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Abstract— This article presents a blur resist generative
adversarial network (BrGAN) with multiple joint dilated
residual convolutions for chlorophyll image restoration of the
Geostationary Ocean Color Imager (GOCI). First, a publicly
available dataset was built to support this study. Second,
a multiple attention perception mechanism and a multiple joint
dilated residual convolution module were proposed to cope with
the challenge of large missing areas in GOCI chlorophyll images.
Third, a patch generative adversarial network (GAN)-based
discrimination module was proposed to avoid the restored areas
with generating mosaic and shadows. Our experimental results
demonstrate that the BrGAN can reach 37.06 in the peak signal-
to-noise ratio (PSNR) and 0.0485 in the Learned Perceptual
Image Patch Similarity (LPIPS), respectively. The comparative
study shows that the BrGAN achieves the highest effectiveness
and advancement among other seven state-of-the-art (SOTA)
methods.

Index Terms— Convolutional neural network (CNN), Geosta-
tionary Ocean Color Imager (GOCI) ocean chlorophyll images,
image inpainting, image restoration.
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I. INTRODUCTION

EARTH observation images play an important role in
providing crucial information assistance to maritime

safety [1], [2], [3], ocean carbon cycling monitoring [4], [5],
algae blooms detection [6], [7], current movement surveillance
[8], [9], etc. Among the above applications, the large area
current movement surveillance based on chlorophyll images
has attracted great attention of researchers. However, the ocean
chlorophyll images usually appear with incompleteness and
serious noise due to the interference of clouds. How to conquer
the above problem has a great significance to the further
applications based on the ocean chlorophyll images.

Under our review, the current research of the denoising
and inpainting restoration of ocean chlorophyll satellite
images is rather rare, even there is no publicly available
relevant datasets. Besides, although the image denoising and
inpainting restoration has achieved great successes in natural
scene images, most of the state-of-the-art (SOTA) denoising
and inpainting restoration algorithms [10], [11], [12], [13],
[14] are not suitable for the ocean chlorophyll satellite
images and usually cannot achieve satisfactory performance.
Most popular image denoising and inpainting restoration
methods are convolutional neural network (CNN) [15] based
and achieved great successes for face and building images
[16]. However, due to the lack of considerations about
the semantic information reconstruction mechanism to deal
with the large areas missing problem in the ocean satellite
chlorophyll images, those SOTA approaches failed to obtain
good performances. Fig. 1 shows the two Geostationary Ocean
Color Imager (GOCI) images with noises and large area
missing caused by clouds. The noise and missing of large
areas will cause great challenges to the follow-up relevant
applications.

To overcome the above problems, this article mainly studies
from three aspects. First, we constructed and publicly shared a
GOCI chlorophyll image dataset for denoising and restoration.
Our dataset consists of three parts: training, testing, and
validation of images. As the GOCI chlorophyll images have
no truth labels, we manually designed the missing areas

1558-0644 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 29,2023 at 01:25:59 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-5851-2779
https://orcid.org/0009-0001-5623-8291
https://orcid.org/0000-0003-1465-6599
https://orcid.org/0000-0002-8320-6308
https://orcid.org/0000-0001-6075-796X
https://orcid.org/0000-0001-7899-0049


4208412 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 1. Two sample GOCI chlorophyll images captured between (a) 1:00 pm to 2:00 pm and (b) 3:00 pm to 4:00 pm, January 29, 2014 (light coral color:
the presence of shallow water along the coast).

of a complete image, thus, the original completed image
can be the truth labels. Second, we proposed a Blur Resist
Generative Adversarial Network (BrGAN) that utilizes a self-
attention mechanism to reinforce the high-level semantic
feature extraction, a union dilated convolutional module
(UDCM) to reinforce the reconstruction ability and a union
loss to control the model learning. Finally, to avoid generation
images with shadows and mosaics, we proposed a patch
generative adversarial network (GAN)-based discrimination
module to guarantee the texture consistency of the final
restored images.

Our contributions include the following two points.
1) A publicly available dataset of the GOCI chlorophyll

images for denoising and restoration tasks. A novel
BrGAN that is based on a self-attention mechanism,
a UDCM and GAN framework for denoising and
restoration of the GOCI chlorophyll images.

