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Abstract— Snow is one of the toughest adverse weather condi-
tions for object detection (OD). Currently, not only there is a lack
of snowy OD datasets to train cutting-edge detectors, but also
these detectors have difficulties of learning latent information
beneficial for detection in snow. To alleviate the two above
problems, we first establish a real-world snowy OD dataset,
named RSOD. Besides, we develop an unsupervised training
strategy with a distinctive activation function, called Peak Act,
to quantitatively evaluate the effect of snow on each object. Peak
Act helps grade the images in RSOD into four-difficulty levels.
To our knowledge, RSOD is the first quantitatively evaluated
and graded real-world snowy OD dataset. Then, we propose
a novel Cross Fusion (CF) block to construct a lightweight
OD network based on YOLOvVSs (called CF-YOLO). CF is a
plug-and-play feature aggregation module, which integrates the
advantages of Feature Pyramid Network and Path Aggregation
Network in a simpler yet more flexible form. Both RSOD and
CF lead our CF-YOLO to possess an optimization ability for OD
in real-world snow. That is, CF-YOLO can handle unfavorable
detection problems of vagueness, distortion and covering of snow.
Experiments show that our CF-YOLO achieves better detection
results on RSOD, compared to SOTAs. The code and dataset are
available at https://github.com/qqding77/CF-YOLO-and-RSOD.
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I. INTRODUCTION

NN-BASED detectors heavily depend on the integrity

of objects in images [1], [2], [3] to achieve remarkable
performance. Unfortunately, objects are often partially or even
fully covered by snow in winter, causing the loss of crucial
information for describing objects under such adverse weather.
Consequently, most object detection (OD) methods that per-
form well in normal weather often fail to operate effectively
on snowy images. [4], [5], [6].

There exist two major challenges in detecting objects
covered by snow. First, capturing snow/snow-free image
pairs in real-world scenarios is extremely difficult or
nearly impossible. Therefore, existing detectors can only be
trained on the benchmark datasets captured under normal
weather conditions [7], [8], [9], [10] or synthetic snow
(e.g., SnowCityScapes [11]). The detectors trained on such
datasets suffer from the well-known domain shift problem, and
thus generalize poorly in real-world snowy scenarios. Second,
existing detectors struggle to learn latent information that is
beneficial for detection in snow, since snow can destroy the
low-level vision information (e.g., textures and outlines) of the
objects.

The performance of current vision techniques is mainly
benchmarked under normal weather conditions. Even the top-
performing object detectors exhibit severe performance degra-
dation under adverse weather conditions. Therefore, we raise
a practically meaningful question regarding object detection
under adverse weather: Does the synergy of establishing a real-
snow OD dataset and developing a feature aggregation module
to learn latent information, actually enhance the capability of
cutting-edge OD networks in the snowy condition?

To answer this question, i) we collect a high-quality outdoor
dataset, called RSOD, for object detection in real-world snowy
scenarios. RSOD contains 2100 real-world snowy images
annotated in the format of COCO and YOLO (with labeled
pedestrians, cars, traffic lights, etc). ii) We endeavor to quanti-
tatively evaluate the effect of snow on each object by introduc-
ing an indicator called snow coverage rate (SCR). To calculate
SCR, we develop an unsupervised training strategy to train
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a simple yet effective CNN model with a distinctive acti-
vation function called Peak Act. The SCR is subsequently
exploited to grade the images in RSOD into four-difficulty
levels (i.e., easy, normal, difficult, and particularly difficult).
As different snow coverage rates can exert varying effects
on the performance of detectors, it is crucial to employ such
gradation to understand how snow degrades the accuracy of
object detection. iii) We propose a plug-and-play Cross Fusion
(CF) block. Instead of relying on the traditional top-down
and bottom-up structures [12], the CF block simultaneously
aggregates features from different stages of the backbone.
This direct fusion manner allows for the recovery of the low-
level information lost during the high-level feature extraction.
Besides, CF supports different in-out stages, making it a more
flexible and adaptive plug-and-play module. iv) We propose
a lightweight object detection network named CF-YOLO by
replacing the neck of YOLOv5s with the CF blocks. Experi-
mental results on RSOD and COCO clearly demonstrate that
CF-YOLO not only exhibits superior optimization ability for
OD in the real-world snowy scene but also possesses strong
generalization ability.
Our main contributions are summarized as follows:

o« We present a real-world snowy OD dataset (RSOD),
which is labeled in both the COCO and YOLO formats.
To our knowledge, this is the first dataset that focuses on
improving the accuracy of object detection in real-world
SNOWY scenarios.

o« We introduce an indicator called snow coverage rate
(SCR) and develop an unsupervised training strategy to
train a CNN model with a distinctive activation function,
called Peak Act, to evaluate the impact of snow on each
object. We grade the images in RSOD into four-difficulty
levels based on the SCR. Such grading aids in under-
standing how the snow degrades the OD performance.

