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A B S T R A C T   

The registration of multimodal satellite images is essential for a prerequisite for accruing complementary 
observational data. Nevertheless, the differential imaging nuances amongst non-linear radiometric multimodal 
images precipitate a complexity in keypoint detection, rendering it a great challenge. This complexity exacer
bates the difficulty encountered in matching multimodal satellite images. In this paper, a dual-branch cross 
fusion network (DF-Net) is proposed for the purpose of satellite image registration. DF-Net relies on the self- 
attention granted to a pair of images, thereby providing cross-modal fusion feature descriptions. Initially, 
reference and sensed images are deployed as inputs for the dual-branch network, which in turn engenders feature 
descriptions of both high and low resolution, respectively. Sequentially, the matching of individual feature de
scriptions is anchored on the low-resolution feature map, paving the way for the establishment of coarse 
matching correspondences. Subsequently, the outcomes of these coarse correspondences are transposed onto the 
feature map with a higher resolution, thereby generating fine matching results for each coarse correspondence. 
An exhaustive set of qualitative and quantitative assessments have been administered on three satellite image 
datasets encompassing a diverse range of scenarios. The average Repeatability (Rep.), Mean Matching Accuracy 
(MMA), and Root-Mean-Square Error (RMSE) of the DF-Net applied to three large-scale satellite images were 
recorded to be 0.71, 0.65, and 2.34, respectively. These findings buttress the proficiency of the proposed strategy 
in facilitating cross-modal matching and bear testimony to the sterling performance of the method proposed.   

1. Introduction 

Registration is the basis for multi-source satellite information rep
resentation between images of the same scene, which is a prerequisite 
for band fusion, change detection, and image stitching (Ma et al., 2022). 
Geographic alignment of satellite images can eliminate large geometric 
errors. However, the correspondence between multi-source satellite 
images still has tens of pixels of error due to the difference in imaging 
perspectives. Consequently, relying solely on geographic alignment to 
attain sub-pixel matching for satellite images is infeasible, necessitating 
the implementation of a matching process (Zhang et al., 2023). None
theless, the presence of nonlinear radiometric disparities between 
multimodal satellite images and local geometric distortions renders the 
matching process notably challenging (Fu et al., 2020; Deng et al., 
2023). 

Most existing satellite image matching methods incorporate the 
“detection-description-matching-geometry constraint” step. There are 

two main categories of image matching techniques: feature-based and 
area-based. These methods are differentiated by the way in which key
points are generated (Haskins et al., 2020; Jiang et al., 2019). The 
feature-based methods facilitate correspondence identification through 
the application of similarity metrics for measuring feature resemblances 
(Wu et al., 2022). The area-based methods solve the alignment problem 
by finding matches directly from the whole image or patch images using 
similarity metrics. These methods are sufficient for most homologous 
satellite image matching. However, these feature detectors may not 
obtain keypoints with repeatability when considering two different 
modalities in the same scene due to the satellite sensor’s shooting angle, 
multi-temporal features, intensity, and variations in viewing angle. Even 
the best feature descriptor and matching strategy cannot find a match 
between two images without repeated keypoints. Fig. 1 shows the key 
points (blue) in SAR and optical satellite images, respectively, obtained 
by the Harris corner detector. 

For some area-based matching methods based on similarity metrics, 
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they can be employed in a pixel-by-pixel search to remedy this problem. 
Matches with high similarity scores are used as the final correspondence 
from the results of these searches, avoiding the step of feature detection. 
Nonetheless, this approach proves to be time-consuming and necessi
tates considerable computational resources, thereby constraining its 
applicability to satellite images. Certain studies employed deep leaning 
networks to map the positions of patches on reference images (Li et al., 
2021, 2023). While these techniques can enhance the matching effi
ciency by avoiding pixel-by-pixel searches, they do not consider cross- 
modal feature similarities, which can be heavily influenced by the 
dataset used. As a result, the accuracy of these methods may be limited 
in certain circumstances. 

Recently, several works obtained correspondences between two 
natural images by establishing matching at the pixel level (e.g., Jiang 
et al., 2022; Revaud et al., 2019; Sun et al., 2021). As these methods are 
primarily designed for natural image matching, they need to be adapted 
to accommodate multi-source remote sensing images. For instance, 
features extracted from satellite images using the convolutional neural 
networks (CNNs) without information interaction may yield dissimilar 
feature descriptions (Li et al., 2022; Liu et al., 2023). Moreover, CNNs 
possess a restricted receptive field, potentially resulting in indistin
guishable feature descriptions. 

Therefore, establishing matching between satellite images requires 
overcoming the following problems.  

• The first problem is that of the receptive field for feature detection. 
Since CNNs have a restricted receptive field, they lack a wider variety 
of feature fusion and may not distinguish inconspicuous feature 
descriptions.  

• The second issue is the time-consuming nature of cost volume 
searching by the pixel-by-pixel search method. Establishing match
ing correspondence for each pixel in a given satellite image is time- 
consuming.  

• The third issue is that of cross-modal feature similarity. This refers to 
the challenge of extracting features from satellite images using a 
shared network weight, which may not adequately capture the 
similarities necessary for successful cross-modal matching. 

To mitigate these limitations, we introduce a dual-branch fusion 
network, denoted as DF-Net, designed to identify correspondences be
tween reference and sensed images by employing a coarse-to-fine 
matching strategy. Our main contributions include:  

• We construct a dual-branch network with self-attention for providing 
a larger range of receptive field to obtain feature descriptions with 
global dependencies.  

• To increase the efficiency, we utilize a coarse-to-fine matching 
strategy. This involves initially extracting coarse matches at low 
resolution and then selecting the matching results with high confi
dence for fine matching at the sub-pixel level.  

• To acquire feature descriptions exhibiting cross-modal similarity, we 
propose an interactive fusion module that generates feature de
scriptions contingent upon both images. 

The rest of the paper is organized as follows. Section 2 provides a 
comprehensive literature review of satellite image matching and self- 
attention. Section 3 details our proposed method with an emphasis on 
its functional components. Section 4 presents and discusses our experi
mental results. Section 5 concludes the paper. 

