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A B S T R A C T

With the artificial intelligence technology development boom, large language models are demonstrating their
potential in comprehension and creativity. Large language models such as GPT-4 and Gemini have been able
to powerfully study for various professional-level exams. However, as a language model itself, its powerful
comprehension can only be reflected in text sequences. Currently, although videos can be generated through
the connection between 3D point clouds and large language models, there is currently no prompt project that
directly interacts with one-dimensional through attribute calculation results. The point cloud data is also rich
in information that can support various tasks of urban construction. For scene-level point cloud data, there has
been a lot of research done on semantic segmentation, target detection, and other tasks. However, it is usually
difficult to provide direct help to scene construction from the perception results. This paper presents a method
for applying large language models to urban ecological construction by combining the results of 3D point cloud
semantic segmentation. The objective is to integrate the prior knowledge and creative capabilities of Large
Language Models (LLMs) within urban development with the outcomes derived from point cloud semantic
segmentation results. This integration aims to establish an interactive point cloud intelligent analysis system,
tailored for aiding decision-making processes in urban ecological civilization construction, thus presenting
innovative perspectives for the advancement of smart city development.
1. Introduction

A new surge in the development of artificial intelligence models
has erupted recently. Benefit to the popularization of the attention
mechanism and the high performance of the transformer-based network
architecture (Vaswani et al., 2017), large pre-trained models emerged
and rapidly became popular. Because of the ability to learn general-
purpose language representations unsupervised from large-scale data,
pre-trained models are quite effective for many downstream tasks,
especially NLP tasks. The successive emergence of large language mod-
els (Wei et al., 2022) such as GPT-3 (Brown et al., 2020), PaLM (Chowd-
hery et al., 2022), and Llama 2 (Touvron et al., 2023) which utilize
their significant advantages in understanding the text, demonstrates
the trend towards large pre-trained models. An enormous amount of
research confirms that models mostly follow the scaling law (Kaplan
et al., 2020) and that increasing the capacity of the model can signifi-
cantly improve the modeling results. Meanwhile, the pre-trained model
trained by a large amount of data has a strong generalization ability
and approximate thinking logic ability. The pre-trained language model
is able to give reasonable responses based on input data and textual
prompts, combined with an analysis of the literature in the database.
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E-mail address: zhangsh255@mail2.sysu.edu.cn (S. Zhang).

LLMs have been used in a wide range of application situations
motivated by their large knowledge base and powerful text compre-
hension capabilities. With reasonable prompts, LLMs can be motivated
to make scientific responses and hypotheses that drive research and
application efficiency. A lot of research on prompt engineering has also
emerged (Liu et al., 2023b). However, the ability to understand high-
dimensional image information or point cloud information is limited.
Dealing with object-space relationships involved in high-dimensional
information and recognizing texture patterns and target features re-
quires more in-depth high-dimensional processing capabilities that are
not available in language models. Inspired by natural language pro-
cessing methods, transforming the spatial features of an image into
textual signals for input to LLMs has become a common approach across
modalities. Currently, such methods are used in medically related
image processing tasks and better results are obtained.

Point clouds, as high-dimensional spatial data capable of represent-
ing depth information and three-dimensional vertical structures with
high precision, are extensively utilized due to their distinctive features.
Unlike remote sensing imagery, point cloud offers a three-dimensional
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Fig. 1. An illustration of the Chat3D architecture. The architecture consists of two main modules: (a) Translator and (b) Generator, to provide a comprehensive analysis of the
scene-level point cloud and to suggest layout optimizations. The Prompt (a), (b), and (c) denote the coverage for main categories from semantic segmentation, the layout and
position of the categories from point clouds and text, and the relevant geographical information from external source and prior knowledge based on LLMs, respectively.
representation of the environment, enabling detailed spatial analy-
sis and modeling for various applications such as urban planning
and disaster management. Its high-dimensional nature and diverse
acquisition methods make it valuable for capturing intricate terrain
features and vertical structures accurately. Meanwhile, with the rise
of the autonomous driving industry and the urgent need for smart
city construction, point cloud sensing has become a research hotspot.
Numerous techniques already exist for semantic segmentation of point
clouds, including Qi et al. (2017a,b), Liu et al. (2019b), Zhao et al.
(2021) and Zhang et al. (2023). These methods classify points in the
scene into different categories combining local and global features for
further research. However, the segmentation result of the network is
only labeled data and cannot be directly used for subsequent research.
Most of the city-building tasks, after obtaining the experimental results,
also need to obtain environmentally relevant indexes based on a priori
knowledge of the local geographic conditions and climate. The calcu-
lated indicators are then used to assess the probability of occurrence
of ecological risks, which in turn generates a detailed report on the
construction of the city. The urban construction report is able to assess
the urban risk level, monitor the ecological index, and greatly assist in
the construction of smart cities. However, urban construction reports
require a large amount of information to be referenced, as well as a
large amount of manual assistance to participate in order to ensure the
accuracy of the report, and is highly influenced by artificiality. Relying
solely on manual analysis would significantly diminish management
efficiency. To the best of our knowledge, there are currently few large-
scale 3D semantic scene understanding, ecological management and
natural language models. Integrated paper publication.

