feature pyramid 
network (FPN) architecture for feature extraction, the model performed 
better than conventional machine learning models. However, the im
pacts of mining on its surrounding area have usually been ignored 
(Sharifi et al., 2015; Yekeen et al., 2020; Zhang and Gao, 2023). 

However, there is still an overwhelming number of shortcomings in 
previous DL-based methods. For instance, FastICA presents notable ad
vantages in terms of simultaneous processing and efficiency, and it has 
improved results in PolSAR speckle reduction, particularly when applied 
to polarimetric channels. However, users should be mindful of its 
interpretational complexity and potential sensitivity to parameters 
(Sharifi et al., 2015). The multivariate relevance vector regression 
(MVRVR), while having high estimation accuracy, solves the underes
timation problem (Sharifi et al., 2016). However, there is actually a 
large number of DL-based methods applied in land disturbance detec
tion. Sharifi (2020) used the relevance vector machine (RVM) and SAR 
data for flood mapping. Although RVM has high efficiency in 

classification tasks and is capable of sparsity, which selects only relevant 
vectors for classification to reduce computational complexity, there 
have been challenges as the RVM model lacks the interpretability of 
simpler models. The problem of interpretability was then solved by a 
multiscale dual-branch residual spectral-spatial network (MDBRSSN), 
but the MDBRSSN also raised a new problem of model complexity 
(Sharifi, 2021; Ghaderizadeh et al., 2022; Tariq et al., 2022; Farmonov 
et al., 2023). In the 3D level, the CNNeGA method demonstrates ad
vantages in terms of reducing data volume, increasing processing speed, 
and improving accuracy in hyperspectral band selection (Esmaeili et al., 
2023). However, the complexity introduced and the potential sensitivity 
to parameter tuning can bring troubles in application. Based on those 
previous methods, there should be a shift to some newly-proposed 
methods. A few studies still use deep learning techniques for mapping 
land disturbances related to oil exploration. For example, Han et al. 
(2021) applied deep learning methods to map the well pads, the access 
roads, and the pipelines in the Athabasca oil sands region of Alberta, 
Canada. They achieved an overall accuracy of 94.5 % for well pads, 96.1 
% for access roads, and 97.6 % for pipelines. Similarly, Alshehhi et al. 
(2021) leveraged deep learning methodologies to delineate alterations 
in land cover associated with oilfields within the United Arab Emirates. 
Their study revealed that the application of deep learning techniques 
proved highly efficacious in accurately discerning and mapping changes 
attributed to oil exploration activities. In a study conducted in the 
Permian Basin of West Texas, USA, Zhou et al. (2021) used deep learning 
to detect and map well pads and associated infrastructure. They ach
ieved an overall accuracy of 94.5 % for well pads and 94.8 % for asso
ciated infrastructure. In addition, several other studies have successfully 
implemented deep learning for mapping land cover changes related to 
oil exploration activities on a global scale. For instance, Liu et al. (2021) 
used deep learning to map oil palm plantations in Southeast Asia, while 
Wu et al. (2020) used deep learning to map oil and gas infrastructure in 
the Niger Delta region of Nigeria. Overall, these studies demonstrated 
the potential of deep learning techniques for accurately mapping land 
disturbances related to oil exploration activities. 

2.2. Error correction in model training 

Error correction in model training has been applied in many fields, 
for instance, medical science (Wang et al., 2020a), weather analysis 
(Duan et al., 2021) and also many other research areas. In the context of 
error correction in model training, there are typically two main ap
proaches: manual and machine-assisted. The manual approach involves 
human annotators reviewing and correcting errors in the training data, a 
process which can be time consuming and costly, especially when 
dealing with extremely high volumes of data. In contrast, the machine- 
assisted approach involves using algorithms or tools to automatically 
identify and correct errors, which can be faster, more efficient, and less 
expensive. Moreover, with the machine-assisted approach, error 
correction can be fully automated. For example, a multiple-round 
training scheme can be set up to correct the ground truth annotations 
training-round by training-round during optimization (Girard et al., 
2019). In general, machine-assisted curation is not applicable between 
different deep learning tasks, particularly when dealing with a signifi
cant volume of deep learning data (Máttyus et al., 2017; Girard et al., 
2019; Hu, 2021). 

