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A B S T R A C T

Semantic segmentation in 3D meshes is the classification of its constituent element(s) into specific classes or
categories. Using the powerful feature extraction abilities of deep neural networks (DNNs), significant results
have been obtained in the semantic segmentation of various remotely sensed data formats. With the increased
utilization of DNNs to segment remotely sensed data, there have been commensurate in-depth reviews and
surveys summarizing the various learning-based techniques and methodologies that entail these methods.
However, most of these surveys focused on methods that involve popular data formats like LiDAR point clouds,
synthetic aperture radar (SAR) images, and hyperspectral images (HSI) while 3D meshes hardly received any
attention. In this paper, to our best knowledge, we present the first comprehensive and contemporary survey
of recent advances in utilizing deep learning techniques for the semantic segmentation of urban-scale 3D
meshes. We first describe the different approaches employed by mesh-based learning methods to generalize
and implement learning techniques on the mesh surface, and then describe how the element-wise classification
tasks are achieved through these methods. We also provide an in-depth discussion and comparative analysis of
the surveyed methods followed by a summary of the benchmark large-scale mesh datasets accompanied with
the evaluation metrics for assessing the segmentation performance of the methods. Finally, we summarize some
of the contemporary problems of the field and provide future research directions that may help researchers in
the community.
1. Introduction

The increasing availability of 3D remotely sensed data has prolifer-
ated research in several 3D vision tasks like autonomous driving (Kang
et al., 2021), semantic segmentation (Weixiao et al., 2023), road extrac-
tion and city planning (Chen et al., 2022b) e.t.c. These data come in
different formats such as point cloud, RGB-D images, and 3D meshes.
While point cloud is the most popular format, 3D meshes are better
at explicitly representing the geometry of scenes hence their rising
popularity in depicting real-life scenes in remote sensing. The 3D
meshes considered in this survey comprise both large- and city-scale
reconstructed surfaces from a point cloud or other remotely sensed
data.

A 3D mesh comprises three elements (Liu et al., 2023) namely:
vertices, edges, and faces. Semantic segmentation in 3D meshes en-
tails element-wise classification using different techniques and learning
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architectures. In recent years, deep neural network (DNN) architec-
tures have replaced traditional (Liu et al., 2015) and machine learn-
ing (Rouhani et al., 2017) methods as the dominant technique for
achieving semantic segmentation in both 2D (Ulku and Akagündüz,
2022) and 3D (Gao et al., 2021a) data formats. This is due to the
powerful ability of DNNs to extract rich features from the consid-
ered data formats. With increasing processing power from advances in
graphics processing units (GPUs) and the availability of specialized and
labeled datasets, significant improvement in semantic segmentation
results has been obtained by methods. These advances have also en-
gendered progress in semantic segmentation-related tasks like instance
segmentation (Chen et al., 2022a; Sharma et al., 2022) and object
detection (Liang et al., 2021).

With increased interest in semantic segmentation using DNNs, sur-
vey papers have been published to detail the progress made in 2D (Ulku
vailable online 2 June 2023
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Fig. 1. A taxonomy of the different approaches of interpreting mesh surfaces for definition of deep learning techniques.
Fig. 2. A word cloud of paper titles surveyed by this paper.
and Akagündüz, 2022), 3D (Gao et al., 2021a), point cloud (Guo et al.,
2021), unmanned aerial vehicle-images (UAV) (Osco et al., 2021), and
precise boundary recovery of boundaries in segmented images and
point cloud (Zhang et al., 2021). However, the successes recorded by
DNNs in processing images and point clouds are not commensurate
with their impact on mesh processing as evidenced by the almost
nonexistence of survey papers that focus on DNN-based mesh process-
ing. Wang and Zhang (2022) is the only existing mesh-based survey
we found that addressed this challenge, albeit focusing on methods
that consume small-scale or toy datasets and hence the need for a
comprehensive survey of remote sensing-based mesh neural networks.