Therefore, this paper proposes an interactive understanding scene-
level point cloud by large language model for urban ecological con-
struction method, called Chat3D. In this scheme, we first obtain urban
scene-level point cloud semantic segmentation results. Further, we
transform the 3D segmentation results into textual prompts for a pre-
trained large language model as shown in Fig. 1. Simultaneously, we
sequentially entered different levels of text prompts, which included
information about the geographical elements of the city, the layout and
position of category features in the city, etc. Then, LLMs subsequently
condense the aforementioned prompts and conduct a comprehensive
search of resources and prior knowledge, drawing from its native train-
ing database and an amalgamation of information procured through
networking searches aligned with the prompt. This process entails
the computation of environmental parameters and culminates in the
generation of an eco-construction report tailored to the designated
study area. The experiments demonstrate that large language models
can accurately understand three-dimensional semantic segmentation
results with effective textual prompts. It will accurately calculate the
environmental parameters(environment index, EI) of the area based
on the subsequent prompting engineering. Meanwhile, the generated
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report on urban ecological construction is very detailed, including the
rationalization analysis of the construction of a variety of features and
the corresponding adjustment methods with highly informative.

The main contributions of our method are summarized as follows:

• We propose a comprehensive solution that utilizes semantic seg-
mentation, distribution, geographic location, and other informa-
tion derived from three-dimensional point cloud geographic fea-
tures as prompts. Leveraging the extensive knowledge and auto-
mated search capabilities of large models, our approach enables
accurate and rapid analysis of ecological environments, called
Chat3D.

• During the interaction, we propose the utilization of various
levels of prompts obtained from three-dimensional point cloud
environment perception algorithms. Furthermore, the integration
of the model’s knowledge repository and online search func-
tionality enhances the comprehensiveness and reliability of text
generation.

• The experimental results show that Chat3D can accurately cal-
culate the local eco-environmental index based on the input data
combined with geographic prompts. Specifically, the environmen-
tal index of the study area calculated based on Gemini’s Chat3D
is 82.5, which represents an error of only 2.7 from the officially
published result (EI = 85.8). The generated report on urban eco-
logical construction can assess the probability of the occurrence
of urban ecological risks, as well as evaluate the rationality of
the city’s functional structure and adjustment program. The gen-
erated reports are detailed, accurate, and adhere to sustainable
development principles, thus significantly contributing to urban
ecological services.

2. Related works

2.1. Large-language model

This study aims to design an intelligent ecological analysis system
by integrating point clouds and Large-Language Models. At present,
most combinations between point clouds and Large-Language Models
require text as an intermediary. Therefore, the related work of this pa-
per will be divided into four parts: Large-Language Model, Image-Text
Model, Point-Text Model and Ecological Analysis Methodology.

Large-Language Models (LLMs) represented by transformer-based
GPT series (Radford et al., 2018, 2019) and BERT (Devlin et al.,
2018; Lan et al., 2019; Liu et al., 2019a) have dominated the field
of natural language processing (NLP) in recent years. With supervised
instruction tuning and reinforcement learning from human feedback,
LLMs exhibit surprisingly effective zero- and few-shot generalization
abilities to perform almost any NLP tasks (Su et al., 2023; Mishra et al.,
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2021; Ouyang et al., 2022; Victor et al., 2022). BERT model adopts
bidirectional encoder architecture and masked language modeling tech-
niques to process random text and reconstruct the original context,
which is jointly conditioned on both the right and left context in all
layers. On the contrary, the GPT series that utilizes the auto-regressive
prediction approach is based on the decoder-only architecture. Based
on the existing large corpus of texts, they can learn more language
knowledge and produce more natural statements automatically.

As one of the most popular examples, ChatGPT (OpenAI, 2023a) has
garnered extensive attention in several specific domains for its powerful
ability to write, translate, analyze, and generate high-quality human-
like text (Brown et al., 2020; Singhal et al., 2022). Many researchers
in medicine (Kung et al., 2023; Sinha et al., 2023; Patel and Lam,
2023), environment (Biswas, 2023), engineering (Prieto et al., 2023),
electronic (Tafferner et al., 2023), and other fields are conducting a
variety of attempts to explore the potential of it across a diverse range
of downstream tasks. For instance, ChatGPT has shown great intelli-
gence and professionalism in various vocational examinations and can
give specialized analysis for specific exam questions, which displays
its latent ability to help users make reasonable and well-considered
decisions. In the United States Medical Licensing Exam, ChatGPT even
shows greater talent compared to PubMedGPT (Venigalla et al., 2022),
a counterpart LLM with similar neural structure, but trained exclusively
on biomedical domain literature (Kung et al., 2023). However, exam
experiments also showed that ChatGPT is still a poor judge of its
correctness. That being said, its confidence has little bearing on the
correctness of its response (Jalil et al., 2023; Fijačko et al., 2023).