2. Related studies 

2.1. Satellite image matching 

Feature-based matching methods: Numerous research endeavors 
have focused on enhancing the scale-invariant feature transform (SIFT) 
(Ng and Steven, 2003) method for multimodal satellite image feature 
detection, encompassing variants such as SAR-SIFT (Wang et al., 2021). 
Although these SIFT variations effectively create local features with 
distinguishability, their performance may be suboptimal in alternative 
application scenarios. The interest in multimodal image matching tasks 
has surged in recent years, culminating in the development of various 
algorithms, such as the partial intensity invariant feature descriptors 
(PIIFD) (Chen et al., 2010), Distinctive Order Based Self Similarity 
descriptor (DOBSS) (Sedaghat and Mohammadi, 2019), and Modified 
RIFT (Chen et al., 2022). These multimodal image matching techniques 
have exhibited success within the realm of multimodal satellite images 
(Meng et al., 2021). 

The matching performance of multimodal satellite images with 
nonlinear radiometric differences can be significantly improved by a 
deep learning method (Wang et al., 2022). Yang et al. (2018) introduced 
a multiscale feature description founded on trained CNNs to enhance 
robustness, thereby improving registration robustness through the 
gradual increase of inlier selection. Ye et al. (2018) combined SIFT and 
CNN features information fusion for satellite image matching, which 
provided a high-level information for satellite image registration. Since 
these methods introduce deep learning methods on multimodal satellite 

Fig. 1. Key points (blue) extracted by the Harris corner detector from (a) SAR, and (b) optical satellite imagery. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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image feature descriptions, they are still based on the description of 
salient features. 

Area-based matching methods: Area-based techniques are preva
lent approaches for cross-modal matching. These methods identify 
feature points within two images and subsequently establish corre
spondences within a local search window. Correspondence measure
ment in the search window is determined by the similarity among local 
features. Widely used similarity metrics encompass the normalized 
cross-correlation (NCC) (Cui et al., 2020), Sum of Squared Differences 
(SSD) (Zhang et al., 2020), mutual information (MI) (Sengupta et al., 
2022), channel features of orientated gradients (CFOG) (Ye et al., 2019), 
and Automatic Registration of Remote-Sensing Images (ARRSI) (Wong 
et al., 2007). While SSD and NCC exhibit sensitivity to nonlinear 
radiometric differences, MI and CFOG demonstrate increased robustness 
against radiometric disparities. Nevertheless, MI, CFOG, and ARRSI are 
ill-suited for multimodal satellite image alignment due to their vulner
ability to template distortion. 

To counteract the limitations, some methods have been developed to 
generate similarities based on local features (Yao et al., 2022; Gao et al., 
2022; Quan et al., 2022). However, some methods employ weight 
sharing strategies to derive similar features through fully connected 
layer stacking. Although these approaches endeavor to accommodate 
similarity across the entire dataset, their effectiveness may be heavily 
contingent upon the availability of large and diverse datasets. Further
more, the final matches are generally acquired via pixel-level searches, 
which can impose substantial computational demands. 

2.2. Self-attention 

Recently, Transformer and self-attention structures have tran
scended the boundaries of natural language processing and become 
popular research directions in computer vision. In the specific area of 
image matching, their potential has been widely explored and 
confirmed. Chen et al. (2022) proposed a Transformer-based detector 
less matching method. This method employs an adaptive attention span 
to adjust the attention, which ensures long-distance dependence, while 
reinforcing the fine-grained attention between highly correlated pixels 
in the matching task. Meanwhile, Lu et al. (2023) proposed a parallel 
attention mechanism (ParaFormer). By integrating self-attention and 
cross-attention, this approach not only improves the accuracy of 
matching, but also significantly improves the computational efficiency. 
In cross-view geo-localization, Tian et al. (2022) first used semantic 
segmentation to distinguish different image regions, and then used 
Transformer to explicitly utilize the properties of self-attention Perform 
Matching. 

Local Feature Matching with Transformers (LoFTR) (Sun et al., 2021) 
utilizes self-attention in the Transformer to map feature descriptors in 
two images. Wang et al. (2022) proposed a hierarchical extraction and 
matching transformer called MatchFormer, which intertwines self- 
attention for feature extraction and cross-attention for feature match
ing to achieve efficiency, robustness, and accuracy with state-of-the-art 
results in four different benchmarks. On cross-modal matching, both 
Transformer and self-attention demonstrate their strong potential. With 
these studies, it is reasonable to believe that these methods will be 
widely used in more applications in the future. 

2.3. Multimodal feature fusion 

In recent years, research on cross-modal neural networks has made 
tremendous progress (Xie et al., 2023). Wang et al. (2015) was one of the 
early researchers in the field of cross-modal, and they proposed a 
clustering-sensitive cross-modal relevance learning framework to 
address the challenges of processing large-scale Web data. Wei et al. 
(2016) further demonstrated the benefits of CNN visual features for 
cross modal retrieval with their extensive experiments on five popular 
publicly available datasets. While He et al. (2016) proposed a new 

architecture, their results clearly showed that the architecture can effi
ciently learn representations with good semantics to achieve superior 
cross-modal retrieval performance9. 

Cangea et al. (2019) improved upon multimodal deep learning by 
proposing a new cross-modal approach that extends the previous cross 
connectivity that only transfers information between processing- 
compatible data streams. Subsequently, Khowaja and Lee (2020) pro
posed that hybrid fusion has different representations than the basic 
modality, which provides a new direction for cross-modal learning 
streams to be training with new directions. 

Xu et al. (2020) research further deepened the understanding in this 
area by demonstrating the advantages of their P3S approach by 
comparing it with 15 state-of-the-art methods on four widely used cross- 
modal datasets. Liu et al. (2020) conducted extensive experiments on 
three benchmark datasets, which demonstrated that their model is at the 
state-of-the-art in cross modal retrieval to state-of-the-art results. Wei 
and Zhou (2021) pointed out the technical challenges of cross-modal 
communication in co-transmitting and processing audio, visual, and 
haptic signals, but also emphasized the potential for AI technologies to 
support this. Geigle et al. (2022) also conducted experiments on a va
riety of cross-modal retrieval benchmarks, and their approach compares 
favorably to state-of-the-art in terms of accuracy and efficiency. cross- 
coders in terms of both accuracy and efficiency. Prakash et al. (2021) 
proposed two-channel fusion of images and point clouds for self- 
attention to achieve end-to-end autopilot, reducing collisions by 76 % 
compared to geometry-based fusion. 