Even with the late implementation of DNNs to process 3D meshes in
comparison to other data formats, research in the area has nevertheless
blossomed. However, as mentioned earlier, methods that consume
urban- and large-scale mesh scenes are mostly neglected, and with
the significance of semantically processed 3D scenes in fields like
autonomous driving (Kang et al., 2021; Mao et al., 2022; Peng et al.,
2022) and city modeling (Lei et al., 2022), we believe there is a
literature gap that relates to the semantic perception of urban-scale
3D meshes using DNNs in remote sensing. Specifically, the use of 3D
meshes in urban scene perception and visualization is becoming more
popular and their semantic segmentation is useful in many areas of our
lives such as in mixed reality/augmented reality social platforms (Du
et al., 2019), addressing challenges in smart cities (An, 2023) and,
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geospatial evaluation and visualization of sectors that affect our every-
day lives like education (Wu et al., 2021). To our best knowledge, this
survey is the first paper to focus on how various DNN architectures
achieve the task of semantic segmentation in urban-scale meshes. To
illustrate the significance of this work, we generated a word cloud
(Fig. 2) from the titles of the papers we surveyed, and certain words
like semantic segmentation, mesh, 3d, meshes, urban, and learning
can be seen to appear more frequently due to their larger sizes which
subsequently points to their importance in remote sensing. Therefore,
in this paper, we present the different methods that combine these
terms to address the problem of semantic segmentation in remote
sensing.

The contributions of this paper are outlined below:

• To the best of our knowledge, this is the first survey paper to
comprehensively review the deep learning methods for semantic
segmentation of urban-scale 3D meshes.

• This paper provides a classification of the learning methods for
semantic segmentation of urban scenes based on the different
techniques of generalizing deep learning operations on mesh
surfaces.

• The paper provides descriptions of urban- and large-scale mesh
datasets together with evaluation metrics for assessing the seman-
tic segmentation task.
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Fig. 3. An illustration of the classification of superfacets in RF-MRF (Rouhani et al., 2017) where urban scale meshes (a) are segmented into homogeneous superfacets (b) using
a region growing algorithm (Cohen-Steiner et al., 2004). The classification and refinement of the superfacets into their appropriate classes is done using an RF-MRF ((d) and (c))
framework. A similar approach is followed by the modeling and reconstruction methods i.e. Urban-LODs (Verdie et al., 2015), VBM (Zhu et al., 2017) and USM (Zhu et al., 2018)
with abstraction and reconstruction of urban artifacts from the superfacets replacing the RF (d) classification step in RF-MRF.
Source: Figure taken from RF-MRF (Rouhani et al., 2017).
• The paper presents the open challenges facing researchers in the
field and proffer future research directions for researchers in the
community.

This paper is organized as follows: We give a formulation for the
semantic segmentation problem together with the inherent challenges
of processing mesh scenes in Section 2. In Section 3, we present the
different categorizations of mesh-based DNNs for semantic segmenta-
tion of urban scenes (shown in Fig. 1) followed by descriptions of
benchmark datasets and evaluation metrics for assessing the methods in
Section 4. Finally, contemporary challenges that still beset the field are
presented in Section 5 followed by our concluding remarks in Section 6.

2. Overview and background concepts

In this section, we define the two terms i.e. 3D meshes and semantic
segmentation that are most relevant to the theme of this paper.

Definition 1 (3D Mesh). Mathematically, a 3D mesh  = { , , },
is a set of unordered vertices  = {1,… , 𝑛} where 𝑣𝑖 ∈ R3, and a set of
contiguous triangular faces  ⊂  ×  ×  that represent the topology and
geometry of a remotely sensed scene.  is a set of undirected edges  ⊆ ×
s.t. (𝑣𝑖, 𝑣𝑗) ∈  iff (𝑣𝑗 , 𝑣𝑖) ∈  that encodes information between adjacent
vertices and subsequently faces. Edges also delineate boundaries in scenes
and objects on the 3D mesh. As mentioned earlier, the composition of
these three elements i.e. vertices, faces, and edges enables 3D meshes to
depict the geometry of real-life large-scale urban scenes.