By employing the improved complete ensemble empirical mode 
decomposition with adaptive noise (ICEEMDAN) method (Wu and 
Huang, 2009; Colominas et al., 2014; Santhosh et al., 2018; Yang and 
Wang, 2018), recurrent neural network (RNN), and autoregressive in
tegrated moving average (ARIMA) model (Liu et al., 2015) with an error 
correction model, errors appearing during the short-term wind speed 
prediction training phase can be rectified. Thus, the modified data can 
be subsequently analyzed. Researchers also compared the error correc
tion models in their studies. They found that prediction accuracy is 
significantly improved when the error-decomposition correction 
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method is applied in the training process (Wang et al., 2020b, Duan 
et al., 2021). Among all these methods, DeepEC is an error correction 
framework that can be applied to deep neural networks for dose pre
diction and organ segmentation. It shows that when using a prediction 
or calibration network, the error correction mechanism enhanced the 
state-of-the-art networks, greatly improving performance compared to 
previous studies (Wang et al., 2020b, Wei et al., 2023). In general, the 
error correction process has a positive impact on model training and 
final performance. 

However, it is imperative to acknowledge the inherent limitations of 
these methods. For instance, while the ICEEMDAN method excels in 
signal decomposition, it may introduce artifacts or uncertainties, 
particularly in complex and dynamic datasets. Similarly, the utilization 
of recurrent neural networks (RNNs) may be susceptible to challenges 
related to vanishing or exploding gradients, potentially impacting the 
model’s stability during training. Additionally, the autoregressive inte
grated moving average (ARIMA) model assumes linearity and statio
narity in time series data, which could limit its effectiveness in capturing 
highly nonlinear wind speed patterns. 

An exemplary advancement in error correction is the DeepEC 
framework, explicitly designed for error correction in deep neural net
works applied to dose prediction and organ segmentation (Wang et al., 
2020b; Wei et al., 2023). While DeepEC has demonstrated considerable 
performance improvement when integrated into the prediction or cali
bration networks, it is prudent to consider potential computational 
overhead and the need for substantial labelled data for training. In 
summary, despite the positive impact of error correction processes on 
model training and final performance, a nuanced understanding of the 
limitations associated with each method is vital for informed and 
effective application in diverse scenarios. 

3. Materials and methods 

3.1. Data and pre-processing 

The data used in the research covers the area of the Alberta oil sands 
mining sites. The dataset contains 600 patches, where each patch con
sists of 500 × 500 pixels. Generated from RapidEye satellite imagery, the 
images possess a spatial resolution of 5 m. The RapidEye satellite im
agery typically comes in digital raster format (DRF), where each pixel in 
the image corresponds to a specific geographic location with associated 
spectral information. The dataset consists of three bands, indicating that 
the imagery used in this research is in RGB format. The imagery utilized 
in this research emanates from the cutting-edge RapidEye satellite sys
tem. Renowned for its high-resolution capabilities, this satellite provides 
a detailed perspective of the Alberta oil sands mining sites. The 500 ×
500 pixel patches offer a fine-grained view of the terrain, facilitating a 

nuanced understanding of the features present. Within the dataset, a 
meticulous categorization has been undertaken, focusing on the pres
ence of unpaved roads and well pads. These critical components of the 
oil sands’ infrastructure are delineated within the images, adding a layer 
of specificity to the dataset. 

In the sampling process, the sampling method we applied to generate 
data is segmentation sampling. In detail, the sampling method involves 
dividing the spatial data into smaller, manageable segments (patches) to 
focus on specific areas of interest (well sites and unpaved roads). Each 
patch is then annotated based on the presence or absence of the anno
tated features. This method allows for more granular analysis of the 
area, especially when dealing with large datasets or when specific fea
tures are scattered across the region. 