These above approaches, constructed for different cross-modal in
formation fusion methods in different tasks, have made a lot of progress 
in the existing research. However, in multimodal remote sensing image 
matching, instead of establishing the fusion of information in two im
ages, the similarity of key features is established based on two images as 
conditions. Therefore, based on the two-channel multimodal informa
tion fusion. we propose an attention structure with cross-modality to 
learn the similarity of feature representations of two images. 

3. Method 

In this study, we present a dual-branch fusion network (DF-Net) that 
leverages self-attention to enhance the global receptive field and facil
itate cross-modal information fusion for satellite image registration. In 
the subsequent section, we present a comprehensive exposition of DF- 
Net, encompassing an overarching overview, the dual-branch network, 
self-attention modules, and loss functions. 

3.1. Framework of proposed DF-Net 

DF-Net, as depicted in Fig. 2, is an innovative framework designed to 
determine the correspondence between image pairs by employing a 
systematic coarse-to-fine strategy. At its core, this methodology is based 
on a dual-branch network system complemented by a self-attention 
module, which collectively facilitates precise image matching. 

Feature Extraction in DF-Net: The primary focus in the DF-Net 
framework is the extraction of relevant features from input images, 
which is accomplished in two pivotal steps:  

1. Dual-Branch Network Structure: The essence of this structure is 
rooted in residual networks, specifically orchestrated in Stages 2 and 
4. The outcome of this process yields two distinct maps: the high- 
resolution map, scaled at 12 of the input size, and the low-resolution 
map, scaled at 18 of the input size.  

2. Self-Attention Mechanism: Perpendicular to the aforementioned 
dual-branch network, the self-attention module plays a crucial role. 
It addresses the residual block’s receptive field limitations by 
extending its range. More importantly, it fosters an environment for 
information cross-fusion, enabling both branches of the network to 

L. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103574

4

harness features from each other. This cross-modal interaction en
sures that the output feature descriptions encapsulate cross-modal 
similarities. 

DF-Net Matching Process: Post feature extraction, the DF-Net 
framework delves into the matching phase, which is also bifurcated 
into two steps:  

• Step 1, Coarse Matching: Here, the low-resolution feature maps 
derived from Stage 4, which are scaled to 18 of the original image size, 
are linearly transformed into one-dimensional vectors, denoted as di

r 

and dj
s. These vectors are subsequently processed through a unique 

matching layer, generating a coarse-level confidence matrix Pc(i, j). 
Utilizing a predefined confidence threshold, selections from Cm(i, j)
are made, culminating in the coarse matching prediction, Mc.  

• Step 2, Fine Matching: Building on the results of the coarse matching, 
the positions Pc(i, j) that belong to Mc are projected onto the high- 
resolution feature map from Stage 2. Here, Di

r epitomizes the cen
tral feature of the coarse matches, while Dw×w

s is a subset cropped 
from Stage 2, characterized by its w × w dimensions. The final step 
entails refining the matches within this window to achieve sub-pixel 
matching precision. 

ResNet-50 (He et al., 2016) was used as the underlying structure of a 
dual-branch network for extracting features from the two images, serves 
as the foundational structure of the dual-branch network. This choice 
ensures the robust extraction of features from both images in the pair. 
Moreover, the downsampling procedures within the residual network 
block were re-envisioned to align with the goals of DF-Net. As a result, 
the output features from Stages 1 through 4 manifest as 11,

1
2,

1
4, and 18 of the 

original image size, respectively. 

3.2. Two-branch residual networks 

DF-Net is comprised of parallel residual blocks, with residual net
works featuring jump connections in each block, facilitating training 
and optimization. ResNet-50 serves as the primary backbone of the 
proposed method. Two images are separately fed in the branch network, 
where feature extraction is performed via a convolution operation and a 
four-stage residual network (Stages 1, 2, 3, 4). The strides and feature 
maps in each residual block are as such; stride = 1 in Stage 1, while 
Stages 2, 3, 4 = 2, to obtain maps with sizes of 1/2, 1/4, 1/8, respec
tively. The number of feature channels for each stage is adjusted to 64, 
128, 256 and 512, respectively, to improve the efficiency of matching. 
Finally, the feature maps of 1/2 and 1/8 original image size are selected 
for coarse to fine matching. 

3.3. Vertical cross-attention module 

The vertical cross-attention module is founded on the self-attention 
mechanism. Image-based SA enables the capture of global information 
by enlarging the receptive field, facilitating the internal correlation, and 
subsequently reducing dependency on external information. We 
employed self-attention to bolster information interaction between local 
features and the global sequence. Furthermore, we derived similarity 
feature descriptions with cross-modality by enhancing the correlation 
through self-attention. In contrast to the local feature extraction of CNN 
operations, stacked convolutional layers are utilized to extend the 
receptive field. However, this approach may impose additional 
computational overhead. SA offers an efficient means of modeling global 
contextual information using key, query, and value components. This 
process enables the vertical self-attention module to effectively capture 
global contextual information while maintaining a manageable 
computational burden. 

Fig. 3 depicts the cross-attention module perpendicular to the two- 

Fig. 2. Framework of the proposed DF-Net. A dual-branch residual networks produce high- and low-resolution maps at 1/2 and 1/8 input sizes. Self-attention is 
integrated orthogonally. Initial coarse matching uses one-dimensional vectors from low-resolution maps to form a confidence matrix. This coarse matrix then guides 
fine matching at 1/2 input size within a w × w local window. 
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branch network. The features obtained from each stage in the two 
branches are represented as Fr and Fs via patching embedding, linear 
transformation, and position embedding, respectively. Fr and Fs are then 
input to the shared weight module consisting of a fully connected layer 
(Long et al., 2015) and self-attention. The local features in Fr and Fs 
query the global contextual features by self-attention, thus, the two 
feature maps obtain a larger receptive field in their spatial ranges. 

During the feature cross-fusion phase, reference features (Fr) and 
sensed features (Fs) are associated with respective query (Q), key (K), 
and value (V) elements. similarity information is obtained following the 
cross-fusion process via cross-attention. Conceptually, the SA interaction 
fusion operation identifies pertinent information by evaluating the 
resemblance between feature descriptions in input images. This cross- 
fusion operation is performed four times over the course of the feature 
extraction procedure. In every iteration, Fr and Fs exchange K and V 
components as input while utilizing Q to extract attention from the K 
and V elements. Through the assessment of similarity between reference 
and sensed images, the cross-fusion operation efficiently supports 
feature extraction and bolsters the model’s ability to capture significant 
information from multimodal images with enhanced efficacy. 