2) A union loss that is consisted of pixel-level losses,
perceptual losses, style losses, and against loss, to con-
trol the trained network with excellent performances for
denoising and restoration.

II. RELATED WORK

Image restoration has always been one of the vital tasks
in computer vision. Briefly, the image restoration algorithm
repair and inpainting the missed pixel values, texture features,
and semantic information of an image. First, the image
restoration algorithms were widely used in the restoration
of the art drawings [17]. With the breakthroughs of deep
learning, the completeness and the semantic information
accuracy of the restored images have been greatly promoted,
and achieved successes in the image inpainting of faces [18],
buildings, and natural scenes [19], [20], [21].

In this section, we review the image restoration algorithms,
including traditional manually designed, CNN-based, and
GOCI chlorophyll image restoration.

A. Traditional Manually Designed Models
Most traditional manually designed models are diffusion-

based algorithm and patch-based algorithm. The diffusion-
based image restoration algorithms usually restore the image
from complete area pixels to lost or damaged area pixels
[22]. Recently, many researchers have focused on the study
about those algorithms. An image restoration algorithm based
on the structure information digging was proposed in [23].
To improve the completeness of structure information and
guarantee the local consistency in the reconstructed images,
they designed a new iteratively structure search approach.
Similarly, it was found in [24] that when repairing the missing
areas, the regional similarity of the image would be destroyed
if the incomplete image was affected by noise, blur, and
other factors. Therefore, they proposed a postprocess-based
target removal method [24], which could further optimize the
repaired image, and reduce repair trace in the missing image
areas. The traditional image restoration methods include those
ones based on image patch repair [17], [25], [26], [27], the
main method is to mask or block the original image, then
to repair the image. The drawing and filling method based
on image Hankel structure matrix was first proposed in [28].
The method calculates the similarity degree between blocks
through the Hankel structure matrix in image blocks, so as to
repair missing blocks. A context-aware image repair method
was proposed in [29] by cutting the image top-down into
multiple variable patches to identify these areas.

B. Deep Learning-Based Methods
In the existing image repair method, partial convolution

proposed in [10] will be used to repair the irregular holes
in the image, and the original image will be patched
according to the acquired missing areas through irregular
mask. Similarly, the model of training with irregular masks
has promoted the rapid development of image restoration.
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Pluralistic image completion (PIC)-net adopts a probabilistic
framework and two paths in parallel to generate multiple
recovery results for a mask image, and introduces short-term
and long-term memory mechanisms [30], so as to create a
consistent connection between the encoder and the decoder,
so that the recovery image of the lost image is as consistent as
possible with the original image. The Shift-Net was proposed
in [31] based on the U-Net structure presented in [32]. The
main purpose is to restore the semantic information and texture
structure of images. A new migration network is adopted to
make the encoding part and decoding part have more precise
connection.

In the process of inpainting missing areas, the discontinuity
of local pixels in the missing area often occurs and the
resolution of the restored image structure is low. For this
reason, an image repair method was proposed in [33], in which
the network focuses on coherent semantic information in the
image. Network structure (coherent semantic attention (CSA)-
net) divides the process of image restoration into two parts:
rough restoration and high precision restoration, which are also
based on U-Net structure [34]. The first part mainly makes a
rough preliminary reasoning about the overall structure texture
and pixel value of the missing area of the incomplete image,
and introduces extra features of visual geometry group (VGG)
layer in the first part. While the second part combines the
input and output of the first part. Compared with the first part,
this network structure has more depths. Moreover, the encoder
and decoder learn the characteristics of the VGG layer through
consistency loss to achieve a better prediction. Subsequently,
a module based on recurrent feature reasoning (RFR) was
proposed in [12], which is mainly divided into two parts,
namely partial convolution layer and U-Net-based feature
inference layer. The main function of partial convolution
layer is image region recognition. The difference between
the feature inference layer and the traditional U-Net structure
layer is that a knowledge consistent attention (KCA) module
is added between downsampling and upsampling to make the
details in the image more easily to be expressed. The main
process of this module is to first identify the region, and then
input the results to the feature inference layer for prediction.
The predicted result will be returned to the part of the
convolution layer for the next stage of reasoning. This module
makes use of the correlation between adjacent pixels to deepen
the estimation of deeper pixels. A hypergraph convolution was
used in [35] to generate image global semantics. However,
there are two problems need to be solved in the restoration of
GOCI chlorophyll color images by this model: one is that the
loss area of the image to be repaired needs to be provided;
the other is that it is difficult to remove the noise from the
images.