2.2. Image-text model

While ChatGPT can only accept text input, GPT-4 can adopt images
as its inputs and generate captions, classifications, and analyses, which
means it can realize images (OpenAI, 2023b). Some researchers also
aim to combine vision alignment with LLMs for visually-grounded
instruction following, such as LLaVa (Liu et al., 2023a) and Mini-
GPT4 (Zhu et al., 2023). Although they possess numerous advanced
vision-language capabilities, they still have limitations in recognizing
detailed textual information from images and differentiating spatial
localization. DetGPT (Pi et al., 2023) leverages state-of-the-art multi-
modal models and open-vocabulary object detectors to perform rea-
soning within the context of the user’s instructions and the visual
scene. In addition to this, some domain-specific LLMs based on GPT
models such as ChatCAD, which integrated LLMs into medical-image
CAD networks, successfully merged the strengths of ChatGPT’s medical
domain knowledge and logical reasoning with the vision understanding
capability (Wang et al., 2023). But its-generated reports are not very
human-like in a certain way and more complex prompts needed to be
tested based on this model.

What is more, the advances in LLMs also make great inspiration
in the computer vision field. Motivated by the GPT series, VISORGPT
applies the decoder-only architecture in modeling the visual proba-
bilistic prior. By discretizing visual locations of objects, e.g., bound-
ing boxes, human pose, and instance masks, into sequences, it can
model visual prior through likelihood maximization (Xie et al., 2023).
Image-GPT trains a sequence transformer to auto-regressively predict
pixels without incorporating knowledge concerning the 2D input struc-
ture, exhibiting promising representation learning capabilities after
pre-training (Chen et al., 2020). SAM takes advantage of the prompt
idea in NLP tasks to quickly segment any object by providing a prompt
to the image segmentation task, but its generality and breadth of use
limits its accuracy when applied in a particular field (Kirillov et al.,
2023).

2.3. Point-text model

At present, LLMs are not capable of understanding point cloud data
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directly. Some researchers aim to extend the concept of LLMs to point
cloud processing. CLIP2 exploits naturally-existed correspondences in
2D and 3D scenarios and builds well-aligned and instance-based text-
image-point proxies from those complex scenarios (Zeng et al., 2023).
This method constructs intermediate 2D representations for the 3D
data retaining its 3D geometry information, which can better adapt
the success of 2D Vision-Language Models to the 3D space. mmPose-
NLP, a novel NLP-inspired Sequence-to-Sequence (Seq2Seq) skeletal
key-point estimator using millimeter-wave (mm-wave) radar data is
also an example (Sengupta and Cao, 2022). It uses a similar procedure
to NLP to process point cloud data. Moreover, PointGPT has improved
classification accuracy on multiple datasets successfully by proposing
a point cloud auto-regressive generation task to pre-train transformer
models, which is inspired by the advancements of the GPT (Chen et al.,
2023).

PointCLIP (Zhang et al., 2022b) is an early attempt to integrate
multimodal models into the realm of point clouds. Like CLIP (Radford
et al., 2021), it converts point cloud data into depth images and utilizes
image-text pairs to predict image classifications, thereby enabling the
mapping of textual content onto point cloud data. Cap3d (Luo et al.,
2024) extends the methodology of PointCLIP by projecting the input
3D model into multiple views, creating multi-views. It then utilizes the
BLIP+CLIP (Li et al., 2022) method to enhance the understanding of
the relationship between images and text. Additionally, it combines the
results from CLIP with manually crafted prompts and inputs them into
the GPT language model to generate detailed point cloud-text paired
data.

Similarly, UNiG3D (Sun et al., 2023) obtains multi-angle meshes
and images from 3D models, in contrast to Cap3D. The aforemen-
tioned works focus on text understanding within individual 3D objects,
whereas 3dLLM (Hong et al., 2024) distinguishes itself as the first
multimodal model capable of comprehending entire three-dimensional
scenes. It employs a multi-view approach to represent point clouds at
the scene level, followed by the extraction of 2D features using an
image encoder. Additionally, it generates three-dimensional reconstruc-
tions, SLAM (Simultaneous Localization and Mapping), Nerf (Neural
Radiance Fields), and other three-dimensional features based on these
2D features. These three-dimensional features are subsequently fed into
the LLM, which is prompted to analyze and understand the scene using
a Q&A format, providing answers based on its comprehension.

PointLLM (Xu et al., 2023) is the pioneering model that enables
LLMs to directly comprehend three-dimensional features. It processes
point cloud data directly through a Point Encoder to obtain three-
dimensional features, which are then inputted directly into the LLM
for analysis. Moreover, the model is prompted to obtain textual analysis
results through a Q&A format. However, its ability to understand three-
dimensional semantic information is still limited to the relatively single
model, which means it is not useful for large-scale complex scenes.

The fusion of 3D point clouds and LLM has attracted increasing
attention. 3D captioning (Chen et al., 2021; Liu et al., 2024; Zhou
et al., 2023) is employed to describe different objects within a 3D
scene. Meanwhile, 3D LLM (Hong et al., 2024), Scene-LLM (Fu et al.,
2024) and 3DMIT (Li et al., 2024) focus on the holistic understanding
of the scene. However, these methods have not to explore applications
in outdoor environments. Despite LiDAR-LLM (Yang et al., 2023) in-
corporating visual grounding to combine LLM and point clouds into
autonomous driving tasks, it only considers object localization and
overlooks the semantic understanding of point clouds.

