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A B S T R A C T   

Knowledge distillation is one effective approach to compress deep learning models. However, the current 
distillation methods are relatively monotonous. There are still rare studies about the combination of distillation 
strategies using multiple types of knowledge and employing multiple teacher models. Besides, how to optimize 
the weights among different teacher models is still an open problem. To address these issues, this paper proposes 
a novel approach for knowledge distillation, which effectively enhances the robustness of the distilled student 
model by a weights adaptive multi-teacher collaborative distillation. Moreover, the proposed method utilizes 
feature knowledge exchange guidance between teacher networks to transfer more comprehensive feature 
knowledge to the student model, which further improves the learning capability of hidden layers’ details. The 
extensive experimental results demonstrate that the proposed method achieves state-of-the-art performance on 
Massachusetts Roads Dataset, LRSNY Roads Dataset, and WHU Building Dataset. Specifically, under the guidance 
of the first ensemble of teacher networks, we obtained IoU scores of 47.33%, 78.15%, and 80.71%, respectively. 
Under the guidance of the second ensemble of teacher networks, we obtained IoU scores of 48.56%, 79.51%, and 
81.35%, respectively.   

1. Introduction 

With the advancement of scientific and technological capabilities, 
significant advancements have been made by neural networks in several 
fields, including categorization of images(Wang et al., 2021a), object 
detection(Li et al., 2020), identification of faces (Deng and Guo, 2018), 
image semantic segmentation (Chen et al., 2018b), and image retrieval 
(Yan et al., 2021). Image semantic segmentation has significant practical 
implications for remote sensing image processing. The remote sensing 
imagery serves as one of the primary tools for observing and monitoring 
the Earth’s surface. In this context, the extraction of information (e.g. 
buildings and roads) from remote sensing images holds immense prac-
tical significance. This information not only plays a crucial role in urban 
planning (Schrotter and Hürzeler, 2020) and population estimation 
(Chen et al., 2021) but also exerts far-reaching impacts across various 
domains, including but not limited to traffic management and safety, 

natural disaster and resource management, as well as infrastructure 
planning. Researchers have conducted extensive research on remote 
sensing image extraction, yielding substantial research achievements. 
Presently, deep learning models serve as the primary foundation for 
extraction algorithms in the domain of remote sensing images. Never-
theless, these neural network models tend to possess a substantial 
number of parameters, ranging from several million to billions in 
magnitude, making them computationally intensive and reliant on high- 
performance server backends, rendering them unsuitable for direct 
application on satellite computing devices and edge computing devices. 
Knowledge distillation, which trains lightweight student models guided 
by complex models, enables the retention of student models with high 
accuracy and robustness. It is currently the mainstream approach for 
model lightweighting (Hinton et al., 2015). 

However, methods of knowledge distillation are still the subject of 
exploratory study, with relatively limited diversity in distillation 
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techniques and insufficient exploration of distillation using multiple 
types of knowledge and multiple teacher types. Additionally, optimizing 
the weights among different teacher models is also an important topic 
that requires further research. 

To release those issues, we put forward a knowledge distillation 
strategy that uses multiple teacher models and multiple types of 
knowledge. Specifically, this distillation method analyzes and integrates 
knowledge from different teacher networks, transferring three distinct 
types of knowledge to the student network based on different distillation 
losses, resulting in a significant improvement in its performance. When 
combining different teacher models, a weight adaptive evaluation 
module is also proposed to optimize the weights of the different teacher 
models. Furthermore, within the domain of remote sensing image 
extraction tasks, we employ a multi-task learning strategy to successfully 
combine the loss functions of several tasks, which improves the per-
formance of the model. 

The paper makes the following key contributions:  

(1) We put forward a knowledge distillation strategy based on 
feature-level fusion among multiple teachers. This strategy in-
volves mutual learning and fusion of feature knowledge between 
teacher networks, followed by guiding the student network in 
learning feature layers. This approach effectively enhances the 
robustness of distillation against erroneous guidance.  

(2) Building upon the feature-level fusion between teachers, this 
paper introduces an innovative strategy for multi-teacher distil-
lation that integrates multiple types of knowledge. During the 
fusion of multiple knowledge types, we combine the knowledge 
from feature-level fusion among teachers, relation-based knowl-
edge, and response-based knowledge for distillation.  

(3) This paper introduces an effective strategy for multi-knowledge 
fusion and multi-teacher collaborative distillation. Furthermore, 
an adaptive weight assessment algorithm is integrated during the 
multi-teacher distillation stage, ensuring the precision of teacher 
network guidance throughout the training process. 

2. Related work 

2.1. Knowledge distillation 

Knowledge distillation is an approach aimed at compressing and 
accelerating models. It enables the effective improvement of the per-
formance of lightweight student model’s performance under knowl-
edgeable teacher model’s direction, thus achieving model compression. 
The concept of knowledge distillation, also known as ‘dark knowledge 
extraction’, was first introduced by Hinton in 2014 (Hinton et al., 2015). 
It entails incorporating the teacher network’s soft objectives into the 
aggregate loss function, which directs the compact model’s training and 
promotes knowledge transfer. In recent years, an increasing number of 
researchers and scholars have recognized the promising performance 
and significant application value of knowledge distillation in achieving 
model lightweighting. Currently, knowledge categories in knowledge 
distillation are typically divided into three major groups: knowledge 
based on responses, knowledge based on features, and knowledge based 
on relation. 