To further enhance the contextual understanding of the dataset, it 
has been partitioned into two subsets based on the background land
scape. A majority, consisting of 400 patches, unfolds against the back
drop of the dense and biodiverse forest ecosystem. The remaining 200 
patches showcase the juxtaposition of oil-related activities against the 
canvas of farmland expanses (Fig. 2). By integrating the spatial in
tricacies of the Alberta oil sands mining sites with the nuances of 
background landscapes, this research aims to unravel patterns, assess 
environmental impact, and contribute valuable insight to the ongoing 
discourse surrounding resource extraction and land use. In under
standing the dataset’s historical context and intricacies, we embark on a 
journey to decipher the Alberta oil sands through the lens of sophisti
cated satellite technology, laying the groundwork for a comprehensive 
exploration of this dynamic and consequential region. To normalize the 
pixel values, Equation (1) was used to result in values ranging between 
0 and 1 for all patches. 

Norm(pi, img = {p1, p2, ..., pi, ..., pn}) =
pi

max(img)
(1) 

In the data of this research, each patch includes both resource roads 
and well-pad labels. Each black and white labelled patch corresponds to 
a RapidEye 500 × 500-pixel image patch. With the satellite images and 
the labelled images (Fig. 3), the two subsets of the dataset are parti
tioned into training and validation sets through 10-fold cross-validation. 
The patches are numbered in sequential order based on their location. A 
10-fold division is implemented to guarantee impartial validation scores 
during error correction and unbiased final testing scores. 60 out of the 
total 600 patches are set aside for testing, while the remaining 540 
patches are employed for the training process. 

3.2. Method 

The main method in this paper uses MobileNet as the backbone of the 
DeepLabv3+ architecture. The features extracted by MobileNet are then 

Fig. 2. Images of farmland background (left) and images of forest background (right) in the Alberta oil sands mining sites dataset (Hu, 2021).  
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Fig. 3. Well-pad label (left), road label (centre), and combined label (right).  

Fig. 4. Errors in the ground truth images (original images [left] and errors [right]).  
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passed through the DeepLabv3+ module. By combining MobileNet’s 
efficiency with DeepLabv3+’s segmentation capabilities, the method 
can be suitable for land disturbance detection. The decision to use 
MobileNet as the model backbone over ResNet was based on its higher 
efficiency and lower memory cost request, even though it has lower 
performance than ResNet (Chen et al., 2022). With depth-wise separable 
convolutions structure and depth multiplier, a few number of parame
ters and computations are required to preserve the ability to learn useful 
features from data (Sandler et al., 2018). A compromise of an output 
stride of 16 was chosen to balance speed and performance. Additionally, 
the focal loss was utilized to handle potential class imbalance problems 
in the ground truth labels. Similar to an improved version of the pre
vious DeepLabv3 model, DeepLabv3+, the other parameters are kept as 
the same as in DeepLabv3+, including a learning rate of 0.01, a poly
nomial decay schedule, and a momentum of 0.9 (Chen et al., 2018). A 
training batch size of 32 is chosen to balance speed and performance, 
with a validation/test batch size of 8. Consistency is maintained by using 
the same random speed across all experiments. Experiments in this work 
are executed using Cuda 11.1 on a GeForce RTX 3090 GPU and an AMD 
Ryzen 9 3900x CPU. 

At the core of the AEC algorithm lies the notion of adjusting ground 
truth corrections based on the model’s accuracy degree. The AEC algo
rithm makes ground truth corrections where it sees fit proportionally to 
how well the model performs on the validation set. Getting accurate and 
reliable ground truth labels is not an easy task, and false negative errors 
commonly appear during the detection process. Even with high-quality 
datasets like OpenStreetMap and TorontoCity, there exists a 14 % dif
ference in their ground truth labels (Máttyus et al., 2017). The ground 
truth labels used in this study also have errors, and correcting them can 
improve the model’s performance (Fig. 4). 