2.4. Ecological analysis methodology

With the rapid development of remote sensing observation technolo-
gies, assessing ecological environmental quality using remote sensing
data has become a crucial issue. A comprehensive understanding and
scientific assessment of regional ecological environment can help us

analyze landscapes and make plans for urban development (Popp et al.,
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2000; Wang and Zhong, 2017). Ecological Environment Index in Tech-
nical Criterion for Ecosystem Status Evaluation (HJ 192–2015) (TCESE
2015) has been proposed by the Ministry of Ecology and Environment
of the People’s Republic of China to build a reference standard for
regional ecology assessment. Early studies (Sun et al., 2012; Larsson
and Hanberger, 2016) often relied on statistical data or land use data.
However, the objectivity of data and research periods are limited. Fur-
ther, De Keersmaecker et al. (2014) and Li et al. (2017) referenced the
land cover and normalized vegetation index to form ecosystem status
evaluation. And Xu et al. (2013) and Hu and Xu (2018) used the Remote
Sensing Ecological Index to evaluate the ecological quality. Zhang et al.
(2022a) introduced more parameters such as normalized difference
vegetation index, wetness, normalized differential build-up and bare
soil index, and land surface temperature to construct a comprehensive
index to evaluate the ecological quality. Shan et al. (2019) developed
the remote sensing theoretical framework to provide a contrastive
analysis between Remote Sensing Ecological Index and Ecological In-
dex. According to aforementioned studies, Yu et al. (2022) proposed
Ecological Livability Index, covering greenness, temperature, dryness,
water-wetness, and atmospheric turbidity, to demonstrate that eco-
logical environment index has an exemplary embodiment in urban
ecological research. Das et al. (2023) based on these five ecological
parameters developed a comprehensive urban ecological framework
to achieve spatial landscape planning. Therefore, landscape ecological
analysis provides a new impetus for urbanization research. Xu et al.
(2021, 2022) considered the multi-source remote sensing data and
the interactive coupling mechanism between urbanization and eco-
environmental quality to provides a new perspective for the research
on the urban sustainable development. However, existing studies based
on multi-source remote sensing data overlook the crucial 3D point
cloud, which can provide volumetric spatial observations and structural
information. In addition, large language models (such as ChatGPT etc.)
can both access networked ecological data to reduce measurement
efficiency and provide insights into the connection between ecological
analysis and urban planning when prompted by researchers. Therefore,
integrating point cloud and large language models to conduct research
on urbanization development using ecological parameters is valuable.

3. Chat3D

The overall architecture of Chat3D is illustrated in Fig. 1. The
Chat3D is comprised of two components, the Translator and the Gen-
erator. The input to the pipeline is the segmented scene-level point
clouds. The translator forms the textual understanding of semantic
point clouds. Further, the generator concludes and analyzes the trans-
lation results using logical reasoning capabilities. The summary report
will provide effective recommendations for optimizing the city’s layout.

3.1. Point cloud to text translator

The critical aspect of the architecture design is how to utilize
the powerful logical reasoning capabilities of the pre-trained LLMs to
perform robust and intelligent analysis of the point cloud. We employ
a translator to translate point cloud into text to connect the LLMs. The
translator consists of two steps: (1) Following our previous work, the
scene-level point cloud is semantically segmented into ten different
classes;Note that the 10 categories are only properties of the study
area and the number of categories is not a limiting condition for the
algorithm. The algorithm can be applied to a variety of scenarios any
category. In addition, the method is based on point cloud semantic
segmentation results, and it can employ any kind of segmentation
network to accomplish this step. (2) Translation of the segmented point
cloud into textual information that can be recognized by LLMs. The
strategy of the second step is described in more detail below.

Prompt (a): Scene-level point clouds are indicated by the classifier
into ten different classes, i.e., artificial terrain, transportation facilities,
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buildings, cars, grassland, trees, ground, sidewalk, highways, and oth-
ers. It is possible to calculate the percentage of points in the scene for
each category based on the number of points in that category since
the number of different classes of point clouds is stable before and
after segmentation. This percentage is considered as the coverage of
the category. The process is formulated as Eq. (1):

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑖 =
𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙
(1)

where 𝑖 is denoted as a category, 𝑁𝑖 and 𝑁𝑡𝑜𝑡𝑎𝑙 are indicated as the
class 𝑖 points and total points, respectively. The core of the second
step is the translation of the point cloud segmentation results into the
natural language to generate the prompt. The prompt (a) is designed
to correlate with coverage. The coverage needs to be translated into
a prompt for LLMs. The prompt (a) is the percentage of a particular
category or all categories separately. And we do not need to normalize
the form of the prompt, because even if it is a long paragraph, LLMs can
extract critical information and translate it into an abbreviated tabular
form.