Fig. 3 shows the cross-fusion mechanism. Following linear projection 
and position encoding, the outputs of each stage within two branches, 
Ii ∈ Rc×h×w, Ij ∈ Rc×h×w, are input to the weight-sharing SA for 
increasing the receptive field of feature extraction. Outputs are 
employed as inputs for the interactive fusion of information via feature 
summation (Add), linear projection (Ins), and normalization (Norm) 
operations. In the feature fusion stage, the output K,V is exchanged and 
the feature feature similarity (I′i ∈ Rc×h×w, I′j ∈ Rc×h×w) with cross- 
modality is obtained after information exchange by self-attention. N 
denotes the number of network layer repetitions. Given input tensors I1,

I2, I3 ∈ Rdl×1 , each of these tensors symbolizes distinct feature de
scriptions or representations obtained from the input data, where Ii, i ∈
1, 2, 3 are transformed by Wq ∈ Rdk×dl ,Wk ∈ Rdk×dl ,Wv ∈ Rdl×dl to obtain 
qi ∈ Rdk×1, ki ∈ Rdk×1, and vi ∈ Rdl×1. The matrix is A =
(
I1, I2, I3) ∈ Rdl×3 , then Q, K, V 

⎧
⎨

⎩

Q = Wq⋅A
K = Wk⋅A
V = Wv⋅A

(1) 

The output matrix is T = V⋅softmax
(

K⊤ ⋅Q̅̅̅̅
dk

√

)

. The final output t1, t2, t3,

⋯, ti is transformed by the fully connected layer and the BN layer. Fig. 4 
shows an example of the feature extraction for receptive fields and cross- 
modal similarity matching, where self-attention mechanism is utilized to 
broaden the receptive field by obtaining correlations between each 
feature description via a long-range dependency mechanism. 

3.4. Coarse matching 

For the 1/8 low-resolution feature maps, they are differentiable by 
the matching layer after conversion by calculating the score matrix 
between features. The score matrix S is calculated by S(i, j) = 1

τ⋅〈dr(i),
ds(j)〉. Dual-softmax, is applied in both dimensions of S(i, j) to obtain the 
matching confidence of mutual nearest neighbors. The detailed formula 
for calculating the matching confidence is presented below. 

Pc(i, j) = softmax(S(i, ⋅) )j⋅softmax(S(⋅, j) )i (2)  

Mc = {(i, j)|∀(i, j) ∈ MNN(Pc),Pc(i, j) ≥ θc } (3) 

Based on the matching confidence, we apply the mutual nearest 
neighbor (MNN) criterion to filter the possible coarse matches. A suit
able threshold is chosen to identify the coarse matches that will be input 
for subsequent fine matching. The prediction for coarse matching can be 
expressed as follows: The prediction for coarse matching can be 
formulated as follows: 

where the term θc is a predetermined threshold value, employed to 
sieve out matches with confidence levels below this threshold. 

3.5. Fine matching 

Once coarse matches are established, these correspondences undergo 
refinement to the original image size via fine matching. To obtain 
further refined matching results on coarse matches, we propose a fully 
connected layer-based similarity method. For each coarse match Mc, 

Fig. 3. Vertical cross-attention structure. Following linear projection and position encoding, the outputs of each stage within two branches, Ii ∈ Rc×h×w, Ij ∈ Rc×h×w, 
are input to the weight-sharing self-attention for increasing the receptive field of feature extraction. Outputs are employed as inputs for the interactive fusion of 
information via feature summation (Add), linear projection (Ins), and normalization (Norm) operations. In the feature fusion stage, the output K,V is exchanged and 

the feature feature similarity 
(

I′i ∈ Rc×h×w, I′j ∈ Rc×h×w) with cross-modality is obtained after information exchange by self-attention. N denotes the number of 

network layer repetitions. 
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their positions (i, j) are first positioned on a feature map of size 1/2. 
Then, two matching windows of size w × w are cropped separately. We 
correlate the center vector of Di

r with all vectors of Dw×w
r and input them 

into the proposed fully connected layer-based similarity network to map 
the similarity to the interval [0,1], and the detailed procedure is as fol
lows: 

S(i, j) = Sigmod
(
Dense

(
Ri − Sj

)2
)

(4) 

The heat map results represent the center vector of Di
r with all vectors 

matching responses of Dw×wr, with the maximum value indicating the 
result, where Dense refers to fully connected layers. 

3.6. Loss function 

The combined loss function incorporates both coarse and fine 
matching loss functions, as illustrated below. 

Coarse matching loss function. For the confidence matrix (Pc(i, j)) 
returned by coarse matching, the coarse matching probability loss is 
given by a negative logarithm. The labels of the true confidence matrix 
during training are calculated based on the projection transformation 
matrix of the two images. Employing the method proposed by SuperGlue 
(Liu et al. 2021), the ground truth for coarse matching, denoted as Mgt

c , is 
determined by identifying the mutual nearest neighbors within the two 
sets of low-resolution feature map grids. 

The distance between the low-resolution feature map grids is quan
tified using the reprojection distance of their central locations. By 
minimizing the negative log-likelihood of the grids in Mgt

c , we effectively 
reduce this distance. 

L1 = −
1

⃒
⃒Mgt

c
⃒
⃒

∑

(i,j)∈Mgt
c

logPc(i, j) (5) 

Fine-matching loss function. Root-mean-square error loss is used 
for fine-matching optimization. The center vector Di

r produces only one 
correspondence with all vectors Dw×w

r , and the matching is transformed 
into a regression problem using the root mean square error. jgt is 
computed by the projection transformation matrix of i from Dr to Ds. For 
L2, if the distorted position of i is not within the local window Dw×w

r , we 

will ignore 
(

i, jgt

)
and the gradient will not be backpropagated during 

the training period. 

L2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

i=1

(
xi − xgt

)2
+
(
yi − ygt

)2

√
√
√
√ (6) 

where xi, yi denote the matching positions of i on the x,y-axes. xgt, ygt 

denote the ground truth values. 