Unlike the model proposed in [35], the BrGAN model
proposed in this article for restoration of the GOCI chlorophyll
color images simplifies the preprocessing in the restoration
process. The network only needs to input the image in order
to be repaired to output the restored image, and this model
has achieved good results in noise removal, missing area
restoration, and simultaneous implementation of two tasks.
As shown in Fig. 2, when RFR-Net repairs images with both
missing and noise points, pixel confusion appears in the repair
effect from the perspective of vision, and the repair result of

Fig. 2. Comparison of RFR model and our model in simultaneously removing
noise and repairing missing areas (black box: the area in the image with
considerable difference).

our model is smoother compared with it, and the probability
of missing caused by noise points and cloud occlusion is very
high in the GOCI chlorophyll color images.

III. METHOD

In this section, we will introduce our BrGAN from the
aspects of the whole network structure, the generator part and
includes the self-attention module, the multiple residual and
dilated convolution module, the discriminator part, and the
designed loss function.

A. Framework of BrGAN

In our BrGAN, two parts (generator and discriminator) are
included. The generator module uses an image with missing
pixels as input, then generates a repaired result. To evaluate
the repaired result and guide the generator module to learn
better network parameters, the generated result is then put into
a discriminator module, and backward a discrimination loss.
Finally, under the control of a fusion loss which includes four
different kinds of losses, the BrGAN can be well trained in
an end-to-end way.

B. Generator of BrGAN

As shown in the generator part in Fig. 3(a), the generator
is divided into two parts, i.e., the encoder and the decoder.
Encoders are divided into five groups from top to bottom. For
the first group, it consists of the input layer, two convolution
layers with 3 × 3 convolution kernels, Batch normalization
(BN) [36], and the ReLU activation function, as shown in
the gray square in Fig. 3. Besides the above layers, the
residual strategy [37] is also used. In addition, the number
of filters in the convolutional layer is 64. The other four
groups are composed of 2 × 2 maximum pooling layer,
two convolution layers with the size of 3 × 3 convolution
kernel, a BN layer, and a ReLU layer, respectively. The
residual mechanism is also used between the two adjacent
convolution operations. The number of downsampling filters
is 128, 256, 512, and 1024, respectively. The feature size is
downsampled from 224 × 224 to 14 × 14 in stages. After
that, the downsampled features are put into the self-attention
module between the decoder and the encoder, obtaining more
efficient high-level semantic information from the encoder
and transferring to the encoder, making the decoder have
more powerful recovery performance. The decoder structure
can also be divided into five groups, as shown by the black
arrows. For each group operation, the features in the encoder
are spliced with the features in the corresponding decoder
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Fig. 3. Architecture of our BrGAN with two parts: (a) generator and (b) discriminator.

Fig. 4. Self-attention module architecture.

layer. Through the fusion of low-level and high-level features,
the network can better retain high-resolution details in the
high-level features. After that, two convolution layers, a BN
layer and a ReLU layer are performed to learn effective high-
resolution information in high-level features. After five groups
of operations, the features are restored to the same size as
the original image. Finally, a UDCM is used to enlarge the
perceptual field of features and promote the integrity, the
consistency, and authenticity of the restored image.

C. Self-Attention Module

As shown in Fig. 4, the self-attention module is to transfer
high-level semantic information from the encoder to the
decoder more effectively. Then, the decoder reconstructs from
the image features and completes the final repair task. In our
approach, we are inspired to apply self-attention based on
channels. First, we reshaped the final output of the encoder
to satisfy the input of the self-attention module and set four
attention heads. Besides, three linear layers are set to satisfy
the input requirements of the query feature, key feature, and

Fig. 5. Our designed UDCMs.

value feature. The query feature is mapped with a set of
key-value feature pairs through scaled dot-product attention.
In summary, the core operation of self-attention is to calculate
the attention weights between query and key values, and then
get the entire weights and output on the scope value.