Prompt (b): However, it is difficult for a single prompt to fully
arse the point cloud and give a truly valuable report. Thus, prompt
b) is designed using geographical distribution, which assists in the
nalysis of the orientation of the categories. (Prompt(b) does not come
rom the semantic segmentation results, rather this is the user’s a priori
nowledge of the study area.) The distribution of natural geographic
ntities is computed and inferred from the class of points. For example,
rasslands are concentrated in urban areas, while trees are located
n suburban areas. In general, trees are surrounded by grasslands.
egetation is more likely to occur in the nearby neighborhoods of rivers
nd lakes. Due to the uneven and scattered distribution of geographical
ntities in the different layouts, the orientation expresses the position
f the subject of the category. You may be able to choose the center,
outh-east-north-west, south-east, north-east, etc., as orientation words.
or example, the prompt could be written as ‘‘The buildings are mostly
ocated in the campus center’’. Even the orientation relationships of
ifferent geographical entities can be employed as prompt, such as ‘‘The
ake lies in the southeast of the woods, a long way from the buildings’’.
Prompt (c): Prompt (c) is networked data and prior knowledge

btained from an external source. The networked data and prior knowl-
dge mainly include relevant geographical information such as local
limatic conditions, weather conditions, and hydrological land condi-
ions, and may also include statistics with time-series relationships.
rompt (c) benefits to generate better reports. Further, these data are
sed to assist the generator in making comprehensive analyses and
redictions and giving reasonable recommendations.

.2. Report and advises generator

The generator is employed to deduce on the basis of accurate
ranslations via logical ability. The role of the generator is divided into
hree parts: (1) Firstly, the conversation about the understanding of
cene descriptions is engaged in forming interactions; (2) Secondly,
he generator utilizes LLMs to summarize the prompts and makes

conclusion; (3) Finally, based on the conversation, comprehensive
eports and suggestions for layout optimization are deduced in the
enerator.

In order to generate more rational reports and valuable recommen-
ations, we adopt a thought chain-like approach to prompt the LLM,
ather than completing all prompts in a single step. Continuous prompts
ptimize the understanding ability of LLMs to adapt scene analysis. The
rocess of question & answer structure in the form of conversation is
een as a domain-specific optimization process for LLMs. For example,
e incorporate the point cloud into calculating the ecological environ-
ent index (EI), which is a composite of a series of indices that reflect

he state of regional ecological quality. The vegetation coverage index
VI), river density index (RI), building coverage index (BCI), and land
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Table 1
Evaluation indicators and calculation methods of ecological environment index.

Evaluation indicators Definition Calculation method

Biodiversity index Evaluate the abundance of biological
abundance in the region via difference of
various ecological environments

𝐵𝐼 = 0.35 × 𝑡𝑟𝑒𝑒𝑠+ 0.21 × 𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑠+ 0.28 ×𝑤𝑎𝑡𝑒𝑟𝑠
+0.11 × 𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠 + 0.04 × 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 + 0.01 × 𝑜𝑡ℎ𝑒𝑟𝑠

Vegetation coverage index Reflects the extent of vegetation coverage by
calculating the proportion of forests,
grasslands and croplands

𝑉 𝐼 = 0.38×𝑡𝑟𝑒𝑒𝑠+0.34×𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑠+0.19×𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑠
+0.07 × 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 + 0.02 × 𝑜𝑡ℎ𝑒𝑟𝑠

River density index Assessment of watershed areas and water
percentage

𝑅𝐼 = 𝛼 × 𝑙𝑒𝑛𝑔𝑡ℎ∕𝑎𝑟𝑒𝑎 + 𝛽 × 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑜𝑓𝑙𝑎𝑘𝑒𝑠
+𝛾 ×𝑤𝑎𝑡𝑒𝑟𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠∕𝑎𝑟𝑒𝑎

Land stress index Reflect the extent of land degradation in the
target area, including mild, moderate and
severe

𝐿𝐼 = 0.05 × 𝑚𝑖𝑙𝑑 + 0.25 × 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 +0.7 × 𝑠𝑒𝑣𝑒𝑟𝑒

Pollution load index Evaluation of environmental pollution
pressures on the territory

–

Environmental restriction index ERI is a constraining indicator that places
limits on ecological status

–

stress index (LI) are calculated from the coverage during the conversa-
tion, where the land stress index is further transformed from building
coverage index. The biodiversity index (BI) is acquired by calculating
tress, grasslands, waters, croplands and buildings. Additional data such
as pollution load index (PLI), and environmental restriction index (ERI)
are acquired from networked data and prior knowledge. Each indicator
is calculated as shown in Table 1.

According to the above indicators, the ecological environment index
is mathematically expressed in Eq. (2):

𝐸𝐼 =𝛼 ∗ 𝐵𝐼 + 𝛽 ∗ 𝑉 𝐼 + 𝛾 ∗ 𝑅𝐼 − 𝛿 ∗ 𝐿𝐼

+ 𝜖 ∗ (100 − 𝑃𝐿𝐼) + 𝐸𝑅𝐼
(2)

where 𝛼, 𝛽, 𝛾, 𝛿, and 𝜖 are normalization parameters. The equation
is referenced from Ecological Environment Index in Technical Crite-
rion for Ecosystem Status Evaluation (HJ 192–2015) (TCESE 2015)
proposed by the Ministry of Ecology and Environment of the People’s
Republic of China.