4. Results and discussion 

4.1. Evaluation metrics 

The network’s matching performance is evaluated based on the 
following assessment protocol: 

Repeatability (Rep.): The repetition rate is the ratio of the number 
of pixels with the same position between two images at the same 
threshold that are detected to the total number of detections. The 
detection performance of the network is evaluated using the repeat
ability (n/N), where n, N are the number of repeatable and all responses 
obtained, respectively. 

Mean Matching Accuracy (MMA): The mean proportion of accu
rate correspondences within an image at a designated pixel threshold. 

Root-Mean-Square Error (RMSE): RMSE is utilized to evaluate the 
comprehensive performance. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

[
(Δi)

2
+
(
Δj
)2

]
√
√
√
√ (7) 

where N is the total matching points, Δi and Δj are the matching 
distances, respectively. 

4.2. Database and settings 

To train the network model, numerous satellite images were pro
cured. (1) Google Earth images, totaling 100,000, were acquired from 
Google Earth Pro. Images spanning different periods were utilized as 
corresponding image pairs, with 80,000 designated for training, 10,000 
for validation, and the remaining 10,000 for testing. (2) Multiphase 
images captured by WorldView-2 were employed as matching pairs, 
with a similar distribution of 100,000 images in total, downloaded from 
the geospatial data cloud. (3) SAR-optical images, also summing up to 
100,000, were obtained from the SpaceNet (Van et al., 2018). These data 
were manually selected by choosing image pairs from the geospatial 
data cloud. 

Fig. 5 delineates the method for generating sample data, where (a), 
(b) and (c) are the reference image, sensed image, and transformed 
image, respectively, which are aligned at a pixel level. The sensed image 
is distorted using a random projection transformation matrix, wherein 
the displacement of the x and y coordinates of the four corner points of 
the images is randomized between 0 and 20, to obtain the transformed 

Fig. 4. Illustration of the receptive field and cross-fusion. (a) Information fusion for capturing similarity information, (b) and (c) Fusion processes on satellite images, 
respectively. 

L. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103574

7

image. In Fig. 5, (a) and (c) represent the training images, while the 
random projection transformation matrix is referred to as the ground 
truth. 

Training samples tiled to 256 × 256 pixels are produced from each of 
the three datasets by utilizing the aforementioned approach. The 
threshold for coarse matching confidence, Pc(i, j), is set at 0.7. All ex
periments in this paper are performed on an RTX3060 GPU. The training 
process employed the Adam optimizer with an initial learning rate of 
0.0001, lasting a total of 300 epochs. 

4.3. Matching performance 

This section details the performance of DF-Net with respect to 
comparative methods on three test datasets. DF-Net is compared with 
traditional feature matching methods (SIFT, Oriented FAST and Rotated 
BRIEF (ORB) (Rublee et al., 2011), SAR-SIFT, Position Scale Orientation 
SIFT (PSO-SIFT) (Ma et al., 2016)) and representative deep learning 
local descriptor methods HardNet (Mishchuk et al., 2017), LoFTR. The 
average Rep., MMA, RMSE and the number of matching images at 
different pixel thresholds are used as evaluation metrics. Figs. 6 and 7 
show the Rep., MMA at different pixel thresholds on the three test 
datasets, respectively. Overall, the Rep., MMA curves of DF-Net at 
different pixel thresholds are higher than those of the compared 
methods. For the Google Earth dataset, DF-Net has higher Rep. within 

3 to 9 pixels thresholds and has roughly the same MMA as LoFTR. For the 
WorldView-2 dataset, DF-Net has an overall higher Rep., MMA curve 
than the compared methods. For the SAR-optical dataset, the Rep., MMA 
curves of SIFT and ORB are almost constant, and no match can be ob
tained for the SAR-optical datasets. SAR-SIFT and PSO-SIFT results are 
overall lower than the learning-based methods HardNet and LoFTR. 
Moreover, the MMA score achieved by DF-Net surpasses that of the 
compared methods across all pixel thresholds. At pixel thresholds 
px > 5, Rep. of DF-Net is generally superior to that of HardNet and 
LoFTR. When pixel threshold px = 1, DF-Net demonstrates higher Rep. 
and MMA, signifying that it has greater precision and accuracy. 

Table 1 lists the total number of matches (n) and the average RMSE 
on the three test datasets. For the Google Earth dataset, all methods 
obtain close to sub-pixel RMSE. The n of ORB is larger, while the RMSE is 
overall higher than all compared methods. The n of HardNet is lower 
than LoFTR and DF-Net, and has a larger RMSE. The n of ORB is second 
to LoFTR, higher than SIFT and PSO-SIFT, while PSO-SIFT has a lower 
RMSE than other traditional feature matching methods. For the 
WorldView-2 and SAR-optical datasets, DF-Net gives a smaller RMSE. 
For the SAR-optical dataset, DF-Net’s RMSE is significantly lower than 
the other compared methods. 

Fig. 8 depicts the qualitative matching outcomes of our proposed 
method, demonstrating randomly chosen image pairs from the three 
datasets represented by Gi, Wi and Si. The first column is Google Earth 

Fig. 5. Training dataset generation process: (a) reference image, (b) sensed image, and (c) warped sensed image.  

Fig. 6. Evaluation (Rep.) on three datasets: (a) Google Earth, (b)WorldView-2, and (c)SAR-optical image.  
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images, the second column is WorldView-2 images, and the third column 
is SAR-optical images. It shows that for Google Earth and WorldView-2 
images, the correspondences obtained by DF-Net are almost uniformly 
distributed over the images. In particular, for G3, G6, which contains 
more indistinguishable low-texture regions, i.e., waters, DF-Net still 
obtains a good correspondence over this region. This is owed to the 
proposed vertical self-attention module, which obtains a larger range of 
semantic features, making the feature descriptions obtained by the 
network distinguishable. For the SAR-optical image pairs, the obtained 
matching correspondence is overall lower than that of the Google Earth 
and WorldView-2 image pairs. However, the correspondence can fully 
register the SAR-optical images. 