To address the issue of inconsistent sample and label sizes during 
neural network training, Bagherinezhad et al. (2018) enhanced the 
quality of labels through iterative guided training, thereby further 
improving the model’s generalization ability. Yim et al. (2017) found 
that hint training can represent the training process and achieve 
knowledge transfer, fast convergence, and transfer learning by fine- 
tuning the student network on the target task dataset. Heo et al. 
(2018) employed adversarial attack strategies to convert benchmark 
class samples into target class samples and used the generated adver-
sarial examples to steer the development of the student network. This 
approach significantly enhances the student network’s ability to 

recognize decision boundaries. Considering the neglect of logit distil-
lation in current knowledge distillation methods, Zhao et al. (2022) 
introduced the Decoupled Knowledge Distillation (DKD) approach, 
which efficiently combines the benefits of target class knowledge 
distillation with non-target class knowledge distillation, leading to a 
more flexible and effective knowledge distillation process, thereby 
further improving the model’s generalization ability. Furlanello et al. 
(2018) combined the distilled student models with the teacher model to 
obtain better generalization performance on test data. 

To provide guidance for training deeper and more compact student 
networks, Romero et al. (2014) developed a better knowledge distilla-
tion technique. This technique utilized the middle-tier feature map in 
the teacher network to provide guidance within the corresponding 
guidance layer of the student network. In their exploration of knowledge 
distillation, Zagoruyko and Komodakis (2016), adjusted the features of 
attention regions from the perspective of attention mechanisms. This 
differs from the carefully designed knowledge for guiding student 
network training in known knowledge distillation tasks. To address the 
reliance on a large number of pre-trained estimators in existing pose 
distillation works, Li et al. (2021b) introduced an online knowledge 
extraction framework for human posture. This framework improves 
distillation efficiency by extracting human pose structure knowledge. 
Chen et al. (2022a) stressed the need of reducing the performance gap 
between instructor and student models in an effective manner, direct 
knowledge distillation methods are commonly employed. They recom-
mended employing a pre-trained model’s discriminative classifier as the 
teacher to guide student training. In knowledge distillation methods, 
different architectures may cause semantic information at the same 
spatial location to differ. To tackle this problem, Lin et al. (2022) pro-
posed a full-space matching knowledge distillation method that maps 
each pixel of teacher features to all spatial positions of student features. 

Park et al. (2019) effectively utilized associations between sample 
characteristics as knowledge and transferred this information to offer 
direction for the development of the compact network from the teacher 
model. Xu et al. (2020) introduced self-supervised learning as an addi-
tional task to complement knowledge extraction. Through this 
approach, the model demonstrates effectively discriminates between 
positive and negative samples, thereby enhancing its learning of task- 
specific knowledge and feature representation capabilities. This 
approach significantly enhances the model’s classification performance. 
In contrast to methods that require pre-training a single teacher, in (Lin 
et al., 2017a; Lin et al., 2017b), multiple students are guided simulta-
neously, facilitating mutual learning among the student networks. Ji 
et al. (2021) proposed Feature Refinement with Self-Knowledge Distil-
lation (FRSKD), aiming to address the issue of losing local information 
due to data augmentation during large-scale teacher model training and 
self-knowledge distillation. FRSKD combines soft labels and feature map 
distillation techniques to achieve self-knowledge distillation more 
effectively. Yang et al. (2022) introduced Cross-Image Relationship 
Knowledge Distillation (CIRKD), which aims to address the problem of 
neglecting global semantic relationships between individual images and 
pixels in conventional knowledge distillation (KD) approaches used in 
semantic segmentation. This approach combines structured pixel-to- 
pixel and pixel-to-region relationships between entire images as distil-
lation losses to improve the student network’s ability to replicate the 
structured semantic relationships of the teacher network. 

Yuan et al. (2020) introduced the use of label smoothing regulari-
zation to add a virtual teacher model to a knowledge distillation task. 
They further proposed the framework of Teacher-free Knowledge 
Distillation (Tf-KD), where the learning of regularized distributions, 
either on its own or manually designed, can optimize student models. 
Zhang et al. (2022) used a method known as using generative adversa-
rial networks for image-to-image translation tasks. They addressed the 
challenge of producing high-quality, high-frequency information has 
been addressed using Wavelet Knowledge Distillation. Instead of 
directly extracting information from the generated samples, this 
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approach utilizes discrete wavelet transforms to decompose the image 
into various frequency bands to obtain high-frequency band informa-
tion. Kang et al. (2021) recommended a conditional distillation frame-
work for knowledge extraction to overcome the challenges faced by 
knowledge distillation in object detection. The framework incorporates 
a trainable conditional decoding module that retrieves information for 
each target instance based on queries. To tackle the challenge of self- 
supervised pretraining for small models, Bhat et al. (2021)proposed a 
knowledge distillation approach named Domain Guided online Knowl-
edge distillation (DoGo) that enhances the performance of compact 
networks by using single-stage online knowledge distillation. 

2.2. Object extraction from remote sensing images 

Recent years have seen a tremendous advancement in remote sensing 
technology and a broad use of high-resolution satellite images. Signifi-
cant advancements in the process of extracting things from remote 
sensing images have been made by object identification algorithms 
based on deep learning. Numerous cutting-edge approaches for 
extracting roads and buildings have been presented and are being 
continually improved by using the benefits of deep learning. Recent 
research has demonstrated the effectiveness of deep learning-based 
techniques in accurately extracting roads and buildings from remote 
sensing images. 