Definition 2 (Semantic Segmentation).Given 𝑒 ∈ { , , } with 𝑒 =
{𝑒1, 𝑒2, 𝑒3...𝑒𝑛} as a set of element(s) from an input 3D mesh ,  that
serves as input to a neural network . Semantic segmentation is achieved by
assigning a label, 𝑙𝑖 from a set of possible semantic labels,  = {𝑙1, 𝑙2, 𝑙3...𝑙𝑚}
to every element, 𝑒𝑖 of the 𝑛 elements of  via the neural network,  .

Put simply, the above definition denotes the element-wise classifica-
tion of the chosen element of an input 3D mesh by a neural network. As
opposed to the singularity of pixels in images and points in point clouds
as processing units of choice, 3D meshes have three candidates to
choose from hence the diversity in both the input and output of mesh-
based DNNs. For instance, PSSNet (Weixiao et al., 2023) consumes
facial features as input while vertices are chosen in DCM-Net (Schult
et al., 2020).

Adding to the challenge of choosing an input element that best suits
the classification task, mesh-based DNNs must devise a technique that
can process the unstructured non-Euclidean format of the 3D mesh
scene. This is in contrast to the use of standard convolutional neural
networks (CNNs) in image processing due to the structured nature of 2D
data formats. These networks must also implement learning operations
like pooling and feature aggregation that are 3D mesh-compliant. Most
importantly, the networks must be designed to process large-scale
urban mesh scenes to address the computational cost incurred.
3

Notwithstanding the aforementioned challenges of processing mesh
scenes using DNNs, methods are developed to achieve various tasks
(Wang and Zhang, 2022). In this paper, we focus on the methods
that consume large-scale urban meshes to achieve the task of seman-
tic segmentation. We categorize these methods based on the differ-
ent techniques they employed in exploiting the 3D mesh surface for
learning-based processing. These categorizations are shown in Fig. 1.

3. Semantic segmentation of large-scale urban 3D meshes

As shown in Fig. 1, various techniques are utilized by mesh neural
networks for semantic segmentation tasks. In this section, we provide
a detailed review of these networks starting from a brief overview
of traditional methods (graphical models and forest-based machine
learning methods) (Sections 3.1 and 3.2) to the various approaches that
are utilized by deep learning methods (Section 3.3). We also provide a
summary and highlight the salient parts of the methods in this section
in Table 1.

3.1. Graphical models

The earliest methods of labeling large-scale urban meshes adopted
graphical methods specifically markov random field (MRF) and its
variant conditional random fields (Lafferty et al., 2001; Yu and Fan,
2020) (CRFs). This is because semantic segmentation requires locality
information to enhance fine-grained element-wise classification and
neighborhood contextual information to encode the relationship be-
tween elements. This information is encoded in unary (per-element)
and pairwise (per-edge: the relationship between elements) terms by
MRFs to express the dependencies between objects and their constituent
elements in urban scenes.

The main goal of these methods is automated reconstruction and
modeling of urban scenes as opposed to element-wise classification
(Section 2). Most of these methods follow a three-step process (Fig. 3)
of modeling scenes by first oversegmenting elements into homogeneous
segments like superfacets usually using unsupervised clustering-based
algorithms like the region-growing method in Urban-LODs (Verdie
et al., 2015), variational shape approximation (Cohen-Steiner et al.,
2004) (VSA) to extract planar structures in VBM (Zhu et al., 2017)
and orthogonal grids sampled from a 2D image projection of the input
mesh in USM (Zhu et al., 2018). Following the oversegmentation step
is an MRF-based classification of the extracted segments into different
classes like roofs, trees, ground, and roads. The final step includes the
abstraction and reconstruction of the labeled segments into regularized
polygons i.e. levels of detail (LODs) representing various city artifacts
that usually conform to a standard like CityGML (Kolbe et al., 2005).