Fig. 9 presents a qualitative comparison of pixel alignment across 
three test datasets. To visualize these registration images, we superim
pose them and select a distinct object (indicated by red marked boxes) 
that exhibits a characteristic matching result, serving as an evaluation 
criterion for alignment accuracy. In the case of the Google Earth image, 
buildings appear misaligned due to varying shooting angles; however, 
other features such as roads exhibit remarkable overlap. For both 
WorldView-2 and SAR-optical images, DF-Net achieves superior align
ment in all selected areas. Although other matching methods demon
strate satisfactory alignment within the chosen areas of the Google Earth 
image, their performance significantly lags behind DF-Net for 
WorldView-2 and SAR-optical images. This comprehensive quantitative 
and qualitative assessment substantiates the efficacy of DF-Net for image 
registration. 

4.4. Large-scale satellite image matching performance 

In the above experiments, the effectiveness of DF-Net is evaluated. 
However, these tests are only limited to matching images with the size of 
256 × 256 pixels. Consequently, to comprehensively assess the regis
tration performance of DF-Net on large-scale images, we use it to 
establish correspondences for large-size satellite images. Corresponding 
to the three datasets, we select three pairs of satellite images with large 

scenes, denoted by I1, I2 and I3, respectively. I1 is a scene from Google 
Earth with two images, both of size 1478 × 1191 pixels, captured in the 
urban scene of Atlanta, Georgia, USA, with a resolution of 0.53 m. I2 is a 
scene taken by WorldView-2 over Tripoli, Libya, with two images of size 
1363 × 1053 pixels, respectively. I3 is a large-scene SAR-optical with 
two images obtained by stitching from the SpaceNet dataset, with sizes 
of 1230 × 930 pixels. We manually collected the keypoints to determine 
the correspondence of these images for the evaluation of the 
registration. 

Since DF-Net is optimized on images with the size of 256 × 256 
pixels, large size satellite images cannot be directly input into the 
network to obtain matching. Therefore, we first superimpose the two 
images, crop the 256 × 256 pixels size image block at the corresponding 
position for obtaining matching correspondence, and slide until the 
correspondence of the whole image is obtained. To eliminate more er
rors, we use RANdom SAmple Consensus (RANSAC) to constrain outlier 
points. In the experiments, DF-Net is compared with SIFT, ORB, SAR- 
SIFT, PSO-SIFT, HardNet, LoFTR. Rep., MMA with two-pixel thresh
olds and RMSE is utilized to assess the performance of the matching 
process. 

Quantitative results. Table 2 shows the results on three large size 
satellite images. Larger Rep., MMA and smaller RMSE indicate higher 
matching accuracy and precision. The results show that DF-Net can 
match all images. The Rep., MMA and RMSE obtained on three pairs of 
images, I1 are 0.83, 0.79, 1.46, I2 are 0.78, 0.67, 2.08 and I3 are 0.62, 
0.57, 3.49, respectively. DF-Net achieves the best values of Rep., MMA 
and RMSE on I2, I3. Additionally, it achieves comparable results on I1. 
This illustrates the effectiveness of DF-Net for cross-modal matching. 
SIFT and ORB cannot obtain a match on I3 at all, obtaining the worst 
matching results, and many experiments also demonstrate the limita
tions of SIFT and ORB in cross-modal matching. On I3, PSO-SIFT em
ploys a range of constraints, yielding lower RMSE values compared to 
SIFT and ORB; however, the overall performance remains unsatisfac
tory. SAR-SIFT is sensitive to multimodal satellite images, and the key 
features obtained are not reproducible. The Rep., MMA, and RMSE of 

Fig. 7. Evaluation (MMA) on three datasets: (a) Google Earth, (b)WorldView-2, and (c)SAR-optical image.  

Table 1 
Matching results of the comparison method and DF-Net on the three datasets.  

Methods  Google Earth dataset  WorldView-2 dataset  SAR-optical dataset 

N o. of points RMSE 
(pixel) 

N o. of points RMSE 
(pixel) 

N o. of points RMSE 
(pixel) 

SIFT  550  1.49  591  6.70  120  9.93 
ORB  1721  1.92  1520  5.24  1533  12.7 
SAR-SIFT  670  1.53  560  4.31  430  5.79 
PSO-SIFT  450  1.43  740  3.21  510  6.56 
HardNet  650  1.48  603  3.25  430  4.76 
LoFTR  850  1.37  640  2.53  550  4.62 
DF-Net  651  1.29  610  2.32  553  3.58  
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HardNet, LoFTR on I3 are generally lower than those of DF-Net. This 
may be because the feature descriptions obtained by HardNet and LoFTR 
do not have cross-modal similarity in feature detection and description. 
HardNet and LoFTR obtain fewer matching correspondences and their 
local features are not distinguishable. 

Qualitative comparisons. Fig. 10 displays the pixel superposition 
maps after establishing matching points and aligning each image pair. 
DF-Net can obtain a greater number of matching correspondences for 
the images across the three large-scale scenes. The superimposed maps 
reveal that the pixels exhibit continuity and smooth edges. The quanti
tative and qualitative assessments of our proposed matching method’s 
effectiveness showcase its robust performance in large-scale satellite 
images. 

4.5. Ablation study on feature map resolution 

In our experiments, we first perform coarse matching on the low- 
resolution feature map, which is followed immediately by fine match
ing on the high-resolution feature map for each coarse match. Conse
quently, the size of the low-resolution feature map influences the 

number of matches obtained. For example, the maximum number of 
matches obtained on a coarse-level feature map of 1/8 is (256/8)×
(256/8), while the maximum number obtained for a coarse-level feature 
map of 1/16 is (256/16)× (256/16). Lower resolution feature maps 
enable the aggregation of more distinguishable features. However, due 
to the small overlap between the two images, namely the size of their 
shared view, the obtained correspondences cannot fully establish a 
correspondence between the two images. During the fine matching 
process, increasing the resolution results in longer network training and 
matching prediction times. Therefore, it is necessary to choose a suitable 
matching resolution to ensure high matching accuracy. To evaluate the 
impact of resolution size on matching accuracy, we selected resolutions 
of 1/4, 1/8, and 1/16 for coarse matching, and 1/1 and 1/2 for fine 
matching. Moreover, we performed an exhaustive combination of coarse 
and fine matching resolutions, denoted by c1 = (1/4,1/1), c2 =

(1/4,1/2), c3 = (1/8,1/1), c4 = (1/8,1/2), c5 = (1/16,1/1) and c6 =

(1/16,1/2), on the test dataset to evaluate the of the effect of resolution 
on performance and speed. To ensure fairness, we keep the learning rate 
and batch size constant across these combinations. 