« We propose a new plug-and-play Cross Fusion (CF) block
to aggregate features from different stages simultane-
ously. Users can customize the number of stages, the
number of CF blocks, and the kernel sizes in different
networks to optimize the models’ performance.

o« We propose a lightweight and effective CF-YOLO to
facilitate snowy OD applications, such that many outdoor
vision systems (e.g., autonomous driving, surveillance)
can operate smoothly in snowy weather.

The rest of this work is organized as follows. Section II
introduces the related work from four aspects: object detec-
tion in normal weather, object detection in adverse weather,
snowy datasets, and feature fusion. Section III describes
the constructed real-world snowy object detection dataset
RSOD. Section IV introduces the proposed CF-YOLO.
Section V shows sufficient experiment results to demonstrate
the effectiveness of CF-YOLO, followed by the conclusion in
Section VI.

II. RELATED WORK

In this section, we first discuss the techniques of different
object detectors in normal weather. Then we introduce some
existing solutions for object detection in adverse conditions.
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After that, we discuss the existing works and datasets on
snowy weather. Finally, we make a brief comparison of
different feature fusion modules.

A. Object Detection in Normal Weather

Existing object detection methods can be roughly divided
into two categories: two-stage methods and one-stage meth-
ods. They usually contain a backbone for feature extraction,
a neck for feature fusion, and a head for prediction. The
two-stage detectors, such as R-CNN [13], fast R-CNN [14],
faster R-CNN [4], R-FCN [15], and Libra R-CNN [16], first
generate some regions of interest (Rols) from images, and then
classify and locate the objects in these Rols. In contrast to the
time-consuming two-stage detectors, the one-stage detectors
directly infer the object categories and bounding boxes, such
as the YOLO series [17], [18], [19], [20], [21], SSD [22],
RetinaNet [23] and EfficientDet [24]. Among them, the YOLO
series gain widespread adoption across diverse research fields
and have many variants [25], [26], [27]. DETR [28] is the first
model to introduce the transformer architecture into the object
detection task and treats OD as a query prediction problem.
Gu et al. [29] propose a homography loss to utilize 2D boxes
as guidance in 3D object detection [30]. Recently, with the
boom in autonomous driving, semi-supervised object detection
gains considerable attention [31].

B. Object Detection in Adverse Weather

A detector trained on clean images usually fails to yield
desirable results under adverse weather conditions (e.g.,
snowy, rainy, hazy, and low-light), due to the domain shift in
input images [32]. Currently, there are mainly three solutions
to alleviate this problem. The first solution is to dilute the
effect of weather-specific information by a pre-processing step,
such as image desnowing/derainig/dehazing [11], [33] or low-
light image enhancement [34]. Although these methods exhibit
satisfactory performance with strong pixel-level supervision on
synthetic data, they may encounter limitation in real scenes.
The second solution is to jointly perform image restoration and
object detection via dual-branch networks [2], where the two
branches share a feature extraction module. But balancing the
two tasks during training is a significant challenge. The third
solution is to exploit unsupervised domain adaptation [1] to
align the features of clean images (sources) and images cap-
tured under adverse weather (targets). However, this technique
may overlook the important latent information that is crucial
for effective detection during the image restoration process.

C. Snowy Datasets

Due to the lack of real-world paired snow/snow-free images,
existing datasets on snowy weather are generally obtained by
adding snow masks to clean images, like Snow100K [35],
SnowKITTI2012 [11], and SnowCityScapes [11]. Existing
desnowing methods trained on these synthetic datasets usually
deteriorate significantly on real-world snowy images. Mean-
while, they only remove snow in the air, ignoring the occlusion
of objects by snow that substantially affects the performance
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Fig. 1. The label distribution in the RSOD dataset. Most of the anno-
tated objects are cars (2606 labeled), pedestrians (3159 labeled) and trucks
(451 labeled). We divide snow images into four difficulty levels (i.e., easy,
normal, difficult, and particularly difficult) based on the snow coverage rates.

of object detection. Moreover, these methods still suffer from
the loss of image details, which are important cues for accom-
plishing high-level tasks. Therefore, they inadequately improve
the performance of downstream applications.