The obtained ecological environment index forms a conversation
interaction with the generator. There are a total of five levels according
to the specific values of the ecological environment index, including
excellent, good, fair, poor, and very poor. The comparison of current
data with historical data is categorized into four levels, which are
none, slight, obvious, and significant, respectively. Then, the generator
integrates all the prompts and combines them with inherent knowledge
to conclude the analysis of the scene-level point cloud. An ecological
analysis report is generated, as shown in Fig. 1(b). Moreover, we enrich
the report by analyzing trends and ecological fluctuations in conjunc-
tion with time-series data. The ecological report is strong support for
the planning and construction of the city. Finally, the generator will
produce a proposal on how to adapt the layout and how to optimize
the ecology under a sustainable development strategy.

4. Experience

We aim to use the powerful logic understanding capability of LLMs
to analyze the semantic segmentation results of city-level 3D point
clouds, and then get relevant suggestions for ecological or urban con-
struction. The figures show an example where we use SYSU9 as the
object of study. The dataset is obtained in the field at Sun Yat-sen
University using drone scanning and contains nearly 200 million points,
in total. A point cloud semantic segmentation network is used to
segment the point cloud into a total of ten categories. Sun Yat-sen Uni-
versity covers an area of about 3.571 square kilometers. We acquired
a total of 172,092,897 points and segmented the internal 171 819 904
points. Among them, there are 10,246,343 points for car-shaped roads,
5,072,780 points for sidewalks, 857,667 points for natural ground,
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85,785,082 points for trees, 230,248,410 points for grass, 565,102
points for vehicles, 22,033,300 points for buildings. There are 40,843
points for traffic facilities (such as street lights, utility poles, traffic
lights, etc.), 6,671,688 points for man-made terrain, and 9,833,289
points for other categories (including water). We hope to use LLMs’ data
processing power and logical ability to give opinions on campus ecol-
ogy construction with the above information. ‘‘The higher the number
of points, the greater the proportion of the feature’’ is the basic rule for
this analysis. Then, the following template is used to convert the split
result to language, ‘‘${category} point_number: ${point_number}’’ as
the Prompt(a).

With the input of Prompt(a), LLMs can get the data specific to each
category. The model can rush to death the proportion of each category.
Figs. 2, 3 show the output report by entering Prompt(a). However,
the specific number of points is not a common mode of analysis for
ecological proposals, and a description of the location of the feature has
also been added to obtain Prompt(b). The aim is to increase the model’s
spatial understanding of this data. Fig. 4 shows the output report by
entering Prompt(b). Finally, we use language to suggest geographic
information related to the model(Prompt(c)). Fig. 5 show the output
report by entering Prompt(c).

To measure the LLMs’ ability to understand the data, we set up
the following three questions about the environment for testing. (1)
Combining the local +biodiversity index, pollution load index, and
environmental restriction index, please calculate the ecological envi-
ronment index of this campus. And analyze whether the heat island
effect will occur in the area. (2) A detailed analysis is given of the
type and distribution of features on the campus and an assessment
of the probability of risk from environmental problems. (3) Is the
distribution of features on this campus reasonable, if so please analyze
the rationality or not, how will it be adjusted? Please design a new and
reasonable category distribution ratio with the functional positioning
and structural characteristics of the campus, and give reasons.

4.1. Qualitative comparison of generated text

We evaluate the performance of our proposed method with two
different LLMs, ChatGPT and New Bing(GPT-4 Online), which are easy-
to-use and simple interactive language models. Of the three issues
mentioned above, the quantitative evaluation of the issue of recom-
mendation generation is more difficult to determine. Therefore, we
have used question(1) for the quantitative evaluation of the method.
The language model uses its powerful knowledge base and computing
power to calculate an environmental index for the area, using the data
and geographical prompts we input.

The foundational model, based on input point cloud segmentation
results and prompts at different levels, combined with the backend
database of the large model, can compute VI, RI, BCI, and LI. It is also
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Fig. 2. Analysis of raw data by language models.
clear from Eq. (2) that the local BI, PLI, ERI, and regularization factor
are required before the environmental index can be calculated. Various
indices were obtained through field measurements in the different
seasons in the region from the official environmental website. The
generated results are compared as the true value with the model output.
With the input data, the language model can accurately calculate the
percentage of land features, such as the percentage of vegetation cover
and the percentage of water system cover. The knowledge base and
retrieval capabilities of the language model are also used to suggest
the conditions for their selection in other parameters. At this point,
the language model can calculate the corresponding environmental
parameters.

We found out from the website where the official environmental
index is published that the environmental index for the region is 85.8.
As shown in Table 2, different base models provided estimates ranging
from 62.7 to 93 based on their knowledge base and input data. The
Gemini model achieved a computation result of 82.5 even without
extensive prompts, demonstrating its capability for ecological assess-
ment without significant guidance. This result is directly applicable to
186
Table 2
Comparison of environmental index by different foundation models.

Model Environment index

ChatGPT 62.7
Newbing 93.0
Gemini 82.5
Ground truth 85.8

subsequent ecological evaluations. This result proves the effectiveness
of our method.

Three different language models are compared at the same time. The
free version of ChatGPT has its knowledge base until April 2023. There-
fore the calculated indices are relatively accurate before April 2023,
and the data after April 2023 are all guesses and do not have reference
values. Newbing provides an online GPT with the ability to search
and update data, which allows it to access recent data and get more
accurate results. The Gemini model is trained on a multi-modal and
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Fig. 3. Initial report generated by the language model (Prompt(a)).
multi-lingual dataset. Leveraging larger datasets and increased compu-
tational resources has endowed it with greater potential in multi-modal
understanding.