Table 3 provides a comprehensive evaluation of the matching 

Fig. 8. Qualitative matching results of DF-Net on three datasets. These images are selected randomly, with Gi, Wi, Si denoting different image pairs: Google Earth, 
WorldView-2, and SAR-optical images. 
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performance across various resolution combinations, c1, c2, c3, c4, c5 and 
c6, on the Google Earth, WorldView-2, and SAR-optical test datasets. 
From our analysis, several critical observations emerge: Firstly, c1, c2, 
and c3 consistently outperform other combinations in terms of Rep. and 
MMA metrics and exhibit the lowest RMSE across the three test datasets. 
This indicates that these combinations are especially effective in 
capturing and matching distinctive features, resulting in more accurate 
image correspondences. However, it’s pivotal to note that even though 

they excel, the margin of superiority over other combinations isn’t 
overwhelmingly vast. Secondly, c6 standout feature is its efficiency. It 
consistently demonstrates the shortest mean time consumed (T), high
lighting its potential for applications where processing speed is a pri
ority, albeit at a slight accuracy trade-off. Furthermore, a dataset- 
specific trend was observed. For the Google Earth and WorldView-2 
datasets, c1 and c2 took the lead in Rep., while MMA was dominated 
by c3 and c4. In contrast, the SAR-optical dataset showed a preference for 

Fig. 9. Qualitative comparison of pixel alignment on three test datasets: Google Earth, WorldView-2, and SAR-optical images (red boxes: the objects of interest). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

L. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 125 (2023) 103574

11

c4 in MMA and c5 in Rep. This suggests that the optimal resolution 
combination may be contingent on the intrinsic characteristics of the 
datasets being evaluated. It’s crucial to underscore that while c1, c2, and 
c3 consistently delivered superior results, the incremental gains in per
formance weren’t exponentially better than their counterparts. In fact, 
when juxtaposing performance and processing speed, we found c4 to 
offer a balanced compromise, making it our choice for subsequent tests. 

4.6. Ablation study on coarse matching thresholds 

The choice of the confidence matrix threshold for coarse matches is 
crucial. Ideally, the confidence value for all possible matches in the 
shared view is 1.0, with possible values lying in the range [0,1]. A larger 

threshold value obtains less correspondence, which may not satisfy the 
overall matching requirements. Reducing the threshold values leads to a 
greater number of coarse matches, and potentially false matches, but 
this also increases the computational time required for fine matching. 
Consequently, threshold values of t > 0.4, t > 0.5, t > 0.6, t > 0.7, 
t > 0.8, and t > 0.9 are selected to assess the overall matching perfor
mance on the three test datasets. The number of matches (n), Rep., 
MMA, and RMSE serve as evaluation metrics for this analysis. 

Table 4 presents the experimental outcomes at various thresholds for 
the three datasets. t > 0.4 obtains a higher number of correspondences 
on all three datasets, while Rep. is the lowest overall. For Google Earth, 
t > 0.5 and t > 0.6 perform similarly in Rep., MMA and RMSE. The 
highest Rep. is obtained at a threshold of t > 0.8 and the highest RMSE is 

Table 2 
Matching results of the comparison method and DF-Net on three large-scene satellite images.  

Methods  Google Earth dataset  WorldView-2 dataset  SAR-optical dataset 

Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

SIFT  85 77  1.54  50 47  5.46  46 42  9.59 
ORB  74 78  1.90  66 36  6.40  31 26  10.68 
SAR-SIFT  83 72  1.42  65 65  4.40  41 38  8.82 
PSO-SIFT  82 77  1.81  63 59  3.93  46 41  6.52 
HeadNet  81 73  1.29  51 46  2.56  53 42  4.81 
LoFTR  85 77  1.97  54 50  2.10  43 36  3.95 
DF-Net  83 79  1.46  68 60  2.08  62 57  3.49  

Fig. 10. Qualitative matching results on three large-size images: I1(Google Earth) I2 (WorldView-2) and I3 (SAR-optical).  

Table 3 
Rep., MMA(2px) and RMSE for evaluating the matching performance on Google earth, WorldView-2 and SAR-optical datasets.    

Google Earth dataset  WorldView-2 dataset  SAR-optical dataset 

Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

T(s) Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

T(s) Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

T(s) 

c1  79 67  1.60  13.4  76 63  2.29  13.0  60 42  3.68  13.4 
c2  82 72  1.61  9.96  74 64  2.27  9.38  67 44  3.70  9.94 
c3  78 69  1.68  2.73  67 67  2.21  5.85  67 49  3.67  5.62 
c4  71 73  1.43  3.59  57 54  2.49  3.93  66 73  3.67  3.88 
c5  70 66  1.51  3.16  59 46  2.94  3.20  68 57  3.73  3.19 
c6  72 65  1.5  1.46  61 57  2.46  1.64  59 39  3.66  1.54  
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obtained at a threshold of t > 0.9. For WorldView-2, the highest Rep., 
MMA, and RMSE are obtained at a threshold of t > 0.8, however, n is 
smaller. For the SAR-optical dataset, a threshold of t > 0.9 obtained the 
highest Rep., MMA and RMSE values at t > 0.8. Under different 
threshold conditions, overall, a threshold value of t > 0.4 obtained a 
higher number with smaller Rep., MMA, and RMSE. In contrast, at a 
threshold value of t > 0.9, higher Rep., MMA, and RMSE are obtained on 
the three datasets, while n is smaller. 

Higher values of n, Rep., and MMA indicate better matching per
formance, while a smaller RMSE denotes greater matching accuracy. To 
ensure that larger values for all metrics represent increased accuracy, we 
utilized the inverse of RMSE. The entropy weighting method is 
employed to assign weights to each indicator, obtaining indicator score 
values for all thresholds across the three datasets. As shown in Fig. 11, 
for the Google Earth and WorldView-2 datasets, the highest score is 
achieved with a threshold value of t > 0.8. For the SAR-optical dataset, 
the optimal threshold is t > 0.7, yielding the highest metric score value. 
Consequently, in subsequent experiments, we assessed the test datasets 
using different thresholds for evaluation, respectively. 