Its calculation formula is as follows:

MultiHead(Q, K , V ) = Concat(head1, head2, . . . , headn)W o

(1)

headi = Attention
(

QW Q
i , K W k

i , V W v
i

)
(2)

Attention(Q, K , V ) = soft max
(

QK T

√
dk

)
V (3)

where headn represents the nth attention head, W ◦ denotes the
weight of each attention head, and

√
dk is scaling factor.

D. Union Dilated Convolution Module

Dilate convolution module (DCM) increases the perceptual
range of the network through using convolutions with different
dilate rates, and can retain detailed information [38]. Although
pooling layer can increase the receptive field of next layer
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neurons, it also results in loss of information that is difficult
to recover. As shown in Fig. 5, the proposed UDCM includes
five convolutional layers with different dilate rates, one BN
layer, and a ReLU layer. In detail, the dilate rates of five
different sizes are 1, 2, 4, 8, and 16, respectively. In addition,
the kernel size, stride, and padding size of the convolutional
layer are set as 4, 2, and 1, respectively. Thus, the UDCM can
capture multiple larger spatial areas of restoration features with
different dilate rates, benefitting from obtaining more global
semantic information and enhancing the image restoration
consistency. Besides, UDCM is also helpful to capture the
low-frequency noise and enhance the de-noise ability of
the network. To make DCMs connect to each other in the
hierarchical mode, we designed a residual mechanism between
two adjacent DCMs. Finally, the convolutional results were
stacked, and the predictions were generated after the Sigmoid
operations.

For example, when calculating the nth output feature of the
dilate convolution (Fdn ∈ Rc×w×h), the presentation can be
written as follows:

Fd1 = δrelu
(
β
(
Cr=1

3×3(Finput)
))

. (4)

Fd2 = δrelu
(
β
(
Cr=2

3×3(Fd1)
))

. (5)

Fout = δsigmoid

 n∑
j=1

Fdn

. (6)

Here, Cr=1
3×3 represents the convolution layer with kernel

size of 3 × 3 and dilate rate of 1, β, δrelu, and δsigmoid
denote the BN layer, ReLU, and Sigmoid activation functions,
respectively. Finput andFout mean the input feature of the
UDCM and the final output of the UDCM, respectively. n
denotes accumulate up to the nth layer.

Through the comparison of black boxes in Fig. 5, we found
that the image texture after UDCM processing is more refined
and appropriate. In fact, the UDCM module can be regarded
as a parallel multiresolution module to improve the model
stability and reconstructed result’s texture consistency.

E. Discriminator of BRGAN

In our approach, we adopted Patch GAN [39] as our GAN
backbone. By distinguishing the texture structure of the real
image from that of the generated image, the authenticity of
the repaired image is judged, and the generator is encouraged
to generate the texture structure consistent with the real image
in the process of the restoration of the GOCI chlorophyll
color image. The discriminator is shown in Fig. 3. Texture
discriminator mainly consists of four layers of convolutions,
three LeakyReLU layers, and a Sigmoid activation layer. The
first three layers of convolutions are with kernel size of 4,
strides of 2, and padding size of 1. The LeakyReLU activation
function is used to activate neurons, and the activation function
is set as negative slope of 0.2 and inplace is set as true. In the
last convolution layer, the kernel size, stride, and padding size
are set as 4, 1, and 1, respectively. Besides, the neurons are
activated by Sigmoid function. Finally, the local discrimination
of the inpainting result map is utilized to ensure the effective
recovery of the low-frequency local texture structure.

F. Loss Function

The loss function of our network has four components, i.e.,
the pixel level loss, the perception loss, style loss, and the
adversarial loss. The above union loss makes our model to
have superior performances in both the visual demonstration
and the quantitative analysis.

The pixel level loss can be represented as follows:

Lpix =
∥∥G(Iinput) − Igt

∥∥
1 (7)

where G denotes the generator network, Iinput and Igtl mean
the incomplete input image and the ground truth, respectively.