4.2. Quantitative comparison of generated text

In this section, we quantitatively compare the performance of dif-
ferent language models for report generation and recommendation
generation. Three different prompts are entered in the order. A detailed
187
report was requested to be produced, addressing the distribution of
features in the study area. The quality of reports generated is compared
with different prompts and the quality of reports generated by different
models with the same prompts. Because the evaluation criteria for
report generation are relatively subjective, we used report length and
coverage for comparison instead.

The length of the reports generated at different prompts is compared
first. Without any restrictions, other language prompts will gener-
ate reports of different lengths. In this section, the output results of
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Fig. 4. Additions to the report after adding spatial distribution (Prompt(b)).
the Newbing model are presented. The report generated based on
Prompt(a) analyses each analogy, comparing the proportion of them
and the role that each category of feature plays in the environment. As
shown in Fig. 3, the same question is repeated several times and the
language model gave the same analysis results. However, the report
lengths generated by different models vary slightly, with ChatGPT
approximately 550 words, Newbing around 750 words, and the Gemini
model providing only 370 words (see Fig. 6).

Further, the approximate orientation of the above feature category
in the scene is provided for the language model, Prompt(b). As shown
in Fig. 4, the analysis of not only the percentage of features and the
function of the different features in the generated report thus far. A
discussion of the reasons for the distribution has also been added.
For example, the language model speculates that the distribution of
buildings is due to the layout of a core area used for academic or
administrative purposes and that the distribution of vegetation and
water systems implies the school’s focus on environmental sustainabil-
ity, etc. At this juncture, the report generated by ChatGPT comprises
approximately 700 words, Newbing’s report spans nearly 1000 words,
while the Gemini model yields a report of around 570 words (see
Fig. 6).

Finally, other relevant information, combined as Prompt(c) as
shown in Fig. 5, was incorporated, including the areas and means of
data acquisition inputted into the language model. This was done to
incorporate local characteristics and generate detailed reports. At this
point the report will be analyzed in more detail, combining the model’s
knowledge base with the ecology of the campus, the school’s motto, and
its mission. The result is a complete and comprehensive report. With
this additional information, the current report length for ChatGPT is
approximately 1050 words, while Newbing’s report extends to 1330
words, and the Gemini model’s output comprises around 860 words
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(see Fig. 6). The experiment indicated that after different prompts, the
language model produced different reports. And the more detailed the
prompt, the more comprehensive the report generated and the more
words. At the same time, our method can summarize the patterns
in the data well and can use the knowledge base of the language
model, and the corresponding prompting works, to get better reports
for decision-making.

The more accessible language models ChatGPT, NewBing (GPT-
4 Online), and Gemini are used for comparison to explore the data
comprehension capabilities of the language models. The same questions
are asked for the different language models while entering the same
prompt data and text. Prompt(abc) is inputted and generates a report
using the language model. The experimental results show that the data
can be collated and analyzed in detail in two different large languages.
The difference is that the reports generated by ChatGPT are prompted
texts for very detailed answers, with extensive analysis for each type
of feature. However, ChatGPT uses its own very small knowledge base
and has no way of extending it in response to the information given.
Conversely, NewBing has similarly generalized and analyzed the input
data and used its strong knowledge base to extend the input prompts
considerably, yielding reports with greater coverage. In addition to ac-
curately understanding the input data and textual prompts, the Gemini
model can remarkably infer the ecological environment index of the
region with high precision. Furthermore, it provides more specific and
rational ecological improvement measures.

5. Conclusion

In this work, we have designed a complete, city-level 3D point
cloud semantic segmentation result using a large language model to
understand the results and assist in urban construction and ecological
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Fig. 5. Additional report after adding geographic information (Prompt(c)).
Fig. 6. Comparison of text length by different model.
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assessment programs. The language model is used firstly to under-
stand the initial results of semantic segmentation of 3D point clouds
and analyze the data. The relevant feature distribution information
and geographic location information are then processed into textual
prompting signals, which are input to the large language model as
prompting works. At this time, based on the data information and
spatial geographic information, combined with its own knowledge
reserves, the large language model is able to accurately calculate the
environmental index of the region, and assess the potential ecolog-
ical risk of the region, giving a detailed report on urban ecological
construction. The scheme breaks the limitation of the application of
language models on high-dimensional information and better utilizes
the intelligence and chain-of-thought features of language models to ob-
tain quasi-acquisitive computations and detailed reports by prompting
engineering. The proposed method constructs an interactive point cloud
intelligent analysis system for urban ecological civilization construction
decision-making, which provides new ideas for smart city development.
In future work, we will continue to explore more effective ways to
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integrate point clouds and LLMs to achieve applications in a wider
range of tasks.
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Appendix

A.1. Detail report by ChatGPT

Ecological Environment Report
1. Overview:
The point cloud data, divided into nine categories, offers insights

into the campus’s ecological landscape. These categories and their
respective point counts are as follows:

• Roads: 10,246,343 points
• Sidewalks: 5,072,780 points
• Natural land: 857,667 points
• Trees: 85,785,082 points
• Grasslands: 230,248,410 points
• Vehicles: 565,102 points
• Buildings: 22,033,300 points
• Traffic facilities: 40,843 points
• Artificial facilities: 6,671,688 points
• Other categories (including water system): 9,833,289 points

2. Environmental Features:
The campus spans an area of 3.571 square kilometers and is charac-

terized by diverse topography. Roads crisscross the campus, facilitating
transportation within and around the university premises. Buildings
are predominantly clustered in the central region, housing academic
and administrative facilities. The campus’s water system comprises
two artificial lakes, contributing to its aesthetic appeal and ecological
balance.