D. Feature Fusion

Existing feature fusion methods contain FPN [12],
PANet [36], NAS-FPN [37], BiFPN [24], ASFF [38], etc.
FPN integrates features from different stages of the backbone
through a top-down path. PANet is built on the foundation
of FPN and exploits a bottom-up path to further enhance
the features. The BiFPN Layer [24] is developed for easy
and fast multi-scale feature fusion by bidirectional cross-scale
connections. OctConv [39] performs frequency decomposition
on the features to improve the efficiency of CNNs. gOct-
Conv [40] possesses the advantage of flexible feature fusion
for the arbitrary in-and-out branches. Differently. we exploit
gOctConv as the fundamental component of our cross fusion
block, which exhibits a good ability for feature fusion.

III. REAL-WORLD SNOWY OBJECT DETECTION DATASET
A. Dataset Introduction

The established real-world snow object detection dataset,
called RSOD, contains 2100 images captured in various real-
world snowy scenes. To make RSOD convenient to use for
public studies, the labels are fully compatible with MSCOCO.
We provide both the COCO and YOLO formats. Fig. 1 shows
the label distribution in RSOD. Note that most of the snowy
images are about townscape and traffic scenes.

Considering the fact that the performance of cutting-edge
detectors will deteriorate when objects are covered under
different degrees of snow, we grade the snowy images into four
difficulty levels, i.e., easy, normal, difficult, and particularly
difficult. This gradation aims to investigate the impact of snow
on objects and study how it degrades object detection accuracy.

To conduct a fair gradation, we introduce an indicator, i.e.,
snow coverage rate (SCR) to judge the difficulty levels of the

images in RSOD. By combining SCR and human observation,
we grade image numbers 1~600 to the easy level, 601~1600
to the normal level, 1601~2000 to the difficult level and
2001~2100 to the particularly difficult level. Fig. 1 shows
the typical images of different levels.

B. Unsupervised Training for SCR Calculation

Quantitatively evaluating the effect of snow on the covered
objects is challenging even for humans due to the lack of
benchmarks for evaluation. We assume that the influence
of snow on the object depends on the snow coverage rate
(SCR) in the object’s bounding box. Therefore, SCR can be
formulated as SCR = Agnow/Abbox, Where Aguow, Abbox
represent the areas of snow and bounding box, respectively.

Calculating SCR directly is challenging due to the high cost
of labeling snow in the images. To address it, we develop an
unsupervised training strategy to train a CNN model which
can respond to snow pixels and depress non-snow pixels. The
strategy contains three factors based on sparse coding.

First, to respond to snow pixels, we train a CNN model
using images where heavy snow covers most of the area. The
corresponding ground truth is a map of the same size as the
input image, with each pixel assigned a value of 1. This step
guides the model to map each pixel to the value of 1, and the
convolution kernels in the model encode the snow features
through backpropagation.

Second, to depress non-snow pixels, we design an activation
function Peak Act, with a very narrow activation bandwidth.
It allows the convolution kernels to respond to some specific
features like snow, and depress other features, as shown in
Fig. 2(d). Since snow covers the largest area of the images
we use for training, it is natural that convolution kernels can
respond to snow pixels and depress non-snow pixels.

The function of Peak Act lies on the following three rules:

« Being a peak function where the peak is (1, 1). Since the
ground truth is a matrix with all elements equal to 1,
the training process will drive the model to output 1.
And the peak constrains the effective area in a very small
bandwidth (see Fig. 2(d)).

e Zero maps to zero. If zero can be mapped to a non-zero
value, some lazy convolution kernels with all weights
being equal to 0 will smooth all the pixels to a non-zero
value. As a result, the subsequent layers may converge to
the ground truth easily, potentially hindering the model
from reaching its optimal performance.

« Being a concave function such that feature values will not
get closer to 1 after passing through the activation func-
tion. The feature values can only be closer to 1 through

optimization.
The proposed Peak Act is defined as:
0.2x x <0
2
O0<x<l1
X) = - 1
TOO=1 0 Zap l<x<2 M

—02(x—2) x>2

Equation 1 shows a non-monotone increasing and continuously
differentiable function whose activation area is (0, 2). Since we
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Visualization of different channels of the feature map yielded by the CNN model. Different channels of the output feature map respond to specific

features, such as snow, edges, etc. (b) is the 31st channel (CH-31) of the output feature map, which specifically responds to snow. We can utilize the
snow-labeled map (CH-31) to calculate the snow coverage rate (SCR) of the object. (c) is the 11th channel of the output feature map, which responds to
edges. (e) and (f) are the 3D versions of feature maps corresponding to (b) and (c), respectively.

drive the model to output 1, the real activation area is located
in a narrow band around 1, as shown in the hatched section
of Fig. 2(d), which we call the narrow activation bandwidth.
Peak Act aims to drive the network to focus on expressing
snow features. More details about the effect of Peak Act are
described in Section V-A.