2.2.1. Road extraction in remote sensing images 
Road extraction holds significant importance in remote sensing 

image information extraction. Mnih and Hinton introduced a technique 
that employs Restricted Boltzmann Machines (RBMs) to identify road 
regions in high-quality aerial images (Mnih and Hinton, 2010), marking 
the initial attempt that deep learning techniques are combined with 
remote sensing images road extraction. Wu et al. (2021) proposed the 
Dense Global Residual Network (DGRN) to reduce the enhances 
contextual awareness. To improve the extraction of local and global data 
from remote sensing, Luo et al. (2022) introduced a Bidirectional 
Transformer Network (BDTNet) that utilizes a hybrid encoder-decoder 
architecture. Wang et al. (2022a) introduced Dual-Decoder-U-Net 
(DDU-Net), a deep learning model that has been improved with an 
enhanced deep neural network model, which in duties involving the 
extraction of roads from remote sensing images, the reliability and ac-
curacy of small roads are improved when there are different sizes of 
roads. You et al. (2022) suggested the Foreground Mixture Improved to 
Weighted Dual-Network Cross Training (FMWDCT) method for semi- 
supervised road extraction. The challenge of sample imbalance in road 
extraction task is addressed by this method. Zhou et al. (2022b) intro-
duced SOC-RoadNet, a weakly supervised road segmentation network, 
which learns road information from open-source road maps using 
structural and directional consistency principles, the extraction of high- 
quality, extensive roads possible. Chen et al. (2022b) presented an 
adversarial learning-based semi-weakly supervised approach for 
extracting road networks in remote sensing imagery, making full use of 
weak annotations in the dataset. Wang et al. (2021b) presented a 
method to enhance the accuracy and connectedness of road extraction in 
remote sensing images by using an Inception-Convolution Inherited 
Encoder-Decoder network. Zhou et al. (2022a) introduced a Segmen-
tation Depthwise Separable Graph Convolutional Network (SGCN) that 
the precision of road extraction from high-resolution remote sensing 
images has witnessed significant improvement. Shi et al. (2014) pro-
posed a road border recognition and ground point separation in remote 
sensing images are made possible by a method based on polar grids that 
makes use of trajectory data and feature filters. Hu et al. (2015) pro-
posed a technique for detecting road boundaries that leverages Condi-
tional Generative Adversarial Networks (CGANs) and converts point 
clouds into two-dimensional images. 

2.2.2. Building extraction in remote sensing Images 
Numerous fields, including urban planning (Schrotter and Hürzeler, 

2020), population estimation (Chen et al., 2021), change detection 
(Chen et al., 2021), land use management (Chen et al., 2019), and other 
geographic and societal applications, can benefit from high-resolution 
remote sensing images. Currently, the success of deep learning in 
extracting buildings from remotely sensed images is mainly attributed to 
its ability to effectively capture and represent protrusions or prominent 
features of buildings. Wang et al. (2022b) simplified the training task for 
extracting architectural information using deep convolutional neural 
networks, a building feature prominence, global perception and cross- 
layer information fusion network (B-FGC-Net) including recommend 
spatial attention units and residual learning. To enhance the automated 
extraction of building boundaries, Zhou et al. (2022c) retain the 
morphological properties of extracted buildings, the problem of 
boundary optimization and fully segmented building extraction is 
created, together with a multi-scale context-aware network (BOMSC- 
Net). He and Jiang (2021) in the problem of maintaining the accuracy of 
boundary construction, embed boundary learning tasks in fully con-
volutional networks. Xia et al. (2021) semi-supervised learning is 
initially used to edge detection neural networks in the challenge of 
getting the roof border of structures in high-resolution remote sensing 
images. In reducing the dependency on labeled samples, this method co- 
trains the model by using smaller sample sets with labels and large 
batches of images without labels. Chen et al. (2022d) proposed an 
Encoder-Decoder network with Contour Guidance and Local Structure 
Awareness (CGSANet) to address the problem with current encoder- 
decoder architectures based on implicit features of extracting building 
forms from remote sensing images are not effectively used by FCN. 
Considering the complexity of building colors and textures in remote 
sensing images with high resolutions, Hosseinpour et al. (2022) intro-
duced an end-to-end Cross-Modal Gated Fusion Network (CMGFNet), 
which extracts building from Very High-Resolution (VHR) remote 
sensing images and Digital Surface Model (DSM) data. Li et al. (2022) 
introduced an original Hierarchical Deconvolutional Network (HDNet) 
with a feature representation in convolutional neural networks during 
the extraction of remote sensing images is unstable and imprecise. This 
is addressed by the encoder-decoder structure. Given the extensive 
parameterization in current deep neural network-based approaches, 
which extracts building in remote sensing images, Chen et al. (2022c) 
proposed a Context Feature Enhancement Network (CFENet). Guo et al. 
(2021) presented a Scene-Driven Multi-Task Parallel Attention Con-
volutional Network (MTPA-Net) to solve the limitation that current 
building extraction methods based on convolutional neural networks 
cannot cover buildings in different scenes. Lei et al. (2022) propose se-
lective non-local resUNeXt++ (snlrux++), which aims to improve the 
robustness of the semantic segmentation model for remote sensing 
image extraction tasks. 

3. Methodology 

In this section, we will introduce the proposed knowledge distillation 
strategy that combines multiple teachers, integrates multiple knowledge 
sources, and facilitates feature knowledge exchange among teacher 
networks. Then, we will present and discuss each key strategy employed 
in the distillation process. Finally, we will present a comprehensive 
explanation of the distillation loss employed in each strategy. 

As shown in Fig. 1, our proposed strategy for distillation, which 
combines multiple types of knowledge and utilizes a collaborative 
ensemble of teacher networks, consists of three main components: 
knowledge distillation based on feature fusion among multiple teachers, 
collaborative distillation with multiple teachers, and relation-based 
fusion of multiple types of knowledge. 

We utilize classical deep learning methods for remote sensing image 
extraction, such as the U-Net (Ronneberger et al., 2015) and Deep-
LabV3Plus (Chen et al., 2018a), to construct multiple teacher network 

Z. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103522

4

models, each having independent feature representations and knowl-
edge. In the knowledge distillation module based on feature fusion 
among multiple teachers, we first design a convolutional regression- 
based feature fusion module. After effective feature fusion, the trained 
student network’s feature maps are guided. This is depicted by the solid 
red line in Fig. 1. 

In the module on joint distillation among multiple teachers, we first 
employ a weight auto-evaluation module to assess the importance of 
different teacher models and determine the guiding weights for each 
teacher network. In the weight auto-evaluation module, the cross- 
entropy loss between the real label and the teacher network prediction 
is calculated as part of the sample-based weight assessment process. The 
inflexibility brought on by set teacher weights is successfully overcomed 
by using this to calculate the distribution of teacher model weights for 
each sample. 