CRFs (Lafferty et al., 2001) are a variant of MRFs but they do
not suffer from the problem of label bias inherent in the latter and
their ability to express conditional dependence between elements (rep-
resented as nodes of a graph) on the mesh scene can be exploited
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Table 1
Overview of semantic segmentation methods for urban-scale 3D meshes. Important characteristics for the methods are shown, which comprise the year of publication, category,
the structure of modules that make up a method, dataset(s) used, labeled element, strengths and weaknesses. ML, GM, GP, MM and, G denote machine learning, graphical model,
global parameterization, multimodal and graph-based respectively.

Method Type Labeled
element

Network structure Dataset(s) Highlight(s)/Strength(s) Limitation(s)

RF-CRF (Riemen-
schneider et al.,
2014)

ML Face RF (labeling) + CRF
(enforcing spatial
consistency and label
smoothing)

ETHZ RueMonge
2014

The first use of IoU
(PASCAL IOU) for
evaluating segmentation
task; Introduced the ETHZ
RueMonge 2014 (Full428
and Sub28) dataset.

Labeling
accuracy
depends
depends on the
resolution of
reconstructed
meshes.

Urban-LODs
(Verdie et al.,
2015)

GM Face Superfacet clustering +
MRF (classification) + LOD
abstraction (planar proxies,
iconization and LOD
generation) +
Reconstruction

Proprietary Additional semantic rules
were used to
tackle errors that are not
sufficiently addressed by
the MRF labeling technique

More of a
modeling
method
than a semantic
segmentation
one

HigherOrder-CRF
(Liu et al., 2015)

GM Face Lower- + Higher-order
CRF (structural
labeling/segmentation)

Herz-Jesu-P8
and
five
reconstructed
large-scale
scenes

Expression of contextual
regularities in
urban scenes via
higher-order potential of
CRFs

Extraction of
structural
regularities using
exact subgraph
isomorphism
method is
computationally
expensive for
urban-scale
meshes.

RF-MRF
(Rouhani et al.,
2017)

ML Face Superfacet clustering +
Feature extraction
(geometric and
photometric) + RF
(labeling) + MRF (label
smoothing)

Proprietary
(reconstructed
urban scenes of
Paris and
Toulouse,
France)

Landmark method in
semantic
segmentation of
urban-scale meshes;
Introduced joint labeling to
handle the transition
between neighboring
regions

Non-
differerentiable
clustering
algorithm that
inhibits
end-to-end
training

VBM
(Zhu et al.,
2017)

GM Face Region (plane proxy)
clustering (VSA) +
Regularization and contour
extraction (MRF) +
Modeling and LOD
generation

Proprietary
(reconstructed
buildings from
urban images)

Incorporated prior shape
knowledge
i.e. height and direction
and introduced a
directional weighting
mechanism to improve the
segmentation process and
reduce its sensitivity to
noise.

More of a
building
modeling
method than a
semantic
segmentation
one

USM
(Zhu et al.,
2018)

GM Face Semantic segmentation
(MRF-based classification
of generated orthophotos)+
Building modeling
(regularization and LOD
generation)

Proprietary Double use of MRF
formulation in both
segmentation and modeling
steps; Similar to global
parameterization methods
(Section 3.3.1), the
segmentation is done on
orthophotos that are
generated from the mesh
scenes.

More of a
building
modeling
method than a
semantic
segmentation
one

TangentCNN
(Tatarchenko
et al., 2018)

GP Vertex Fully convolutional
UNet (encoder–decoder)
with skip connections

ScanNet v2 A generic method that can
be used on any
3D data format that
supports surface normal
estimation; Pooling is
implemented by hashing
points/vertices onto a
regular 3D grid.