By using only the pixel level loss will lead to the mosaic
phenomenon in the restored images, we added the perception
loss to reinforce the learning ability for the high-level semantic
information. In the implementation, we use the first three max-
pooling layers outputs of the VGG16 (which was pretrained on
the ImageNet) as the evaluation standards to estimate the total
high-level semantic differences between the reconstructed and
ground truth images. Thus, the perception loss can be written
as

Lperceptual =

3∑
i=1

∥∥ϕi
(
G(Iinput)

)
− ϕi (Igt)

∥∥
1 (8)

where ϕi represents the output features of the i th pooling layer
on the pretrained VGG16.

To make sure the restored images have same styles with the
original incomplete images, we further utilize the style loss to
constraint the network loss, which can be represented as

Lstyle =

∑
i

∥∥φi
(
G(Iinput)

)
− φi

(
Igt
)∥∥

1 (9)

where φi represents the gram matrix of the i th pooling layer
on the pretrained VGG16, therefore φi (·) = ϕi (·)

T ϕi (·).
Finally, to further ensure the visualization and texture

consistency, we add the discriminate loss which can be written
as

Ladversarial

= min
G

max
D

V (G, D) = min
G

max
D

EIgt,Egt

[
log D

(
Igt, Egt

)]
+ EIout,Eout

[
log
(
1 − D

(
Iout, Eout

))]
(10)

where D represents the discriminator of the network, Igt
represents the ground true, and Iout means the corresponds
to the output of Iinput.

Thus, our final union loss of network is designed as follows:

Lall = λ1Lpix + λ2Lperceptual + λ3Lstyle + λ4Ladversarial (11)

where λ1, λ2, λ3, and λ4 are the weights of the above losses,
respectively.

G. Evaluation Standards

In our experiments, we used peak signal-to-noise ratio
(PSNR) and Learned Perceptual Image Patch Similarity
(LPIPS) to evaluate the denoising and inpainting performance.
Denote I (i, j) and K (i, j) as the i th row and j th column pixel
values in the original and restored images, respectively. The
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mean-square error (MSE) of the original and restored images
can be represented as

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[
I (i, j) − K (i, j)

]2
. (12)

Then the PSNR can be represented as

PSNR = 10 × log10

(
MAX2

I

MSE

)
= 20 × log10

(
MAXI
√

MSE

)
(13)

where MAXI represents the max value in the image.
And the LPIPS can be written as follows:

Lpips(I, K ) =

∑
l

1
Hl Wl

∑
h,w

∥∥wl ⊙
(

ŷl
h,w − ŷl

0h,w

)∥∥2
2. (14)

Here, Lpips(I, K ) means the distance between the original
true image I and the restored image K , feature stack is
extracted from the i th layer, and unit regularization is carried
out in channel dimension. The vector wl ∈ Rcl is used to scale
the channel. Finally, L2 distance is calculated.

IV. EXPERIMENTS

In this section, we first introduced the dataset we made and
specially designed for GOCI chlorophyll color image repair
and inpainting. Then, the experimental settings and evaluation
standards were illustrated. Finally, we give a detail analysis
about the experimental results.

A. GOCI Denoising and Inpainting Datasets
As far as we know, there are no relevant available datasets

for GOCI image denoising and inpainting application. There-
fore, we collected five random images daily from NASA’s
official website spanning the years 2014–2019. This allowed
us to create a comprehensive dataset named GOCI chlorophyll
color image denoising and inpainting dataset (GCCIDID)
that is well-suited for our purposes. Each original GOCI
chlorophyll color image has a size of 5600 × 5600 pixels
with a spatial resolution of 500 m. The initial data acquired
by our team is in.NC format, encompassing Metadata, Flag
Codings, Vector Data, Bands, Masks, and more. We employ
the SeaDAS satellite remote sensing data processing software
to derive oceanic chlorophyll image information, subsequently
transforming it into a visual format. This serves as a foundation
for subsequent stages of image refinement, filtering, and
cropping processes. Fig. 6 shows a sample GOCI chlorophyll
color image. It is obvious that large areas are polluted with
much noise or missing lots of pixels due to the occlusion of
clouds.