Euclidean distance is used in the relation-based multi-knowledge 
fusion distillation module to gauge the relationship correlation between 
several targets. First, by computing the Euclidean distance between the 

teacher networks’ output characteristics, we obtain a representation of 
the relationships between targets. Then, we leverage this relationship 
representation to enhance the student model’s comprehension of the 
interplay and correlations between the targets, thereby enhancing the 
effectiveness of knowledge transfer during the distillation process. This 
is depicted by the solid green line in Fig. 1. 

3.1. Knowledge distillation based on multi-teacher feature fusion 

In the realm of knowledge distillation, we believe that learning from 
intermediate feature layers contributes to improving the performance of 
lightweight networks. Therefore, we extend the distillation method to 
intermediate layers to extract more useful information from the teacher 
networks. Firstly, we design a feature fusion module based on con-
volutional regression, which effectively merges the features before 
guiding the training of the student network’s feature layers. As shown in 
Fig. 2, initially, we apply padding to the feature maps extracted from the 
teacher networks, resulting in the creation of novel feature maps. 

Fig. 1. Overview of our proposed distillation strategy that combines multiple knowledge sources and utilizes a collaborative ensemble of teacher networks.  

Fig. 2. Feature-level fusion among multiple teachers.  
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Subsequently, we utilize a 3 × 3 convolutional kernel on these newly 
formed feature maps, effectively achieving the fusion of the two feature 
maps. 

Then, we measure the alignment between the teacher networks’ 
feature layers by comparing their representations at the intermediate 
level using mean squared error loss. Finally, we combine the classifi-
cation loss and mean squared error loss to train the student network. The 
mean squared error loss formulation for the teacher’s intermediate 
feature layers is as follows: 

Lfearure =
(
tji − tki

)2
, (1)  

where tji denotes the i-th feature of the j-th teacher model. 

3.2. Multi-teacher collaborative knowledge distillation 

In order to increase the trained student network’s resilience and 
accuracy, as well as its capacity to adjust to ineffective instructor 
models. Hence, we have devised a distillation strategy that integrates a 
collaborative multi-teacher network approach, engaging multiple 
teachers in guiding the training of a lightweight network. In the process 
of allocating guidance weights to the teacher networks, inspired by 
Zhang et al. (2021), we have developed an adaptive weight allocation 
algorithm to efficiently distribute the guidance weights of the teacher 
networks.We can determine the estimated weight distribution by 
calculating the cross-entropy loss between the predictions made by the 
teacher network and the labels assigned to the data. The final model 
predictions in knowledge distillation are obtained using the softmax 
function with temperature T, given by σ(z) =

exp(Zc/T)∑
j
exp(Zc/T)

, where z =
[
z1,

z2, ..., zc] represents the output logits and C is the number of classes. The 
distillation loss is shown as follows: 

LkCEkd = −
∑C

c=1
yclog

(
σ
(
zcTk
))

. (2)  

wk
KD =

1
K − 1

(

1 −
exp
(
LkCEkd

)

∑
jexp

(
LkCEkd

)

)

. (3) 

Here Tk represents the k-th teacher, and as Lk
CEkd decreases, the cor-

responding wk
KD increases. Then, the overall predictions of the teachers 

are combined with the computed weights: 

LKD = −
∑K

k=1
wk
KD

∑C

c=1
zcTk log

(
σ
(
zcS
) )

. (4)  

3.3. Relation-based multi-knowledge fusion distillation 

To further explore useful information from the teacher networks, we 
introduce a knowledge fusion approach based on relations for distilla-
tion. As shown in Fig. 3, We compute pairwise distances between the 
multiple outputs of both teacher and student networks within each 
batch, ultimately forming a relationship-based structural output of size 
batch × batch. 

In this section, we utilize Euclidean distance to measure the rela-
tionship correlation between different targets. When transferring 
relation-based knowledge, we employ the Smooth L1 loss function to 
mitigate the impact of large errors, as it imposes a smaller penalty on 
such errors, reducing the impact of outliers and facilitating better 
knowledge transfer of relationships. By incorporating relation-based 
knowledge distillation, we leverage the inter-object relation informa-
tion in semantic segmentation tasks to improve the student model’s 
performance. The loss expression is as follows: 

Lrelation = l
(

1
ϕ(t)

‖ti − tj‖2,
1
ϕ(t)

‖si − sj‖2

)

. (5)  

ϕ(x) = ‖xi − xj‖2. (6) 

Here ti, tj, si, sj represent the i-th feature of the teacher and student 
models, where i ∕= j. ϕ(x) is the normalization factor for distance, and l(•
) represents L1 smooth loss function. 

3.4. The overall loss function 

In addition to the three aforementioned losses, we also calculate the 
regularized cross-entropy loss of the ground truth labels. The loss 
function is as follows: 

LCE = − [ylogŷ+(1 − y)log(1 − ŷ) ]. (7) 

The overall loss function of our knowledge distillation method is as 
follows: 

L = LCE + αLfeature + βLrelation+ γlKD, (8)  

where α, β and γ are hyperparameters used to control the balance be-
tween the impact of knowledge distillation and the standard cross- 
entropy loss. 

Fig. 3. Feature-level fusion among multiple teachers.  
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4. Experiments 

4.1. Experimental preparation 

4.1.1. Datasets 
On the Massachusetts Roads dataset, the LRSNY dataset, and the 

WHU Building dataset, we carried out comprehensive trials to confirm 
the efficacy and reliability of our proposed strategy.  

(1) The Massachusetts Roads dataset comprises 1,171 aerial images 
captured in Massachusetts, encompassing urban, suburban, and 
rural areas. The dataset includes optical remote sensing images, 
each containing an area spanning 2.25 square kilometers and 
measuring 1500 × 1500 pixels. 1,108 images from the training 
set, 14 images from the validation set, and 49 images from the 
testing set make up the dataset. In our experiments, we divided 
each image into small patches of 256 × 256 pixels. Fig. 4 displays 
several sample cut images of this size used in our experiments. 
Each image has a corresponding ground truth that is represented 
as a binary image, where road areas are represented in white 
(255, 255, 255), and background areas are represented in black 
(0, 0, 0). The dataset can be obtained from the following website: 
http://www.cs.toronto.edu/~vmnih/data/.  