Information loss
due to
parameterization
of
points/vertices
to tangent
images

TextureNet
(Huang et al.,
2019)

GP Vertex UNet with skip
connections

ScanNet v2 and
Matterport3D

Furthest point sampling
and nearest neighbor
interpolation used for
downsampling and
upsampling respectively.

Generation of
4-RoSy using
QuadriFlow still
induces
distortion albeit
less than other
methods

(continued on next page)
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Table 1 (continued).
Method Type Labeled

element
Network structure Dataset(s) Highlight(s)/Strength(s) Limitation(s)

CrossAtlasCNN
(Li et al., 2019)

GP Face FCN with VGG19 ETHZ
RueMonge2014

The only (in this survey)
DNN-based method
that used ETHZ
RueMonge2014 dataset;
Cross-atlas pooling that
replaced pixel
neighborhood (2D) with
the geodesic neighborhood
on the mesh surface.

Information loss
due to the
distortion
induced by the
parameterization
process;

MultiBranch1D-
CNN
(George et al.,
2018)

MM Face Multi-branch 1D CNN H3D Employed an MRF
formulation for explicit
label smoothing; Showed
how CNN-based training
and inference are faster
than RF-based

Required MRF
for explicit
refinement of
segmentation
results

PFCNN
(Yang et al.,
2020)

GP Vertex UNet with skip
connections

ScanNet v2 Best performing tangent
plane-based method
mainly due to its
translation equivariant
convolution; Pooling and
unpooling operations
adapted to map the
N-directions of frames

Requires
complex
mechanisms
like computation
of frame fields
and parallel
transport

PCMA-Net
(Laupheimer
et al., 2020b)

MM Face PointNet++ H3D The PCMA explicitly
associates faces on
meshes with points in a
point cloud; The PCMA
transfer mechanism served
as a foundation technique
for another COG
cloud-based method i.e.
MultiModal-Net

Discrepancy
between the
mesh
and point cloud
affects the
association rate
between the
data formats and
labeling of
non-associated
points.

RadiometricNet
(Laupheimer
et al., 2020a)

MM Face RF, PointNet and
PointNet++

H3D An experiment-heavy
method to evaluate
radiometric features using
RF, PointNet, and
PointNet++ methods;
Hierarchical feature
learning ability of
PointNet++ gave it an
edge over the other
methods.

The classifiers
that were used
for the
comparative
analysis are
point
cloud-based
methods.

DCM-Net
(Schult et al.,
2020)

G Vertex UNet (encoder–decoder)
with skip connections

S3DIS, ScanNet
v2
and
Matterport3D

The first convolution is
translation-invariant
which enriches context
information and reduces
computation time; It skips
recalculation of feature
space neighborhood of
DGCNN to enable deeper
GCNs and shorter
computational time

Mesh
simplification
method not
GPU-compliant
and hence
inhibits
end-to-end
training

SUM
(Gao et al.,
2021b)

ML Face Superfacet clustering
+ RF

SUM Introduced the SUM
dataset; Similar to
RF-MRF without the MRF
component

Non-
differentiable
oversegmentation
method

IterativeActive-
Learning
(Rong et al.,
2021)

MM Face Finetuning 2D
segmentation
network (DeepLabv3+) +
2D-3D semantic fusion
(back-projection and MRF)

Proprietary (two
reconstructed
urban scenesi.e.
Urban1 and
Urban2)

Introduced geometric
constraints to ensure
labeling consistency in the
3D mesh after the
back-projection phase

Manual
annotation of
images for
finetuning the
segmentation
network is
limited,
class-wise and
quality-wise

(continued on next page)
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Table 1 (continued).
Method Type Labeled

element
Network structure Dataset(s) Highlight(s)/Strength(s) Limitation(s)

VMNet
(Hu et al., 2021)

G Vertex UNet with skip
connections

ScanNet v2 and
Matterport3D

Even with a significantly
larger number of
parameters, training
VMNet is computationally
more memory-efficient
than DCM-Net

Mesh
simplification
method not
GPU-compliant
and hence
inhibits
end-to-end
training

PicassoNet
(Lei et al.,
2021a)

M Vertex UNet S3DIS Introduced three
mesh-intrinsic
convolutions:
vertex2facet, facet2facet,
and facet2vertex; Presented
Picasso library in
Tensorflow; End-to-end
trainable

Only consume
vertex/point
coordinates and
colors as input
features.