To guarantee that we obtain the clean data to build our
dataset for training, testing, and validation, we only select
areas which have little missing pixels. Besides, to make
the images easier for GPU processing, we cut the original
images into 224 × 224 patches. Thus, in detail, we only select
224 × 224 patches which has less than five missing pixels
to build our dataset. For each original 5600 × 5600 image,
we slide with a stride of 50 pixels to generate 224 × 224
patches, leading to each two adjacent patches will have much
overlapping. After the selection of patches with little missing

Fig. 6. Sample of original GOCI chlorophyll color image (black box: the
selected patches).

Fig. 7. NVIDIA irregular mask dataset.

pixels, we further check and remove the patches with much
noise.

The first and second rows represent the images with
noise and their corresponding original clean label images,
respectively. The third and fourth rows represent the images
with noise and missing pixels and their corresponding
original clean label images, respectively. The fifth and sixth
rows represent the images with missing pixels and their
corresponding original clean label images, respectively.

We chose the original image with a little noise and a few
missing pixels as the label. For the generation of training
images with missing pixels, we applied mask operations as
same as that in [10], [12], [40], and [41]. Fig. 7 illustrates
the mask utilized in generating the dataset, sourced from the
NVIDIA irregular mask dataset [10]. For the noise addition,
we simulated the true noise in GOCI chlorophyll color images,
majorly appearance with white, black, red, green, and blue
colors. In our dataset, we further separated the images into
three parts: only for denoising, only for inpainting, and for
both denoising and inpainting. Finally, we generated 120 000
images for our dataset, including 60 000 training, testing, and
validation images and 60 000 corresponding labels. And for
our above three subdivisions, each kind has 20 000 images
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Fig. 8. Several sample images in our GCCIDID dataset.

and 20 000 corresponding labels as shown in Fig. 8. Labels
in Fig. 8 represent complete ground true images, Noise
images represent images with Noise, Noise Mask images
represent images with both noise and missing, and Mask
images represent images with missing.

In our experiments, we used about 1300 images for testing.
The GCCIDIC we made for training and testing is the
images in.bmp format. The memory usage of each image
is about 148k, about 16.82 GB for the training dataset, and
about 370 MB for the test dataset. Note that, our GCCIDID
dataset is publicly available and can be obtained through the
following website: http://39.98.109.195:1234/share/jUuEr7oT.

B. Experimental Settings

All of our experiments ran on a computer with Intel1 Core2

i9-10900K CPU @ 3.70 GHz, 128 GB memory, and an
NVIDIA GeForce RTX 3090. During training, we used Adam
optimizer and the learning rate decreased half when the loss
did not reduce for five epochs. The initial learning rate and
the batch size were set as 0.001 and 16, respectively. For our
whole GCCIDID training images, we trained 100 epochs and
saved the model with the best validation performance. Besides,
to enhance the generalization ability, the data augmentation
operations are utilized, including rotation, resize, etc., during
training. It costs about 50 h for training. During the testing
phase, we opted to elevate the batch size to 64, resulting
in an approximately 18-s processing time for the evaluation
of 1295 test images derived from the GOCI denoising
and inpainting datasets. Notably, the data loading procedure

1Registered trademark.
2Trademarked.

exhibited an efficient speed of 1.05 images per second, further
contributing to the overall efficiency of our testing process.

To illustrate the superior performance of our model,
comparisons with other SOTA denoising and inpainting
models tested on GCCIDID dataset are exhibited. The
compared methods included P-Conv [10], EdgeConnect-net
[40], RFR-net [12], Hypergraphs [35], Bias U-Net [42],
conditional texture and structure dual generation (CTSDG)
[13], and multi-level interactive siamese filtering (MISF) [41].
It needs to note that several above compared methods need to
provide inpainting masks during training and testing, which
was satisfied during our experiments. For justice, each model
used the same experimental settings as our approach.