Third, the last layer of the CNN model is a Max-out
function, which yields the maximum value of every pixel in
the feature map along the channel dimension, and forms a one-
channel feature map O. We then compute the loss to evaluate
the consistency between the map and the ground truth (GT).
Due to the fact that the upper limit of Peak Act is 1, the
output of the network will be always less than or equal to 1.
The Max-out layer encourages different channels to respond
to different features, leading to highly specific optimizations
of the kernels. We define the loss as:

1
g 2o 2T = 0+ BIPIL @
i

Loss =«

where P denotes the model’s parameters, « = 1, and g =
0.0001 are the weights to balance the two terms.

In Equation 2, the first term is the averaged pixel-wise
distance between the output and the ground truth. The output
of the CNN model has the same size as GT, which is W x H.
The GT whose pixel values are all equal to 1 guides the model
to map the input image — 1 during training. The second term
is an L regularization to make the feature space sparser.

The CNN model employed for calculating the SCR is shown
in Fig. 3. We exploit different heads for training and testing
(i.e., calculating the SCR). Specifically, the training head is
a Max-out layer, which reduces the number of feature map
channels from 32 to 1 by taking the maximum value along the
channel dimension. The output result is supervised by the loss
function in Equation 2. When testing, we directly binarize the

feature map generated by the last layer and select the channel
that responds to snow to calculate the SCR. The selected
channel marks the pixels with snow as 1. As shown in Fig. 2(b)
and Fig. 2(c), CH-31 responds to snow very specifically, while
CH-11 responds to edges. Furthermore, we visualize the 3D
surfaces of different channels, as shown in Fig. 2(e) and
Fig. 2(f), clearly showing that CH-31 responds to the snow
area and depresses the non-snow area distinctly.

C. Explanation of the Unsupervised Training Strategy

We treat the snow as a set of features (i.e., snow features)
embedded in the input data (snowy images), and the deep
network as a mapping machine from the input data to the
output. Since the ground truth of our network is constantly
equal to 1, our network aims to be a mapping machine for
Input data —1.

Essentially, the training process is to optimize the param-
eters of the network to encode the features of input data
automatically. During this process, if we feed the network
with snowy images whose principal components are the snow
features, the network becomes a mapping machine: Snow
feature — 1, primarily.

We can also regard this process as encoding snow features
into the network, which is a commonly used technique in the
Sparse Coding Algorithms. In these algorithms, the ground
truths are equal to the input images, and the training pro-
cess involves encoding the features into the network through
backpropagation and building a feature dictionary. Our unsu-
pervised training strategy can be treated as a sparse coding
process with only one dictionary item, i.e., Snow.

The proposed Peak Act function and the CNN model with
the unsupervised training strategy are crucial for calculating
the SCR and grading the snowy images.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 23,2023 at 10:36:09 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DING et al.: CF-YOLO FOR OD IN ADVERSE WEATHER WITH A HIGH-QUALITY REAL SNOW DATASET 5

Fig. 3.

5*5 Conv

3*3 Conv
144-->16

1*1 Conv

Testing Head
144-->16

mma 32 Feature Maps

Binarization

Calculate SCR

Peak Act

Training Head

144-->32

The structure of the CNN model used to calculate the SCR. During training, we use the training head, i.e., the Max-out layer, to generate a

single-channel feature map for computing the training loss. While testing (i.e., calculating the SCR), we use the testing head to yield the snow-labeled map.

[Au0)71003 |

Fig. 4.

Bottleneck
Addition

®

(©  Concatenation

The structure of Cross Fusion. X, X», X3 indicate the inputs from different levels of the backbone. Yy, Y3, Y3 indicate the output branches for

different prediction heads of YOLO. The features from each level are sequentially fed into a gOctConv (without sharing weights), a Batch Normalization
layer, and a PRelu activation function. The post-processing component of the CF block is Cross Stage Partial (CSP) [41].

IV. METHODOLOGY

Recently, cutting-edge detectors achieve remarkable
progress and strengthen many outdoor vision systems, e.g.,
autonomous driving, and surveillance. But these methods
suffer from various adverse weather and fail to yield desirable
results. The performance of various detectors trained on
MSCOCO degrades significantly on RSOD (see Table I).

Besides the enormous degradation, we observe that some
large objects are more prone to be omitted by YOLOVSs
in snowy images. It may contradict our common sense that
detection models typically perform better on large objects.
Based on this observation, we make a minor adjustment to
YOLOVS5s. By setting the detection confidence threshold to
0.01, we surprisingly find that YOLOvSs can indeed detect
those large objects in the snowy images (similar phenomena
also exist in many other snowy images), but the confidence
is too low to pass the Non-Maximum Suppression (NMS)
operation, leading to the mis-prediction (see Fig. 10(a)~(d)).
The reason is that heavy snow can change the outline, texture
and surface of the objects, resulting in the loss and distortion
of low-level visual information.