PicassoNet-II
(Lei et al.,
2021b)

M Vertex UNet with skip
connections

S3DIS and
ScanNet v2

Consume mesh-based
geometric features as
input; Pytorch
implementation of Picasso
library presented;
End-to-end trainable

Not robust to
meshes that are
not
edge-manifold

Urban-MeshCNN
(Knott and
Groenendijk,
2021)

M Edge MeshCNN V3D Added photometric
(edge-based HSV color)
features to the initial
geometric features of
MeshCNN; Screened
Poisson surface
reconstruction used to
repair the non-manifold
artifacts on the
reconstructed mesh scenes

Not robust to
non-manifold
meshes;
Uniformity of
triangles in
generated mesh
from Poisson
reconstruction
method affects
learning ability
of the method

Mesh-PC-Oblique
(Wilk et al.,
2022)

GP Face PSP-Net (image) and a
proprietary FCN (point
cloud)

SUM and a
proprietary
Bordeaux
(France) dataset

Involves three data formats
i.e. images,
point clouds and 3D
meshes

Semantic
segmentation
done
in point cloud
and image data
formats

Mesh-Sampled-
PC
(Grzeczkowicz
and Vallet,
2022)

MM Face KPConv SUM Obtained the best result on
the SUM dataset;
Sampled the mesh using
two methods: texel and
Poisson disk sampling

Information
(especially
textural)
loss due to point
sampling of the
mesh; Used a
point-specific
method to
compute
semantic
segmentation
results

InstanceSegMesh
(Chen et al.,
2022a)

MM Face 2D roof instance
segmentation
(Swin transformer) +
Clustering of instance
masks + Back-projection of
clustered masks to 3D and
subsequent segmentation
(MRF)

InstanceBuilding
(InstanceSegMesh)

Introduced the first
MVS-based instance
segmentation dataset i.e.
InstanceBuilding; Adapted
2D instance segmentation
metrics AP, AP50, and
AP75 to assess the
performance of instance
segmentation in 3D
meshes.

Final 3D
instance
segmentation
performance
heavily relies on
the quality of
the 2D roof
instance
segmentation

MultiModal-Net
(Laupheimer and
Haala, 2022)

MM Face RF H3D and V3D An experiment-heavy
method to evaluate
multimodal features
generated using the PCMA
technique; Can also be
classified as a machine
learning method (Section
3.2)

Discrepancy
between the
mesh
and point cloud
affects the
association rate
between the
data formats and
labeling of
non-associated
points.

(continued on next page)
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Table 1 (continued).
Method Type Labeled

element
Network structure Dataset(s) Highlight(s)/Strength(s) Limitation(s)

TransformerMesh
(Tang et al.,
2022)

MM Face Hierarchical network
in the spirit of PointNet++
with transformers,
neighbor embedding, and
feature propagation
modules

SUM and
Wuhan
(proprietary)

Transformers are used to
express contextual
information between points
in the COG cloud.

COG-based
representation
does
not represent
textural features
of the mesh
adequately.

PSSNet
(Weixiao et al.,
2023)

G Face Superfacet clustering (MRF
and RF) + Classification of
superfacets (PointNet and
Gated graph sequence)

SUM and H3D Introduced mesh-based
evaluation metrics for
assessing oversegmentation
task; Follows similar
point-based methods
SPG (Landrieu and
Simonovsky, 2018) and
SSP (Landrieu and
Boussaha, 2019).