C. Quantitative Analysis
In this section, we quantitatively analyzed the PSNR and

LPIPS performances among our method and other seven
SOTA approaches verified on GCCIDID dataset. We tested
for three kinds of data in GCCIDID, respectively. Besides,
to authoritatively evaluate the performance scores, we used
mean PSNR and mean LPIPS scores for the final comparison.
The mean PSNR and mean LPIPS can be represented as
follows:

PSNRmean =
1
n

n−1∑
i

PSNRi . (15)

LPIPSmean =
1
n

n−1∑
i

LPIPSi . (16)

Here, n means the number of tested images, and i means the
i th image.

Table I shows the comparison results among our BrGAN
and other seven SOTA approaches verified on GCCCIDID
dataset. For PSNR value, the larger the better, and for
LPIPS value, the smaller the better. It is obvious that our
BrGAN achieved the highest PSNR values on all the three
different kinds of data, obtaining the highest mean PSNR
value as high as 37.06. Our mean PSNR value is higher
than other approaches about 31%, 21.2%, 7.5%, 6.5%, 4.4%,
3.1%, and 6.9%. This result strongly proves the superior
performance of our BrGAN model. On the other hand, our
model achieved the lowest LPIPS value, as low as 0.0485. The
low LPIPS value proves that our results are more consistent
with human visual standards. Our mean LPIPS value is lower
than other approaches about 78.1%, 41.4%, 45.3%, 32.9%,
45.8%, 18.8%, and 17.9%. This result shows that our model
can generate much better results in visual, which can be clearly
seen in our following visual comparisons.

D. Visualization Analysis
In this section, we analyzed the visual results of our method

and other seven SOTA approaches. Fig. 9 shows several
classical visual comparison results, as well as that the P-Conv
obtained the worst visual results, remained holes and noise
after the restoration. This visual result is consistent with
the quantitative result that P-conv obtained worst PSNR and
LPIPS values. The same problem also existed in the Edge-
connect method. Besides, the Edge-connect model could not
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TABLE I
COMPARISONS OF THE PSNR AND LPIPS VALUES

Fig. 9. Visual recovered comparisons among our BrGAN and other seven outstanding approaches evaluated on GOCI chlorophyll color images. The figure
above denotes the input images, the mask of input images, results of P-Conv, Edge-connect, RFR, Hypergraphs, Bias U-Net, CTSDG, MISF, and our BrGAN,
labels, respectively.

recover the red colors well. For RFR-net, the generated results
showed that the pixel was confusing in some areas, leading to
uncleared visualizations. The major weakness of hypergraphs
and Bias U-Net usually generated more pale red colors than

other approaches, especially for the original deep red areas.
For CTSDG, some color confusion phenomenon occurs after
the reconstruction. The MISF recovered well for textures of
missing areas, but it got undesirable results for pixel values
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Fig. 10. Visual recovering results of our BrGAN verified on GOCI
chlorophyll color images (odd and even rows denote the original incomplete
targets and the recovered results, respectively).

within missing areas. Thereafter, MISF demonstrated a worse
performance for noises during the comparisons. In contrast, the
recovered results by our approach demonstrated better effects
in the aspects of noise removal, texture reconstruction, and
color balance.

In addition, we verified our BrGAN on the actual
GOCI chlorophyll color images with missing parts. The
recovering results are as demonstrated in Fig. 10, showing
satisfactory visual effects for dealing with targets having
a large proportion of losing areas. The good performance
convincingly demonstrated the superior recovering ability of
our BrGAN for GOCI chlorophyll color images.

The illustrated outcomes in Fig. 10 undeniably accentuate
the remarkable proficiency of our BrGAN in tackling the
intricacies of images fraught with substantial data gaps. This
remarkable display not only reaffirms the resilience of our
methodology but also furnishes compelling substantiation
of the unparalleled data recuperation potential our BrGAN
introduces to GOCI chlorophyll color images. By adeptly
bridging information voids with coherent and visually pleasing
content, our model showcases its ability to elevate the
overall quality of such images, even amidst the challenge of
considerable data fragmentation.

E. Ablations and Hyperparameters Analysis

In this section, we analyzed the influence of hyperparam-
eters in BrGAN. In addition, we verified the effectiveness of
attention and dilated convolution modules.