Yolov5s uses Feature Pyramid and Path Aggregation Net-
work (FPN+PANet) as the feature fusion module, where
features are processed through a top-down and bottom-up
route before reaching the YOLO prediction head. According
to the structure of YOLOvVSs, the large objects are predicted

in the last stage which means that the features of large objects
pass through the deepest network. In snowy images, the low-
level vision information is destroyed, resulting in extensive
meaningless information being fed to the network. As the
number of network layers deepens, the receptive field of the
model continues to expand, thereby making the model more
susceptible to interference from meaningless information and
even dilute meaningful features.

A. Cross Fusion

To address the abovementioned problems, we propose a new
Cross Fusion (CF) block to directly integrate the features from
different levels. The purpose of CF blocks is to shorten the
propagation route instead of making the model more compli-
cated or deeper. It can alleviate the dilution of meaningful
features when the network goes deeper. Specifically, inspired
by [40], we utilize gOctConv as the fusion component of the
CF block. As shown in Fig. 4, the CF layer simultaneously
receives the input feature maps from different levels of the
backbone and its outputs are fed to different YOLO prediction
heads. When detecting large objects, compared with the top-
down and bottom-up routes of “FPN+PANet”, the CF blocks
enable direct access to low-level features through the simul-
taneous feature fusion process, thereby providing a shorter
route between low-level and high-level features. The CF block
also allows different in-out branches, making itself a flexible
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Fig. 5. The architecture of CF-YOLO. We replace the feature fusion module
(“FPN+PANet”) of YOLOvS5s with the CF block and remain the structures
of backbone and YOLO head. CF-YOLO can be modified by changing the
number of CF blocks (n), in-out stages (In and Out), and the kernel sizes
(K) to obtain different versions for different usages.

module to adapt to different models. The post-processing
component is the Cross Stage Partial (CSP) module.
One of the feature fusion processes in CF is expressed as:

01 = fcsp(Convi1(X1) ® Convia(Resize(X3))
® Conviz(Resize(X3))) 3)

In Equation 3, fcsp denotes the CSP module and @ means the
element-wise addition. O is the up-branch of the CF outputs.
Notably, the feature fusion process of the CF block occurs
before the post-processing component, while the feature fusion
process of “FPN+PANet” can only happen sequentially along
with the top-down and bottom-up operations.

B. CF-YOLO

We propose CF-YOLO, a modified version of YOLOVSs,
in which we replace the neck with the CF block (see Fig. 5).
The flexibility of CF-YOLO allows for modifications by
adjusting the number of CF blocks (n), in-out stages (In
and Out), and the kernel size of gOctConv (K). Herein we
stack two layers of CF blocks (n=2) in CF-YOLO. CF-YOLO
(K=1) and CF-YOLO (K=3) denote that the kernel sizes of
the CF block are equal to 1 and 3, respectively.

V. EXPERIMENTS AND DISCUSSION
A. Comparison of Different Activation Functions

Since the images used to train the CNN model and calculate
SCR are heavy snowy images, the statistical distribution of
training data concentrates on the snow features. It encourages
the network to respond to snow. To verify the effectiveness of
the proposed Peak Act, we compare the Peak Act with some
general activation functions, including Sigmoid, ReLU [42],
and Leaky ReLU [43], and select the best feature map visu-
alization results for comparison.

As shown in Fig. 6, the outputs of CNN models exhibit
different characteristics when different activation functions are
employed. Specifically, the Sigmoid function (see Column 1)
cannot identify the difference between snow and non-snow
areas. The best-visualized feature map is almost equal to GT,
which is a matrix with all elements equal to 1. In the case of
the ReLU (see Column 2) and Leaky ReLU (see Column 3)
functions, the output feature maps exhibit a minor difference
between snow and non-snow areas, leading to the impracti-
cality to calculate the SCR. The model of using the Peak Act
function in the last layer (see Column 4) and the Leaky ReLU
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function in the other layers shows better performance than the
models using only the general activation functions. But the
best-visualized feature map generated by this model contains
fewer details compared to the model that only uses Peak Act
(see Column 5). Experiments show that only Peak Act can
ensure the model to separate the snow features from non-snow
features. We have to raise the question: Why the non-snow
pixels can be depressed when only positive labels are given?