Non-
differentiable
oversegmentation
method
to extract and subsequently merge similar elements iteratively. This
technique is implemented by HigherOrder-CRF (Liu et al., 2015) to
initially extract photometric and geometric features using lower-order
(unary and pairwise terms) potentials and higher-order potentials to
express structural regularities constraints in urban scenes. Using sub-
graph matching, the scene is iteratively segmented into its structural
components.

Notwithstanding the ability of graphical models to express contex-
tual information, the accompanying challenges of adopting them for
semantic segmentation have made researchers look for other alterna-
tives. Some of these challenges include the computational inefficiencies
involved in executing these models like the discovery of all possible
graphs for the graph matching method in HigherOrder-CRF (Liu et al.,
2015). The density of elements in urban scenes also exacerbates this
problem. Most graphical models also use handcrafted features which
inhibits their discriminative ability and hence the pivot of researchers
to machine and deep learning methods.

3.2. Machine learning methods

In an attempt to leverage graphical models’ ability to express con-
textual information and to counteract some of their weaknesses like
imprecise predictions due to a large number of possible semantic classes
during inference, inefficient methods of fine-tuning parameters, and the
low discriminative power of their handcrafted features, some methods
use random forests (RFs) within a graphical model framework for
labeling and boundary refinement tasks respectively.

The major work in this category is RF-MRF (Rouhani et al., 2017),
wherein the authors used a supervised random forest classifier to
predict the labels of superfacets that were generated using a region-
growing clustering algorithm (Cohen-Steiner et al., 2004) (Fig. 3).
Improving on existing graphical models (Verdie et al., 2015), geo-
metric and photometric features are extracted and concatenated per
superfacet as opposed to the prevalent use of the former in most
graphical models. Using a joint label space denoting the classes of
superfacets and their adjacent neighbors, randomized decision trees are
trained to predict the joint labels. The method used an MRF framework
(energy minimization) to refine the predicted probabilities of labels
thereby enforcing spatial coherence between superfacets and contex-
tual clarity between class boundaries. Superfacet-based classification
using randomized decision trees is also used in labeling mesh faces
in the development of the SUM (Gao et al., 2021b) (Fig. 9) bench-
mark dataset of urban-scale meshes. The superfacets were generated
using a region-growing algorithm (Lafarge and Mallet, 2012) to group
similar faces into homogeneous clusters. A manual refinement method
is chosen by the authors to refine the predicted labels as opposed
to the MRF formulation in RF-MRF (Rouhani et al., 2017). Moving
away from superfacet-based classification, face-based classification is
7

used for semantic segmentation of reconstructed multi-view stereo
(MVS) 3D meshes of urban scenes in RF-CRF (Riemenschneider et al.,
2014). An RF-CRF formulation is used to label faces and enforce spatial
connectivity between adjacent faces. The authors also presented the
ETHZ RueMonge (Riemenschneider et al., 2014) dataset that can be
used for image and mesh labeling tasks for urban scene understanding.

The advantages of using RF classifiers for labeling urban meshes
over graphical models include the ability to support multiple classes,
more tractable computational time due to a manageable number of
parameters, and the use of more discriminative and non-linear features.
Another significant improvement brought about by RF-based methods
is the development and utilization of benchmark datasets for urban
meshes like SUM (Gao et al., 2021b) and ETHZ RueMonge (Riemen-
schneider et al., 2014) which subsequently facilitated the use of su-
pervised learning (Riemenschneider et al., 2014; Gao et al., 2021b;
Rouhani et al., 2017) approaches and standard evaluation metrics
of evaluating semantic segmentation tasks like PASCAL intersection
over union (IoU) (Riemenschneider et al., 2014), mean class Accuracy
(mAcc) and Overall Accuracy (OA) (Gao et al., 2021b).