4.7. Ablation study on network configuration 

To facilitate the design of the proposed model, we perform ablation 
studies to investigate the influence of integrating different network ar
chitectures on the matching accuracy. Critical operations for achieving 
coarse-to-fine matching of the two images involve coarse and fine 
matching processes. Therefore, we employ convolutions with a sub
stantial number of parameters (for obtaining 1/2 and 1/8 size feature 
maps) and coarse-to-fine matching operations as the base network 
(CNNBase). We experiment with a combination of parallel ResNet, 
vertical self-attention, and the number of self-attention layers. All net
works are trained and tested using three datasets. We maintain deter
minism in the random data during training. The matching performance 
is evaluated using Rep., MMA, and RMSE as metrics. The results on the 
three datasets are presented in Table 5. 

Table 5 depicts the matching results obtained on the three datasets, 
and as expected, the best matching performance is obtained using par
allel ResNet and vertical self-attention networks. When using only 
CNNBase, the average Rep. on the three datasets is 0.57, MMA is 0.52, 
and RMSE is 3.34, respectively, with the lowest overall evaluation 
metric values. The matching performance improves by replacing the 
convolution in the CNNBase with ResNet, with the average Rep., MMA 
improving significantly to 0.66, 0.59 and the average RMSE decreasing 
to 3.43, respectively. When the ResNet and self-attention are combined 
to test DF-Net, the average Rep., MMA improves from 0.66 ± 0.04, 0.59 
to 0.75, 0.53 on the three datasets, respectively. The average RMSE 
decreases from 3.43 to 2.38, especially apparent on the SAR-optical 
dataset. These experiments demonstrate the effectiveness of the pro
posed vertical self-attention module for improving matching perfor
mance. This module increases the larger receptive field in the feature 
extraction process, while facilitating the fusion of information between 
two images for obtaining feature descriptions with similarity. In addi
tion, we increase the number of layers for vertical self-attention to n = 6,
8. On the three datasets, the average Rep., MMA increase insignifi
cantly, and similarly the average RMSE decrease by 0.11. Therefore, we 
select n = 4 as the number of vertical self-attention layers. The subse
quent experiments are based on the parallel ResNet, vertical self- 
attention module. Fig. 12 depicts the RMSE of the combined network 
on the validation dataset. Overall, the RMSE curve for ResNet + self- 
attention (layer = 4) is lower than the other networks during the 
training process, which is consistent with the results obtained in Table 5. 

4.8. Ablation study on coarse to fine-grained mapping 

To provide a deeper insight into the impact of the transition from 
coarse to fine-grained mapping, we performed an additional ablation 
experiment. The focus of this study was to understand the computational 
cost introduced by the fine-grained mapping and to assess the potential 
performance gains in the matching accuracy. Additionally, the DF-Net’s 
complexity can be gauged using two measures: model parameter size 

Table 4 
The number of matches (n), Rep., MMA, and RMSE for evaluating the matching performance on different matching confidence thresholds on Google earth, WorldView- 
2, and SAR-optical datasets.    

Google Earth dataset  WorldView-2 dataset  SAR-optical dataset 

N umber of 
point 

Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

N umber of 
point 

Rep. 
(%) 

MMA(%) RMSE 
(pixel) 

N umber of 
point 

Rep. 
(%) 

MMA 
(%) 

RMSE 
(pixel) 

t > 0.4  737 77 70  1.55  656 66 40  2.28  495 51 60  3.81 
t > 0.5  683 61 55  1.44  546 71 59  2.55  481 54 52  3.95 
t > 0.6  688 78 79  1.25  491 69 65  2.44  210 61 62  3.98 
t > 0.7  625 72 60  1.57  366 75 66  2.34  315 54 47  3.80 
t > 0.8  572 77 73  1.51  397 70 46  2.86  305 56 63  3.72 
t > 0.9  552 83 54  1.34  450 69 48  2.65  436 63 37  3.93  

Fig. 11. Score results under different matching confidence thresholds: (a) Google Earth image (b)Worldview-2 image, and (c)SAR-optical image.  
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and the Floating Point Operations Per Second (FLOPs). Analysis reveals 
that the DF-Net possesses a model size of 198 MB and demands a 
computational capacity of 6 GFLOPs. 

In this ablation study, we evaluated two scenarios: (1) utilizing only 
coarse mapping without transitioning to fine-grained mapping and (2) 
the complete process involving a transition from coarse to fine-grained 
mapping. This would allow us to identify the additional computational 
overhead introduced by the fine-grained mapping and the subsequent 
improvement in performance metrics. 

As shown in Table 6, the transition from coarse to fine-grained 
mapping introduces a computational overhead, increasing the compu
tation time from 7.5 s to 13.2 s. However, this transition also leads to a 
significant improvement in the matching accuracy metrics, with the 
Rep. increasing from 65 % to 82 % and the MMA from 56 % to 73 %. The 
RMSE also saw a considerable reduction, indicating improved matching 
precision. Therefore, the transition from coarse to fine-grained mapping, 
though computationally more intensive, provides significant perfor
mance gains, making it an essential step in the proposed approach. 

5. Conclusion 

In this paper, we have proposed a dual-branch fusion network (DF- 
Net) to rectify the limitations posed by the non-repeatability of key
points procured from contemporary cross-modal detectors. This network 
was predicated on a coarse-to-fine matching strategy designed to facil
itate the establishment of correspondences between satellite imagery, 
avoiding the conventional sequential steps of detection, description, 
matching, and geometric constraint. Both reference and sensed images 
were deployed as inputs for the dual-branch matching network, subse
quently producing feature descriptions of both high and low resolution 
for the process of coarse-to-fine matching. A cross-attention mechanism 
was introduced to interactively combine the outputs from each stage in 
the dual-branch networks. The objective was to obtain feature de
scriptions that included each other’s data, culminating in the acquisition 
of cross-modal feature similarity descriptions. Experimental trials 
affirmed the efficacy of the proposed method, evidencing exceptional 
matching accuracy. It is worth noting that the average Rep., MMA, and 

RMSE of the DF-Net applied to three large-scale satellite images regis
tered at 0.71, 0.65, and 2.34, respectively. This underscores the DF-Net’s 
effectiveness with satellite images, which yielded a performance that 
was highly competitive. 
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Google Earth dataset  WorldView-2 dataset  SAR-optical dataset 
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Rep. 
(%) 
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MMA 
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RMSE 
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