The key idea of the AEC algorithm lies in the selective updating of 
pixel probabilities (via hyperparameters α and β) based on the discrep
ancies between model predictions and ground truths. This update pro
cess, governed by the function f(p*, V), dynamically adjusts the 
likelihood of pixel updates in the training set, particularly in response to 
improvements in model accuracy and rising cIoU values on the valida
tion set. The distinctive feature of the AEC algorithm is its innovative 
approach to dynamically and selectively updating pixel probabilities. 
This process is guided by hyperparameters α and β, which consider the 
disparities between model predictions and ground truths. The utilization 
of these hyperparameters, along with the adaptive updating mechanism 
facilitated by the functions, presents a unique methodology. This 
method is designed to respond to advancements in model accuracy and 
the augmentation of cIoU values within the validation set. Conse
quently, this contributes significantly to the overall effectiveness of the 
training process, ensuring improved training outcomes. 

Manually correcting mistakes and poor-quality examples is time 
consuming. However, deep learning frameworks are capable to auto
matically handle these errors, making manual re-labelling unnecessary. 
V = (Y*,Y) represents a validation set with m images, where Y* = {Y*

1,

...,Y*
m} denotes the model predictions, and Y = {Y1, ...,Ym} denotes the 

corresponding ground truths. Similarly, let y* = {y*
1, ..., y*

n} and y = {y1,

..., yn} represent the model predictions and ground truths, respectively, 
for a training set with n images. The error correcting probability P(p|y*,

V) can then be calculated as: 

P(p|y*,V) = Min(cIoU(class(p*),V)
f (p* ,V)

, 1) (2)  

f (p*,V) = α − β*cIoU(class(p*),V) (3)  

where the variables p* and p represent pixels in one image that corre
spond to pixels in another image within y and y*. Hyperparameters α and 
β play a crucial role in determining the behaviour of the AEC algorithm 
during training. In Equation (3), α, β > 0, α ∕= 0. The function class()
takes a pixel a as input and returns the class label of that pixel, indicating 

which object or background it belongs to. cIoU(c,V) is a function that 
returns the validation set of the intersection over union (IoU) of the 
predicted class c with the ground truth class c in the validation dataset V. 
By comparing the pixels of model predictions and ground truths, the 
structure uses the class() function and cIoU to update the probability. 
The AEC algorithm can selectively update pixels in y based on the dif
ferences between y* and y, in proportion to the respective cIoU values 
from the validation set and the function f(p*,V). The probability P(p|y*,

V) represents the likelihood of the error-correcting (EC) probability for 
pixel p in y by updating it to match the corresponding pixel p* in y* based 
on the validation dataset V. When the model’s accuracy improves and 
cIoU values rise in the validation set, the likelihood of making updates in 
the training set also increases (Fig. 4). 

Fig. 5 depicts the workflow of the AEC algorithm. The model’s 
validation performance was subsequently used to calculate the proba
bility of error correction. In detail, the AEC algorithm is executed 
alongside validation testing at regular intervals during model training. It 
does not modify the validation set, ensuring its independence 
throughout the training process. Since the validation set remains un
changed, any performance enhancements observed in the validation set 
during AEC algorithm execution are solely attributed to the algorithm 
itself. The outline of the proposed algorithm is as follows: 

Algorithm 1. Outline of Pseudocode for the AEC Algorithm.  

for image im*i in y* do 

for pixel p* in im*i do 
c ← class(p*) 
cIoU ← cIoU (c, V) 
probability ← Min(cIoUα, 1) 
if Random(probability) == True then 
p → p* 
end if 
end for 
end for  

3.3. Evaluation 

In this research, the evaluation metrics selected are average pixel 
accuracy (AA) and intersection over union (IoU). AA represents the 
accuracy of segmentation in terms of pixels, on average, compared to the 
ground truth labels. AA is given by 

AA = Avg(pixelAccuracy(img1), ..., pixelAccuracy(imgn)) (4)  

where n denotes the sum number of images, pixelAccuracy(imgi) cal
culates the accuracy at pixel-level for the ith image, and the function 
“Avg(…)” calculates the mean value of a set of numbers. 