3. Ecological Significance:
The abundance of trees and grasslands enhances the campus’s bio-

diversity and ecological resilience. The presence of water bodies, in-
cluding artificial lakes, adds to the campus’s environmental diver-
sity and provides habitats for various aquatic species. Green spaces
contribute to air quality improvement, carbon sequestration, and the
overall well-being of the campus community.

4. Environmental Sustainability:
Efforts to preserve and enhance the campus’s ecological integrity

are essential for ensuring a sustainable and conducive learning envi-
ronment. Initiatives such as tree planting, green infrastructure develop-
190

ment, and sustainable transportation practices contribute to the cam- e
pus’s environmental sustainability goals. Collaboration with local au-
thorities and community engagement initiatives can further strengthen
the university’s commitment to environmental stewardship.

5. Conclusion: The ecological environment report underscores the
mportance of maintaining and enhancing the ecological balance of
un Yat-sen University’s campus. Through sustainable practices and
ommunity involvement, the university can continue to serve as a
odel for environmental stewardship in higher education.

This comprehensive assessment provides valuable insights into the
cological landscape of Sun Yat-sen University, guiding future conser-
ation and sustainability efforts on campus.

.2. Detail report by Gemini

Ecological Report: Sun Yat-sen University
1. Introduction:
The Zhuhai Campus of Sun Yat-sen University, situated in Guang-

ong Province, covers an approximate area of 3.571 square kilometers.
his report aims to assess the ecological condition of the campus-based
n provided data regarding land use and semantic segmentation of the
egion.
2. Ecological Assessment:

• Vegetation Cover: The campus exhibits rich vegetation cover,
with high densities of trees and grasslands. Tree density measures
approximately 240,133.98 points per square kilometer, while
grass density stands at around 64,498,024.89 points per square
kilometer. Such dense vegetation contributes positively to air
quality improvement, soil protection, and habitat enhancement.

• Water Bodies: Two artificial lakes are present within the campus,
contributing to a water body density of approximately
2,754,361.92 points per square kilometer. Regular monitoring of
water quality and pollution control measures are essential for
maintaining the health of aquatic ecosystems.

• Building Density: The density of buildings is relatively high,
with approximately 6,165,294.34 points per square kilometer.
Increased building density may lead to alterations in land cover,
ecological fragmentation, and habitat destruction, necessitating
careful urban planning and management.

• Other Artificial Facilities: The density of other artificial facilities,
including roads and infrastructural elements, is comparatively
lower, at around 1,868,997.18 points per square kilometer. While
the presence of such facilities may have some impact on the
ecological environment, their density remains relatively low.

3. Recommendations:
To safeguard and enhance the ecological quality of the Zhuhai

ampus, the following measures are recommended:
Strengthen vegetation protection and greenery initiatives, including

he expansion of tree and grassland coverage. Regular monitoring
f water bodies and effective management strategies for maintaining
ater cleanliness. Rational urban planning to minimize the ecological

mpact of building development. Promote environmental awareness
nd practices such as energy conservation, emissions reduction, and
reen transportation methods to mitigate human-induced ecological
isturbances.
4. Conclusion:
In conclusion, the Zhuhai Campus of Sun Yat-sen University exhibits

generally favorable ecological condition, characterized by rich vege-
ation cover and water resources. However, measures should be taken
o address concerns regarding building density and ensure sustainable
nvironmental management for a healthier and more balanced campus

cosystem.
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A.3. Environment index calculation by Gemini

Summary of the Calculation Process
1. Indicator Selection

• Green coverage rate
• Per capita green area
• Building density
• Road density
• Air quality
• Water quality

2. Weight Determination
Assign weights to each indicator based on its impact on environ-

mental quality.
3. Data Acquisition

• Green coverage rate, per capita green area, building density, and
road density data come from point cloud data analysis.

• Air quality data comes from Zhuhai Environmental Monitoring
Station.

• Water quality data comes from Zhuhai Water Affairs Bureau.

4. Calculation Formula

𝐸𝐼 =
𝑃1 ∗ 𝐼1 + 𝑃2 ∗ 𝐼2 +⋯ + 𝑃𝑛 ∗ 𝐼𝑛

𝑃1 + 𝑃2 +⋯ + 𝑃𝑛
(3)

5. Calculation Result

𝐸𝐼 = 82.5 (4)

6. Conclusion

𝐸𝐼 ≥ 80 (5)

Excellent level. The ecological environment quality of the campus
is good.

Data Sources

• Point cloud data analysis
• Zhuhai Environmental Monitoring Station
• Zhuhai Water Affairs Bureau
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