(2) The LRSNY roads dataset contains images of the central part of 
New York City, captured at a resolution of 0.5 m. The original 
images are 37949 × 35341 pixels in size, and for user conve-
nience and standardisation, they have been broken into smaller 
blocks of 1000 × 1000 pixels. 716, 220, and 432 images total 
from this dataset are used for training, validation, and testing. 
The images are also available in a 256 × 256 pixel format in the 
dataset. Fig. 5 shows several sample cut images of this size used in 
our experiments. The dataset can be obtained from the following 
website: https://pan.baidu.com/s/1jkKPjLYeadRipLGzTNxLgA.  

(3) The WHU Building Dataset is a dataset released by the Remote 
Sensing Information Engineering Research Center at Wuhan 
University for building extraction and classification. The dataset 
consists of two subsets: WHU Building Dataset I and II. WHU 

Building Dataset I includes high-resolution remote sensing im-
ages, building masks, and building height information, for a total 
of 25 images. WHU Building Dataset II contains more data, with 
20 scenes in total. Each scene includes remote sensing images 
with four bands, corresponding masks, and building height in-
formation. In our experiments, we divided each image into small 
patches of 256 × 256 pixels. Fig. 6 displays several sample cut 
images of this size used in our experiments. 

4.1.2. Network architecture 
In all experiments, our first set ensemble of teacher networks in-

cludes the U-net and DeepLabV3Plus networks with ResNet101 as the 
backbone. The network branches of U-Net consist of convolutional 
layers, pooling layers, and upsampling layers, with a convolutional 
kernel size of 3 × 3. The network branches of DeepLabV3Plus comprise a 
ResNet101 backbone, ASPP module, and decoder module, with a con-
volutional kernel size of 3 × 3. The parameter count of the U-net is 
3.1×107, and the parameter count of DeepLabV3Plus is 5.9×107. The 
second set ensemble of teacher networks includes the CRAE-Net (Li 
et al., 2021a) and SGCN (Zhou et al., 2022a). The network branches of 
CRAE-Net include ResNet50 as the backbone feature extraction 
network, positional attention module, channel attenuation module, and 
residual blocks. The network branches of CRAE-Net consist of ResNet50 
as the backbone feature extraction network, feature separation, graph 
construction, and decoder modules. The parameter count of the CRAE- 
Net is 4.9×107. The parameter count of the SGCN is 4.2×107. For the 
student network, we employ the lightweight network BiSeNetV2 with a 
parameter count of 3×106. 

4.1.3. Evaluation metrics 
We employ four widely-accepted assessment measures for road 

segmentation performance to fully assess the performance of the models: 
precision, recall, and F1 score. These metrics are computed as follows: 

Precision =
FP

FP+ TP
. (9)  

Fig. 4. Example of the Massachusetts Roads dataset.  
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Recall =
FP

FP+ FN
(10)  

F1 − Score =
2*precision*recall
precision+ recall

. (11)  

IoU =
TP

TP+ FN + FP
. (12) 

Among these metrics, the classification of predicted bounding boxes 
is determined based on the IOU with a specified threshold (default is 
0.5). If the IOU is equal to or greater than the threshold, it is considered a 
true positive (TP); otherwise, it is classified as a false positive (FP). 

4.1.4. Training details 
All experiments were optimized using the Adam optimizer with a 

batch size of 16, the learning rate for distillation was initially set at 
0.0005, and a learning rate decay method was used to reduce it by 
doubling every 40 iterations. The starting learning rate for single- 
network training was set at 0.0001. The PyTorch framework was used 
to conduct the tests, and training on the building and road datasets took 
place across 200 iterations. The most accurate models developed via 

training were kept. The experimental setup included an Intel(R) Core 
(TM) i9-12900KF CPU @ 3.20 GHz, 128 GB of RAM, and 2 GPUs 
(NVIDIA GeForce RTX 3090) for training. 

To analyze the training efficiencies of our proposal, we compared the 
training time and training effects among other distillation strategies and 
our proposed strategy. As shown in Table 1, compared to single 
knowledge distillation strategies, although our training time has 
increased, our IoU performance shows better results. Furthermore, when 
compared to the WKD distillation strategy, we have achieved better 
performance in both training time and IoU, demonstrating that our 

Fig. 5. Example of LRSNY Roads Dataset.  

Fig. 6. Example of WHU Buildings Dataset.  

Table 1 
The comparison of training time and training effects among our strategy and 
other distillation strategies tested on the LRSNY road dataset.  

Method Time(hour) IOU 

KD (Hinton et al., 2015)  0.46  0.7615 
Finets (Romero et al., 2014)  0.68  0.7684 
Relation (Park et al., 2019)  1.5  0.7701 
WKD (Zhang et al., 2021)  2.6  0.7757 
DKD (Zhao et al., 2022)  0.53  0.7698 
Ours  2.1  0.7815  
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distillation strategy achieves a better compromise between model per-
formance and training efficiency. 

4.1.5. Compared distillation methods 
We compared our proposed distillation strategy with several other 

distillation strategies: KD (Hinton et al., 2015), FitNets (Romero et al., 
2014), Relation (Park et al., 2019), WKD (Zhang et al., 2021), DKD 
(Zhao et al., 2022). All methods were evaluated using the first set of 
teacher network. 

To assess the effectiveness of our approach within the current land-
scape of building and road extraction research, we established a sec-
ondary ensemble of teacher networks, employing CRAE-Net and SGCN 
networks as our teacher models. 