Intersection over union (IoU) is a useful evaluation metric applied to 
computer vision and object detection tasks. It is also used in the evalu
ation process of the proposed method (Rahman and Wang, 2016). IoU is 
given by 

IoU =
|Y*∩Y|

|Y*∪Y|
(5) 

To evaluate the accuracy of segmentation models, the intersection 
over union (IoU) metric is used, which compares the predicted seg
mentation (Y*) to the ground truth (Y) for each class (cIoU). The mean 
intersection over union (mIoU) is determined by averaging the class 
intersection over union (cIoUs), thus treating segmentation inaccuracies 
uniformly across all classes despite their ground truth frequency (Rah
man and Wang, 2016). Both cIoUs and mIoU are effective in evaluating 
the proposed AEC algorithm, as they measure the accuracy of segmen
tation models and are unbiased despite class imbalance. 
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4. Experimental analysis and results 

4.1. Experiments 

Five comparative experiments were conducted. Baseline experiments 
(Experiments 1 and 2) were conducted without the AEC algorithm ex
periments, and the AEC algorithm was then applied to Experiments 3, 4, 
and 5) (Table 1). First, baseline Experiments 1 and 2 were conducted 

without the AEC algorithm. Then, Experiments 3 and 4 were trained for 
10 k iterations, and the AEC algorithm was applied to both the forest and 
the farmland background images with every 200 training iterations. 
Subsequently, the AEC algorithm was run in every training iteration 
until the model achieved the best mIoU score in Experiment 5. Here, 
hyperparameter α is a parameter that determines error correction 
probability given cIoU (Fig. 6). The values of α were selected arbitrarily 
in order to showcase the performance of the AEC algorithm across a 
range of conditions, and they can be further refined through optimiza
tion to enhance the overall efficacy of the model. When the value of α 
changed, the error correction probability also changed. If encountering 
the same class IoU, the increased value of α can lead to enhancing error 
correction probability limitations. The error correction probability can 
undergo a great increase when class IoU reaches a relatively high value 
with an increased value of α (Fig. 6). Therefore, the experiments for the 
AEC algorithm involved its performance testing while modifying the 
image background and adjusting the value of α. 

4.2. Results and discussion 

In the evaluation process of the algorithm, two key metrics that are 
commonly used in evaluating the performances of DL-based methods on 
change detection, average pixel accuracy (AA) and mean intersection 
over union (mIoU), were employed. These metrics were selected due to 
their ability to comprehensively assess the accuracy and spatial overlap 
of land disturbance extraction results, providing insights into the 
model’s effectiveness across diverse backgrounds. 

When not applying the AEC algorithm to the experiments, the 
baseline results show that the AA and mIoU reach 58.8 % and 56.4 % in 
the forest background while achieving higher values in the farmland 
background, which reaches 76.7 % and 70.2 %, respectively (Experi
ments 1 and 2). The results show the best model performance after 30 k 
training iterations. While applying the AEC algorithm to Experiments 3 
and 4, both AA and mIoU reached higher values. In detail, the AA and 
mIoU reach 67.9 % and 59.7 % in the forest background while achieving 
higher values in the farmland background, which reaches 83.7 % and 
70.6 %, respectively. Especially when trying to run every training iter
ation until the model achieved the best mIoU score, as in Experiment 5, 
the AA can reach an even higher score of 84.6 %. The results show that 
applying the AEC algorithm to the model leads to great effectiveness 
(Table 1). 

For Experiments 1 and 3, significant performance improvements can 
be observed with the AEC algorithm in comparison to the baseline 
control ones (Fig. 7). In detail, the experiment of land disturbance 
extraction from forest areas utilizing the AEC algorithm demonstrated 
notable enhancements in both the average pixel accuracy (AA) and 
mean intersection over union (mIoU) scores, which achieved a respec
tive increase of 15.4 % and 5.8 % over the baseline. 

Similarly, when comparing Experiment 2 and Experiment 4, the AEC 
algorithm was shown to enhance the performances of land disturbance 
extraction in farmland, resulting in a respective increase of 8.3 % and 
0.5 % in AA and mIoU scores. Therefore, the efficiency of the AEC al
gorithm in updating labels for farmland and forest imagery is prominent 
(Fig. 8). 