The key to depress non-snow pixels is to let the network
‘express’ the snow with no other choices. According to the
Peak Act function, the minimal loss can be obtained when
the network’s outputs are equal to 1. Conversely, when the
network’s output deviates from 1, a steep gradient ensues,
leading to a significant rise in the loss function. The activation
region of the existing activation functions, e.g., ReLU, is the
whole positive number field, while the activation area of Peak
Act is (0, 2). Besides, the output of Peak Act shrinks sharply
when it deviates from 1, making the real activation area lie
at the narrow belt around 1. This phenomenon is called the
narrow activation bandwidth as mentioned before.

The outputs of the convolutions in the network with Peak
Act are limited to around 1, due to the narrow activation
bandwidth. It results in a very limited ‘expression ability’
of the network to map the input data —1. Given that snow
occupies the dominant region of the input image and the
corresponding ground truth is an all-ones map, the network
must utilize the limited ‘expression ability’ to map snow —
1 for effective loss minimization. Thus, it is very possible that
the outputs of non-snow areas would not pass the activation
function and be depressed.

In contrast, traditional activation functions, such as Sigmoid,
ReLU, and Leaky ReLU, have an excessively large activation
bandwidth, resulting in many features accomplishing the map-
ping process of the input data — 1.

By leveraging Peak Act and the unsupervised training
strategy, we can quantitatively evaluate snowy images with
only dozens of snow images and a few minutes of training
time. Notably, our CNN model accurately figures out the snow
areas in images that are not employed during the training
process.

As shown in Fig. 8, the images in the second row are
the visualized feature maps used to compute the SCR of
the images in the first row. For example, in Fig. 8 (a),
SCR; = 0.75; in Fig. 8 (b), SCR; = 0.51, SCR, = 0.58; in
Fig. 8 (c), SCRy = 0.74; and in Fig. 8 (d), SCR; = 0.35,
SCRy =0.56, SCR3 = 0.09, SCR4 = 0.07. The SCR values
in Fig. 8 (a) and (c) are much higher than the other images,
which coincides with the human observation. It proves the
efficacy of our unsupervised training strategy in quantitatively
evaluating the effect of snow.

We combine the SCR and human observation for image
difficulty gradations. For instance, humans can easily confirm
that Fig. 8 (b) and (c) are affected by snow severely, but they
cannot identify whether they belong to the difficult level or
the particularly difficult level. In Fig. 8 (b), SCR; = 0.51,
SCR, = 0.58, indicating that snow covers half of the object,
thus, Fig. 8 (b) should be graded into the difficult level.
In Fig. 8 (c), SCR; = 0.74, indicating that snow covers
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Fig. 6. The visualized output channels of the CNN models with different activation functions. The model with Peak Act (e) generates the clearest feature
map, which is highly appropriate for calculating the SCR.
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Fig. 8. The visualized feature maps used to compute the SCR. The SCR results are shown in the upper left corner of the images in the second row, where
the format is “bbox_num X\SCR\A1\A2”. bbox_num X indicates the object id in the image, Al is the area of snow, A2 is the area of the bounding box, and
SCR = A1/A2. For instance, the result of feature map (f) is “bbox_num 1 0.51 56641.0 111345.0; bbox_num 2 0.58 5657.0 9792.0”.

most of the object, thus, Fig. 8 (c) should be graded into the metric to avoid bias from different observers and allows fair
particularly difficult level. The SCR provides a quantitative comparisons when humans are confused.
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TABLE I

COMPARISON WITH EXISTING METHODS ON RSOD. RSOD WITH THE FOUR-DIFFICULTY LEVELS PROVIDES A QUANTITATIVE WAY TO STUDY THE
DEGRADATION OF DETECTORS IN REAL-WORLD SNOW

Method Easy (600) Normal (1000) | Difficult (400) | Particularly Difficult (100) | All Levels (2100)
AP APso | AP APs0 AP  APs AP APsg AP APso
YOLOV5s 41.1 61.3 36.1 55.5 26.4 41.3 25.2 39.2 34.3 52.0
YOLOv6-nano (2022) 39.9 57.5 35.7 51.7 32.0 44.9 29.1 453 33.6 49.1
YOLOV7-tiny (2022) 41.5 61.9 38.7 57.7 27.8 439 27.3 524 359 53.9
EfficientDet DO (CVPR’20) | 20.1 28.6 22.9 344 17.1 27.1 29.1 41.0 18.5 27.2
EfficientDet D1 (CVPR’20) | 224 30.1 26.6 37.6 18.7 29.5 26.6 45.5 21.1 29.9
SSD300 (ECCV’16) 26.1 44.2 27.1 46.8 16.8 29.8 20.5 37.4 23.1 40.2
CF-YOLO (K=1) 45.6 67.5 34.9 55.0 27.7 44.4 30.7 47.1 34.5 53.4
CF-YOLO (K=3) 58.0 63.8 35.5 56.0 26.3 41.5 319 44.2 32.7 50.2