4.2. Results 

On three remote sensing image datasets: the Massachusetts Roads 
Dataset, the LRSNY Roads Dataset, and the WHU Building Dataset, we 
evaluated and compared the performance of the proposed distillation 
approach with different distillation techniques in this section in terms of 
object extraction. 

4.2.1. The results on Massachusetts Roads Dataset 
In Table 2, we compared our proposed knowledge distillation strat-

egy with other distillation methods. Bold numbers indicate the best re-
sults in each category. The student network is designated as S, while the 
instructor network is designated as T. The denotations are the same for 
the following tables. The last column of the table represents the network 
parameter count. The first row represents the outcomes of separately 
training the Unet teacher network, while the second row represents the 
outcomes of independently training the DeepLabV3Plus teacher 
network. The third row displays the results of independently training the 
student network BiSeNetV2. The fourth row to the fifth rows illustrate 
the outcomes of training the student network while being guided by 
response-based knowledge, feature-based knowledge, and relation- 
based knowledge, respectively. When directed and controlled by 
teacher networks, all distillation techniques successfully improve the 
compact network’s performance. However, our proposed strategy 
outperform other approaches in terms of all evaluation metrics. The 
precision, recall, IoU, and F1 score achieved by our distillation strategy 
are 68.50%, 60.62%, 47.33%, and 64.25%, respectively. Compared to 
training the student network independently, the performance is 
improved by 1.65% in precision, 3.26% in recall, 2.35% in IoU score, 
and 2.09% in F1 score. Additionally, compared to other cutting-edge 
distillation technologies, our proposed method is superior, achieving a 
precision gain of 0.59% and an IoU gain of 0.53%. These results 
demonstrate that our distillation strategy, compared to other proposed 
strategies, can effectively guide the student network to achieve better 
segmentation performance. 

In Table 3, we established a secondary ensemble of teacher networks, 
employing CRAE-Net and SGCN networks as our teacher models. The 
first row represents the outcomes of separately training the CRAE-Net 

teacher network, while the second row represents the outcomes of 
independently training the SGCN teacher network. As can be observed, 
with the second ensemble of teacher networks guiding the way, our 
proposed distillation strategy consistently delivers significant perfor-
mance enhancements for the student network. The precision, recall, IoU, 
and F1 score achieved by our distillation strategy are 69.92%, 61.34%, 
50.56%, and 66.49%, respectively. Compared to training the student 
network independently, the performance is improved by 3.07% in pre-
cision, 3.98% in recall, 3.58% in IoU score, and 3.33% in F1 score. 
Compared to the distillation performance indicated by the first group of 
teacher networks, the performance is improved by 1.42% in precision, 
0.62% in recall, 1.23% in IoU score, and 1.24% in F1 score. 

4.2.2. Results on the LRSNY Roads Dataset 
In Table 4, we compared our proposed distillation method with 

various distillation techniques, evaluating them on the LRSNY roads 
dataset. Our proposed method consistently demonstrated superior per-
formance. The precision, recall, IoU, and F1 score achieved by our 
distillation strategy are 88.85%, 86.85%, 78.15%, and 87.74%, 
respectively. These results represent improvements of 1.6%, 1.29%, 
2.94%, and 1.85%, respectively, compared to the individually trained 
student network. Additionally, our distillation method outperformed 
other top-performing distillation strategies with a 0.58% IoU gain and a 
0.43% F1 score gain. These results demonstrate that our proposed 
distillation strategy can guide students to achieve better segmentation 
performance compared to other proposed distillation strategies. 

In Table 5, we established a secondary ensemble of teacher networks, 
employing CRAE-Net and SGCN networks as our teacher models. 
Clearly, with the second ensemble of teacher networks guiding the way, 
our proposed distillation strategy consistently delivers significant per-
formance enhancements for the student network. The precision, recall, 
IoU, and F1 score achieved by our distillation strategy are 89.26%, 
88.34%, 79.51%, and 88.62%, respectively. Compared to training the 
student network independently, the performance is improved by 2.01% 
in precision, 2.78% in recall, 4.3% in IoU score, and 2.73% in F1 score. 
Compared to the distillation performance indicated by the first group of 
teacher networks, the performance is improved by 0.41% in precision, 
1.49% in recall, 1.36% in IoU score, and 0.88% in F1 score. 

4.2.3. Results on the WHU building dataset 
In Table 6, we contrast various distillation techniques tested on the 

WHU building dataset with our proposed knowledge distillation strat-
egy. The strategies we propose consistently show optimal performance. 

Table 2 
Performance comparison with other distillation strategies on the Massachusetts 
roads dataset.  

Method Precision Recall IOU F1 

Unet(T)  0.7600  0.7134  0.6055  0.7048 
Deeplabv3Plus(T)  0.7797  0.7019  0.6134  0.7277 
BiSeNetV2(S)  0.6685  0.5736  0.4498  0.6216 
+KD (Hinton et al., 2015)  0.6717  0.6049  0.4669  0.6386 
+Finets (Romero et al., 2014)  0.6799  0.6003  0.4680  0.6376 
+Relation (Park et al., 2019)  0.6699  0.5856  0.4575  0.6327 
+WKD (Zhang et al., 2021)  0.6785  0.6050  0.4678  0.6401 
+DKD (Zhao et al., 2022)  0.6791  0.6082  0.4666  0.6408 
+Ours  0.6850  0.6062  0.4733  0.6425  

Table 3 
Distillation performance of SOTA building and road extraction on the Massa-
chusetts roads dataset.  

Method Precision Recall IOU F1 

CRAE-Net (T)  0.7995  0.7633  0.6522  0.7812 
SGCN (T)  0.7838  0.7376  0.6301  0.7790 
BiSeNetV2(S)  0.6685  0.5736  0.4498  0.6216 
+Ours  0.6992  0.6134  0.4856  0.6549  

Table 4 
Performance comparison with other distillation strategies on the LRSNY roads 
dataset.  