Specifically, AA shows an increase of 9.1 %, and mIoU shows an 

Fig. 5. Workflow of the AEC algorithm.  

Table 1 
Experimental settings and results for the baseline experiments and AEC 
algorithm-added experiments.  

# Background α Interval AA (%) mIoU (%) 

1 Forest – –  58.8  56.4 
2 Farmland – –  76.7  70.2 
3 Forest 2 200  67.9  59.7 
4 Farmland 5 200  83.1  70.6 
5 Farmland 5 On Best  84.6  70.5  
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increase of 3.3 % with the forest background, which is much higher than 
the 7.0 % increase in AA and 0.4 % increase in mIoU with the farmland 
background. These percentages indicate that, although the oil-related 
land disturbance detection is more accurate with the farmland back
ground, the elevation on the performance is greater when experimenting 
with the AEC algorithm on the forest background (Table 1). 

Besides, both AA and mIoU can exhibit a much steeper increase with 
respect to training iterations when using AEC as opposed to the baseline 
(Fig. 9 and Fig. 10). This can be explained further as the AEC training 
process involves both dataset improvement and model fitting. However, 
this difference in behavior was not observed in the initial 1000 itera
tions. This is potentially due to the learning rate schedule along with the 
AEC requiring warm-up since the model does not understand what a 
correct prediction is and what needs to be corrected at the start of the 
training. To further evaluate the practical application of the AEC 

algorithm, we conducted additional analysis by comparing Experiments 
3 and 4 with Experiment 5. The results indicate that the “On Best” 
experiment needs fewer updates than the other experiments but can 
attain comparable performance (Table 1). 

Experiment 5 made a total of 18 updates compared to the 50 made in 
Experiments 3 and 4. The experimental results indicate that Experiment 
5, which involves only 36 % of the updates made in Experiments 3 and 4, 
achieved a similar performance. This observation suggests that the AEC 
algorithm can enhance the performance with a minimal set of strategi
cally selected updates. However, although the AEC algorithm helps 
enhance the ground truth data quality, space remains for more im
provements. The correction probability can also be improved in future 
studies by testing different evaluation metrics, especially statistical 
ones. More deep neural architectures should also be tested in conjunc
tion with AEC to ascertain its dependence on neural architecture and 

Fig. 6. Relationship between α value changes and the slope of the EC probability curve.  

Fig. 7. Bar chart of quantitative evaluation on the baseline experiments and AEC algorithm-added experiments (experiment number settings refer to Table 1).  
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achieve better overall performance. 
By applying state-of-the-art deep learning methods and AEC to detect 

oil-exploration-related land disturbances, these methods can prevent 
ignorance of land encroachment and destruction during and after hy
drocarbon development. The results demonstrate that the AEC algo
rithm can substantially enhance the precision of land disturbance 
detection from satellite images employing deep learning techniques. The 
practical implications of the AEC algorithm are wide-ranging, with po
tential benefits in the fields of land management, agriculture, and 
forestry. The adoption of AEC can greatly enhance the applicability and 
deployment of deep learning models for precise land management and 
planning by improving the quality of both models and datasets. More
over, the AEC algorithm is particularly useful in scenarios where the 
images are up to date, but the corresponding labels are not. 

However, while the AEC algorithm has demonstrated effectiveness in 
the Alberta dataset, further experiments are slated to assess its perfor
mance on datasets exhibiting similar scattered land disturbance pat
terns. Additionally, despite notable enhancements in ground truth data 
quality by applying the AEC algorithm, there remains room for refine
ment. Even after implementing the AEC algorithm into the network, the 
average accuracy for detecting land disturbances in forested areas only 
reached 67.9 %. This level of accuracy may not suffice for rigorous land 
disturbance analysis, potentially impacting critical government plan
ning decisions. Therefore, ongoing efforts to enhance the algorithm’s 
performance are imperative for robust and reliable land protection 
planning. 