———
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Fig. 9. The predicted results of CF-YOLO and YOLOVSs trained on MSCOCO only. Compared with YOLOVSs, our method 1) has higher confidence in

detection results (columns 1 and 2); 2) can reduce missed detections (columns 3 and 4); and 3) can reduce false detections (columns 5 and 6).
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Fig. 10.  The original predictions and PCA results of different detectors when the detection confidence thresholds are set to 0.01. Only CF-YOLO and
YOLOVG6n identify the car successfully, whereas YOLOvS5s and YOLOv7t fail to pass the non-maximum suppression (NMS) operation owing to their
inadequate confidence in the car. Compared with the PCA results of other detectors, CF-YOLO exhibits a superior ability to cluster the object pixels and

distinguish the object pixels from the background pixels.

We classify the difficulty level of the images in RSOD
mainly based on human observations, since the difficulty
level of most images is easy to determine. When humans
are confused, SCR can help determine the difficulty level.
Generally, the SCR of particularly difficult level is larger than
0.7, and the SCR of difficult level ranges within [0.5,0.7].

B. Performance of Detectors on RSOD

Our CF-YOLO is implemented in PyTorch. All training
settings are the same as YOLOVSs (e.g., the batch size=32, the
SGD optimizer with the momentum of 0.937 and the weight
decay of 0.0005, and the learning rate=0.01). We choose

the lightweight versions of the latest cutting-edge detectors
for fair comparison, which include YOLOvS5s [19], YOLOvV6-
nano [20], YOLOv7-tiny [21], SSD300 [22], EfficientDet DO
and D1 [24]. These methods and our CF-YOLO, as lightweight
networks, can be easily deployed to mobile devices, which
require high efficiency under limited computation resources.
RSOD is divided into the training, validation, and test sets
with 1701, 189, and 210 images respectively. To balance the
difficulty of each subset, the images are randomly allocated to
the subsets. In order to verify the effectiveness of CF-YOLO
on the four-difficulty levels of RSOD, we test on the four levels
and the whole dataset respectively. For a fair comparison,
all detectors are trained on MSCOCO only. As shown in
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TABLE I

EXPERIMENTAL RESULTS OF DIFFERENT METHODS BEFORE AND AFTER TRAINING ON RSOD. TRAINING ON RSOD BRINGS SIGNIFICANT IMPROVE-
MENTS TO THE MODELS’ PERFORMANCE. SOTAS ARE ALSO MORE ROBUST IN SNOWY SCENES BY TRAINING ON RSOD

Method AP (val) AP35 (val) AP (test) APs5q (test)
Before training / Training on RSOD (20 epochs)
YOLOVS5s 3427411 498/625 327/379 554/64.6
YOLOV6-nano 326/435 459/602 364/456 553/66.3
YOLOV7-tiny 38.0/443 535/66.0 368/409 56.3/67.5
EfficientDet DO 23.0/289 333/474 263/333 40.0/53.1
EfficientDet D1 25.1/378 345/568 279/402 41.6/624
SSD300 2397347 424/598 25.6/33.1 46.8/59.5
CF-YOLO (K=1) | 355/41.2 51.8/646 356/424 57.6/70.6
CF-YOLO (K=3) | 389/475 56.5/71.1 34.0/419 58.4/70.6
TABLE III

COMPARISON OF CF-YOLO WITH SOTAS ON MSCOCO. WE CONDUCT THE SPEED TEST ON A SINGLE TESLA V100 GPU WITH BATCH SIZE=1,
TAKING THE AVERAGE SPEED OF 5000 IMAGES OF COCO VvAL2017

Method Params GFLOPS AP (val) APs5g (val) AP (test) AP5g (test) FPS
YOLOV5s 7.3M 17.3 36.3 55.3 36.6 55.3 65
YOLOv6-nano 4.3M 11.2 35.9 51.2 - - 75
YOLOvV7-tiny 6.2M 13.8 38.7 56.7 38.7 - 45
EfficientDet DO 3.9M 2.5 34.3 - 33.8 55.2 63
EfficientDet D1 6.6M 6.1 40.2 - 39.6 58.6 50
CF-YOLO (K=1) 9.2M 174 35.5 55.6 35.8 55.7 49
CF-YOLO (K=3) 22M 17.4 36.1 55.8 36.2 55.9 44