Method Precision Recall IOU F1 

Unet(T)  0.8957  0.8764  0.7953  0.8860 
Deeplabv3Plus(T)  0.8998  0.9131  0.8289  0.9064 
BiSeNetV2(S)  0.8725  0.8556  0.7521  0.8589 
+KD (Hinton et al., 2015)  0.8775  0.8653  0.7615  0.8710 
+Finets (Romero et al., 2014)  0.8744  0.8637  0.7684  0.8690 
+Relation (Park et al., 2019)  0.8800  0.8587  0.7701  0.8706 
+WKD (Zhang et al., 2021)  0.8817  0.8649  0.7757  0.8724 
+DKD (Zhao et al., 2022)  0.8857  0.8695  0.7698  0.8731 
+Ours  0.8885  0.8685  0.7815  0.8774  
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The precision, recall, IoU, and F1 score achieved by our distillation 
strategy are 88.47%, 90.20%, 80.71%, and 89.33%, respectively. 
Compared to the individually trained student network, our method 
improves the performance by 2.65% in precision, 1.38% in recall, 3.45% 
in IoU score, and 2.4% in F1 score. Furthermore, our distillation method 
better than other cutting-edge tactics with a 0.49% IoU gain and a 0.24% 
recall gain. These results demonstrate that our proposed distillation 
strategy can guide students to achieve better segmentation performance 
compared to other proposed distillation strategies. 

In Table 7, we established a secondary ensemble of teacher networks, 
employing CRAE-Net and SGCN networks as our teacher models. As can 
be observed, with the second ensemble of teacher networks guiding the 
way, our proposed distillation strategy consistently delivers significant 
performance enhancements for the student network. The precision, 
recall, IoU, and F1 score achieved by our distillation strategy are 
90.02%, 90.98%, 81.35%, and 90.28%, respectively. Compared to 
training the student network independently, the performance is 
improved by 4.2% in precision, 2.16% in recall, 4.09% in IoU score, and 
3.35% in F1 score.Compared to the distillation performance indicated 
by the first group of teacher networks, the performance is improved by 
1.55% in precision, 0.78% in recall, 0.64% in IoU score, and 0.95% in F1 
score. 

According to Table 2, Table 4, and Table 6, in the task of extracting 
objects from remotely sensed images, our proposed knowledge distilla-
tion strategy performed very well, achieving the highest IoU and F1 
scores on the Massachusetts Road Dataset, LRSNY Road Dataset, and 
WHU Building Dataset. On the Massachusetts Roads Dataset, our 
method outperforms other strategies in all four performance metrics, 
with improvements of 0.51%, 0.59%, 0.53%, and 0.49% compared to 
the second-best performing Finets distillation strategy, showcasing the 
effectiveness of our method in accurately extracting roads from remote 
sensing images. On the LRSNY Roads Dataset, in terms of IoU score, our 
approach performs better than the other three distillation techniques by 

2%, 1.31%, and 1.14%. According to Table 6, our proposed distillation 
strategy demonstrates a significant improvement of 2.13% in IoU score 
and 0.96% in F1 score compared to the Relation distillation method, 
which are crucial evaluation metrics for assessing the performance. 

According to Table 3, Table 5, and Table 7, even when applied to the 
most recent methods for building and road extraction, our distillation 
strategy continues to prove its effectiveness. Compared to the individ-
ually trained student network, IoU score has improved by 3.58%, 4.3% 
and 3.45% on the three datasets, respectively. 

5. Discussion 

5.1. Visualization Analysis 

In this section, we compare the extraction results of the proposed 
distillation strategy with the other three distillation strategies on the 
Massachusetts Road Dataset, LRSNY Road Dataset, and WHU Building 
Dataset to further compare and analyze the advantages and limitations 
of our proposed distillation strategy. 

As shown by a few red boxes in Fig. 7, on the Massachusetts Roads 
Dataset, our approach captures and extracts road items with good ac-
curacy. Compared to the extraction results of the original student model, 
our proposed distillation strategy achieves better completeness in road 
extraction, as demonstrated by the maximum display of effectiveness in 
the sixth row of extraction results. As shown by a few red boxes in Fig. 8, 
on the LRSNY Roads Dataset, our distillation strategy also demonstrates 
outstanding road object extraction capabilities. The second row of 
extraction results shows that our distillation strategy can effectively 
avoid the extraction of erroneous targets, as opposed to other distillation 
methods, as indicated by the comparison in the red small boxes. In the 
fourth row of extraction results comparisons, the KD distillation method 
also exhibits issues with extracting incorrect targets. As shown by a few 
red boxes in Fig. 9, on the WHU Building Dataset, our distillation 
strategy performs exceptionally well compared to the other three 
distillation methods. The outcomes of extraction’s first and second rows 
of comparison indicate that our distillation strategy significantly im-
proves the completeness and precision of target extraction for building 
objects. 

5.2. Ablation Experiment 

This section focuses on assessing the efficacy of our distillation 
strategy’s tactics for extracting construction and road goals. In order to 
do this, we carried out ablation experiments and assessed them using 
three datasets of remote sensing images. 

According to Tables 8, 9, and 10, we combined existing distillation 
strategies. In the first three rows of the table, we combined pairwise the 
response-based knowledge, feature-based knowledge, and relation- 
based knowledge distillation strategies. These combinatorial distilla-
tion strategies allowed us to see a significant improvement in the per-
formance of the student model. Nevertheless, compared to the 
distillation strategy proposed in the fifth row, our distillation strategy 
effectively guided the student model to achieve improved segmentation 
performance. To further assess the efficacy of our proposed distillation 
strategy, which involves the mutual exchange of feature information 
between teacher networks, we conducted ablation experiments 
comparing it with a traditional knowledge distillation method that 
directly utilizes feature knowledge between teacher networks. The stu-
dent network model’s IoU and F1 scores climbed to 47.19% and 64.11%, 
respectively, on the Massachusetts Roads Dataset, respectively. After 
introducing the method of mutual exchange of feature knowledge 
among teacher networks, IoU and F1 ratings for the student network 
model increased to 47.33% and 64.25%, respectively. The IoU score 
significantly improved on the LRSNY Roads Dataset, with a 0.78% in-
crease compared to the traditional method of directly utilizing feature 
knowledge between teacher networks. 