Fig. 8. Examples of error correction results: forest (left) and farmland (right), original ground truth (top), image (middle), and AEC updated ground truth (bottom).  
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5. Discussion 

The AEC algorithm exhibits commendable performance in error 
correction, offering promising prospects for advancing the mapping of 
future land disturbances. However, it is imperative to delve into its 
computational cost for a comprehensive evaluation. Compared with 
other existing methods, during the training phase, AEC’s forward pass 
aligns with the neural network’s architecture, while its integration in the 
backward pass introduces additional complexity, impacting gradient 

computation and parameter updates. The error correction process, 
involving error identification and label updating, is linear but contrib
utes to the overall complexity. During deployment, AEC’s computational 
complexity is determined by the neural network architecture and input 
size. Compared to traditional manual or heuristic correction, AEC pro
vides an automated alternative, proving advantageous for efficiency and 
adaptability in model learning dynamics. Although AEC demonstrates a 
manageable computational load and the potential to enhance model 
accuracy, particularly in datasets prone to labeling errors, it may possess 

Fig. 9. Comparison of average pixel accuracy (AA) vs iterations between forest control and baseline AEC algorithm.  

Fig. 10. Comparison of mIoU performance between forest control and AEC baseline over iterations.  
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a lower computational overhead than some advanced error correction 
techniques. In general, the AEC algorithm outperformed other existing 
methods, such as ICEEMDAN network (Wu and Huang, 2009; Colominas 
et al., 2014; Santhosh et al., 2018; Yang and Wang, 2018), RNN, and 
ARIMA model (Liu et al., 2015). Its superiority positions it as a valuable 
tool for error correction in deep learning models, particularly in sce
narios where datasets are susceptible to labeling errors. While 
acknowledging its merits, ongoing research and fine-tuning are recom
mended to optimize AEC’s performance for specific applications and 
architectures, ensuring its continued effectiveness and adaptability. 

Despite the advancements demonstrated by our proposed automatic 
error-correcting (AEC) algorithm, there are noteworthy limitations that 
should be acknowledged. While our study demonstrates notable per
formance elevation with the automatic error-correcting (AEC) algorithm 
in the context of farmland background, the extent of improvement is 
comparatively modest in scenarios involving the forest background. This 
discrepancy could potentially translate into variations in land distur
bance mapping accuracy. This constitutes the initial limitation of our 
proposed method. Additionally, it is important to acknowledge that our 
current investigation has solely focused on farmland and forest back
grounds, neglecting the broader spectrum of areas where oil exploration 
activities may occur. Oil exploration is not confined to terrestrial land
scapes but extends to marine environments and urban areas. Given the 
limited dataset employed in our research, the efficacy of the AEC algo
rithm in mapping land disturbances in these diverse contexts, such as sea 
areas and urban environments, remains unexplored. As a result, the 
generalizability and performance of our AEC algorithm in mapping land 
disturbances in these specific regions warrant further investigation and 
testing. 

6. Conclusion 

In this paper, we propose an automatic error-correcting algorithm 
(AEC) tailored to the context of Alberta oil sands, specifically designed 
to rectify errors in road and well-pad extraction during training to 
address the common inherent imperfections in deep-learning data. 
Comparative analyses between the baseline and AEC-enhanced models 
demonstrate a substantial improvement in the performance of detecting 
land disturbances associated with oil exploration. Our findings reveal 
that the proposed algorithm contributes to an enhancement of 8.3 % to 
15.4 % in average accuracy (AA) and a 0.5 % to 5.8 % improvement in 
mean intersection over union (mIoU). Significantly, while oil-related 
land disturbance detection accuracy is notably higher in the farmland 
background, the AEC algorithm exhibits a more pronounced perfor
mance elevation when applied to the forest background. In summary, 
our AEC algorithm demonstrates its efficacy in automatically and effi
ciently rectifying data errors during land disturbance detection. This 
positions it as a valuable tool for mapping unpaved rural roads and 
objects, thereby significantly improving dataset quality and enhancing 
the performance of intelligent training models for mapping disturbances 
related to oil exploration. 
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