Table I, CF-YOLO shows steady and obvious advantages over
SOTAs in each difficulty level and the whole dataset. Besides,
as shown in Fig. 9, compared with YOLOvSs, CF-YOLO has
higher confidence in detection results and can reduce missed
and false detections. The reason is that the CF block enables
the direct interaction of the features from different stages of
the backbone so that the meaningful information diluted in the
high-level features can be recovered. It can be observed from
Table I that YOLOV7-tiny achieves a superior A Psq score
on the particularly difficult level compared to our method,
but its AP value is inferior. This difference indicates that the
bounding boxes generated by YOLOv7-tiny generally have a
larger offset (i.e., a low IoU value and a low AP value) while
CF-YOLO can locate objects more accurately (i.e., a high IoU
value and a high AP value). Furthermore, as shown in Table I,
the detectors suffer severe degradation on different difficulty
levels. This proves that our proposed gradation strategy can
accurately grade snowy images into different levels.

Subsequently, to compare the performance of different
methods after training on RSOD, we train the detectors on
RSOD with MSCOCO pre-trained weights. We train the
networks with only 20 epochs, which is enough since RSOD
is much smaller than MSCOCO. As shown in Table II, CF-
YOLO still outperforms SOTAs a lot on the validation and
test sets, which confirms the advantage of CF-YOLO in snowy
weather.

To further investigate how CF-YOLO works, we conduct a
PCA study for the outputs of our CF block and the aggregation
module of other YOLO detectors (see Fig. 10 (e)~(h)):
The red points indicate the object pixels and the blue
points represent the background pixels. The upper corner
of the figure shows the average distance of all points to their
corresponding cluster centers. As shown in Fig. 10, CF-YOLO
and YOLOv6n, which successfully detect the car, have smaller
average distances than YOLOVSs and YOLOv7t. However, the
background pixels of YOLOv6n’s PCA result are clustered

too close and mixed up with the object (i.e., foreground)
pixels (see Fig. 10 (g)), which is one of the reasons why
YOLOv6n produces abundant useless and erroneous proposals
(see Fig. 10 (c)). In contrast, CF-YOLO can more accurately
distinguish the object pixels from the background pixels. The
comparison demonstrates that CF-YOLO is more suitable for
the snowy scene.

C. Performance of Detectors on MSCOCO

To further investigate the generalization ability of CF-
YOLO, we train two versions (K = 1 or 3) of CF-YOLO
from scratch for 300 epochs on MSCOCO. Table III shows
the comparison results between CF-YOLO and SOTAs on
MSCOCO. We can see that CF-YOLO with the kernel size of
K =1 or K = 3 achieves similar results to SOTA detectors,
which means our CF-YOLO performs well in snowy weather
while still being competitive in normal weather. CF-YOLO
(K=3) has much more parameters than YOLOvS5s and CF-
YOLO (K=1) (see Table III), since gOctConv handles the
features from all stages simultaneously. As the kernel size
increases from 1 to 3, the number of parameters for a single
CF block rises from 2.3M to 8.7M. Although the number
of parameters rises disproportionately, CF-YOLO (K=3) and
CF-YOLO (K=1) consume similar hardware resources to
YOLOVSs because of their similar GFLOPS. The change in the
kernel size improves mAP by 0.6% and 0.4% on the validation
and test sets, respectively. The FPS of CF-YOLO is lower than
the other methods. This is mainly caused by the feature fusion
procedure. Nonetheless, the speed of CF-YOLO is sufficient
for possible application scenarios.

Although CF-YOLO does not achieve the best AP and
FPS scores on MSCOCO, it can be considered as a trade-
off between good weather and bad weather. In real-world
applications, it is nearly impossible to train two models for
good and bad weather, and then shift them according to the
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weather. Our CF-YOLO is compatible with both good and bad
weather, with only a little sacrifice of accuracy and speed.
Considering the severe degradation of snowy images, such a
little sacrifice may be tolerable.

VI. CONCLUSION

Adverse weather often poses the visibility problem for
the sensors that power automated systems. While cutting-
edge object detectors have obtained promising results on the
datasets captured in normal weather, it is still non-trivial
to detect objects from the low-quality images captured in
adverse weather (e.g., snowy weather). They often ignore the
latent information beneficial for detection. By developing an
unsupervised training strategy, we establish a high-quality real-
world snow dataset for object detection (RSOD). Considering
the degradation of CNN-based detectors on RSOD, we propose
cross fusion YOLO (CF-YOLO): a lightweight yet effective
objection detector. The results show that our CF-YOLO not
only achieves excellent performance on RSOD, but also is
a competitive and lightweight general detector, which will
facilitate the outdoor vision systems.
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