Table 5 
Distillation performance of SOTA building and road extraction on the LRSNY 
roads dataset.  

Method Precision Recall IOU F1 

CRAE-Net (T)  0.9343  0.9321  0.8364  0.9200 
SGCN (T)  0.9222  0.9265  0.8489  0.9301 
BiSeNetV2(S)  0.8725  0.8556  0.7521  0.8589 
+Ours  0.8926  0.8834  0.7951  0.8862  

Table 6 
Performance comparison with other distillation strategies on the WHU Building 
Dataset.  

Method Precision Recall IOU F1 

Unet(T)  0.9180  0.9334  0.8615  0.9250 
Deeplabv3Plus(T)  0.9231  0.9302  0.8633  0.9266 
BiSeNetV2(S)  0.8582  0.8882  0.7726  0.8693 
+KD (Hinton et al., 2015)  0.8812  0.8923  0.7901  0.8875 
+Finets (Romero et al., 2014)  0.8813  0.8990  0.7952  0.8921 
+Relation (Park et al., 2019)  0.8752  0.8943  0.7858  0.8837 
+WKD (Zhang et al., 2021)  0.8849  0.8957  0.8022  0.8903 
+DKD (Zhao et al., 2022)  0.8810  0.8996  0.8011  0.8902 
+Ours  0.8847  0.9020  0.8071  0.8933  

Table 7 
Distillation performance of SOTA building and road extraction on the WHU 
Building Dataset.  

Method Precision Recall IOU F1 

CRAE-Net (T)  0.9582  0.9477  0.8878  0.9456 
SGCN (T)  0.9568  0.9489  0.8791  0.9522 
BiSeNetV2(S)  0.8582  0.8882  0.7726  0.8693 
+Ours  0.9002  0.9098  0.8135  0.9028  
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We particularly carried out ablation tests on the WHU Building 
Dataset to further confirm the efficacy of our suggested distillation 
technique. As depicted in Table 10. Our proposed distillation strategy 
exhibited superior performance compared to other combined distillation 
strategies, as evidenced by the highest IoU and F1 scores. These results 
serve as strong evidence of the effectiveness of our method. After 
introducing the method of mutual exchange of feature knowledge 
among teacher networks, the IoU score improved by 0.53%. 

6. Conclusion 

This paper introduces multi-teacher collaboration and multi- 
knowledge fusion mechanisms into knowledge distillation and applies 
them to road and building extraction tasks. The main innovations 

include multi-teacher collaboration distillation, multi-knowledge 
fusion, and the method of guiding the student network by exchanging 
feature knowledge among teacher networks. Through these innovations, 
the objective of this study is to enhance the performance of remote 
sensing image extraction tasks while reducing model size and compu-
tational resource requirements. 

In this paper’s approach, a strategy of multi-teacher collaboration 
distillation is employed. Different teacher models possess different 
strengths and expertise. Therefore, by combining multiple teacher 
models, their knowledge can be comprehensively utilized to provide 
more comprehensive guidance to the student model. Additionally, this 
paper introduces a mechanism of multi-knowledge fusion, which le-
verages knowledge from multiple teacher models to more fully utilize 
diverse knowledge and enhance the performance of the compact 

Fig. 7. Examples of extraction results on the Massachusetts Roads Dataset for our distillation strategy and several other distillation methods.  
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network. 
Finally, this paper proposes a method that guides the student 

network by exchanging feature knowledge among teacher networks. By 
exchanging feature knowledge among teacher networks, richer feature 

Fig. 8. Examples of extraction results on the LRSNY Roads Dataset for our 
distillation strategy and several other distillation methods. 

Fig. 9. Examples of extraction results on the WHU Building Dataset for our distillation strategy and several other distillation methods.  

Table 8 
Ablation Experiment Analysis on Massachusetts Roads Dataset.  

Method Precision Recall IOU F1 

KD + Relation  0.6743  0.6012  0.4677  0.6403 
KD + Finets  0.6823  0.6050  0.4711  0.6398 
Finets + Relation  0.6832  0.5984  0.4697  0.6395 
Ours(student feature)  0.6841  0.6031  0.4719  0.6411 
Ours(teacher feature)  0.6850  0.6062  0.4733  0.6425  

Table 9 
Ablation Experiment Analysis on LRSNY Roads Dataset.  

Method Precision Recall IOU F1 

KD + Relation  0.8772  0.8662  0.7725  0.8716 
KD + Finets  0.8758  0.8680  0.7729  0.8719 
Finets + Relation  0.8760  0.8573  0.7642  0.8767 
Ours(student feature)  0.8794  0.8655  0.7737  0.8725 
Ours(teacher feature)  0.8885  0.8685  0.7815  0.8774  
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knowledge can be transferred to the student model, guiding its training 
process. This feature-based knowledge adoption method improves the 
student model’s understanding and extraction capabilities of image 
features. 

Through rigorous practical evaluations of multiple state-of-the-art 
distillation procedures on various remote sensing image datasets, the 
recommended strategy in this study demonstrates significant perfor-
mance gains. Our suggested distillation method outperforms other 
cutting-edge distillation techniques on the Massachusetts Roads Dataset 
with an amazing IoU increase of 0.39% and an F1 gain of 0.53%. On the 
LRSNY Roads Dataset, our distillation method outperformed other top- 
performing distillation strategies with a 1.14% IoU gain and a 0.85% 
precision gain. On the WHU Building Dataset, Our distillation technique 
surpasses other cutting-edge methods with a 1.19% IoU gain and a 
0.34% precision gain. 
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