The traditional U-Net model has shown the superiority
of this structure in various studies [13], [38], [42], and the
structure has been improved. We have added the residual
mechanism in the encoder and decoder on the U-Net structure,
which has the same application in some medical image
segmentation studies [43].

As shown in Table II, ↑ denotes the bigger the better,
↓ denotes the smaller the better. BrGAN (1, 2, 3, and 4)
represent the use of different hyperparameters, respectively,
the repair effect of Original ResUnet in the GOCI image

TABLE II
INFLUENCE OF HYPERPARAMETERS IN OUR EXPERIMENT

TABLE III
ABLATION ANALYSIS

reached 36.93 (PSNR). The use of a single pixel-level loss has
a strong ability in image noise removal, as shown in Fig. 11(a).
However, the performance in the restoration of missing images
is not satisfactory, as shown in Fig. 11(b) and (c), which
usually results in the fuzzy phenomenon of missing images
and relatively large LPIPS, up to 0.0763 (LPIPS). Therefore,
it is not possible to use a single PSNR to evaluate the repair
effect of the model, but also needs to judge the repair ability
of the model through LPIPS. Inspired by CTSDG, MISF, and
other facial and architectural restorations, we enhanced the
constraint ability of the model by adding some losses, such as
perceptual loss, style loss, and adversarial loss.

In order to design the most appropriate hyperparameters
in the GOCI chlorophyll color images, we conducted
several restoration experiments, and finally designed a group
of optimal hyperparameters. As shown in Fig. 11, the
experimental restoration effect has also been significantly
improved. We also analyzed the influence of adding the self-
attention module and UDCM module, respectively, on the
repair effect of the model, as shown in Fig. 12. After adding
the self-attention module and UDCM module, the missing
image could be effectively repaired. Experiments show the
effectiveness and stability of these two modules. Table III
shows the ablation analysis details and the hyperparameters of
λ1, λ2, λ3, and λ4 used in the experiment are 10, 0.1, 250,
and 0.001, respectively. The (w/o SA) and (w/o UDCM) mean
without self-attention model and without DCM. As shown
in Table III, the PSNR and LPIPS of our results after the
addition of two proposed modules have also been significantly
improved. After adding two modules at the same time, the
PSNR and LPIPS of our model reached 37.05 and 0.0485,
respectively. It indicates that the complete model proposed by
us has superior performance in noise removal and restoration
of GOCI chlorophyll color images.
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Fig. 11. Results of our model are shown on the test image after using different hyperparameters (red box: the area in the image with considerable difference).

Fig. 12. Results of the ablation experiment (blue box: the area in the image with considerable difference).

V. CONCLUSION

In this article, we first build a publicly open dataset named
GCCIDID that is the first GOCI chlorophyll color image
restoration dataset as far as we know. Then, we proposed
a GOCI chlorophyll color image restoration network named
BRGAN that innovations majorly lie on a novel attention
module and a superior UDCM. In BrGAN, no more assistant
mask information is necessary. The attention module guides
the network which focuses on areas that providing high-level
semantic information and guaranteeing the texture consistency
of recovered results. To further reinforce the high-level
semantic information learning ability, we proposed a union
dilated convolution to improve the noise distinguish ability
and strengthen the digging ability to discover the relationships
among incomplete and existed areas. In addition, we adopted
a GAN module to further improve the color and texture
consistency of recovered images. Finally, BrGAN designed a
loss including the pixel level loss, the perception loss, style
loss, and the discrimination loss. The effectiveness of the

designed union loss was demonstrated through our ablation
experiments. Also, we compared BrGAN with other SOTA
approaches evaluated on GCCIDID dataset, illustrating the
superiority of our BrGAN that achieved PSNR and LPIPS
as good as 37.05 and 0.0485. Our mean PSNR value is
higher than other approaches about 31%, 21.2%, 7.5%, 6.5%,
4.4%, 3.1%, and 6.9%. Our mean LPIPS value is lower than
other approaches about 78.1%, 41.4%, 45.3%, 32.9%, 45.8%,
18.8%, and 17.9%. We also visualized restoration results for
analysis. Both the quantitative and visualization comparisons
convincingly illustrate the superiority of the proposal.
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