Notwithstanding the aforementioned advantages of RF-based meth-
ods, they are still beset by challenges such as the use of handcrafted
features and non-differentiable clustering algorithms e.g. the region-
growing algorithm that was used to generate superfacets in RF-MRF
(Rouhani et al., 2017) (hard association between faces and superfacets)
which prohibits end-to-end learning end-to-end. With the increasing
availability of labeled benchmark datasets and the need for end-to-end
semantic segmentation methods, researchers in the field are increas-
ingly developing deep learning methods to address the aforementioned
challenges of both graphical and RF-based methods and the subsequent
semantic segmentation of large-scale urban meshes.

3.3. Deep learning methods

Deep learning is a sub-field of machine learning that has recently
facilitated a lot of progress in high-level vision tasks like semantic
segmentation in various data formats. This is due to the task-driven
feature extraction abilities of deep learning methods that are trained
in an end-to-end manner e.g. learning facial features from 3D meshes
for face-wise classification (face-based semantic segmentation). Deep
learning methods are getting better at processing small- and large-scale
datasets for semantic segmentation tasks (Ulku and Akagündüz, 2022;
Lateef and Ruichek, 2019; Zhang et al., 2021) as methods continue to
obtain more accurate results.

In this section, we review the different approaches employed by
deep learning methods for the semantic segmentation of large-scale
urban meshes. We classify these methods into appropriate categories
(Fig. 1) with detailed descriptions of how they achieve the element-wise
classification of urban meshes.



International Journal of Applied Earth Observation and Geoinformation 121 (2023) 103365J.M. Adam et al.

o
r
t
e
i
a
a
t
e
c
U
e
I
o
t
o
o
o
N
i
a
m
s

o

3.3.1. Global parameterization methods
Early deep learning methods leveraged existing 2D semantic seg-

mentation networks by establishing a one-to-one correspondence be-
tween a 3D mesh surface and a 2D domain. This process is called
parameterization and the generated 2D domain is the parameterized
space (Ray et al., 2006). By one-to-one (bijectivity), the parameteriza-
tion process should be able to project the geometric, textural, angular,
and geodesic neighborhood properties of the 3D mesh surface to the
2D domain as accurately as possible. By parameterizing 3D scenes to
a corresponding 2D parameter space, 2D-based semantic segmentation
architectures are used by methods for element-wise classification. This
is because 2D architectures are more mature (Ulku and Akagündüz,
2022; Lateef and Ruichek, 2019) in computer vision due to the success
of 2D convolution on the regular and structured grids of 2D data
images.

The first category of methods maps elements from 3D mesh scenes
to points (pixels) on 2D texture maps. The texture maps are the
utput of the parameterization (UV mapping) process which entails
epeatedly cutting the mesh surface to a 2D domain while minimizing
he distortions that are induced by the process. In CrossAtlasCNN (Li
t al., 2019), faces from 3D mesh scenes are segmented and projected
nto atlases which are subsequently packed into 2D texture maps using
bin-packing method (Korf, 2002). Due to the discontinuities between

tlases in a texture map, the authors developed a convolution opera-
or i.e. cross-atlas convolution that jumps across the discontinuities to
xtract features. Similarly, features are upsampled and pooled using
ross-atlas-based deconvolution and pooling operations respectively.
sing these operations, a fully convolutional network (FCN) (Long
t al., 2015) is used to classify the pixels (faces) of the texture maps.
n a comparison between results obtained from semantic segmentation
f urban scenes in a point cloud and aerial oblique images, the au-
hors of Mesh-PC-Oblique (Wilk et al., 2022) rendered urban scenes
f the SUM (Gao et al., 2021b) dataset using Pyrender (Matl, 2019) to
blique images with their corresponding labels. Semantic segmentation
f the images is performed using Pyramid Scene Parsing Network (PSP-
et) (Zhao et al., 2017) leveraging its ability to encode contextual

nformation by concatenating extracted features from hierarchical im-
ge pyramids. Results of the segmentation are projected to texture
aps of corresponding urban scenes on which the evaluation of the

egmentation task is performed.
The second category of methods parameterizes elements or points

f 3D scenes to tangent planes or fields from which features are
extracted using convolution operations that are purposefully built for
the parameterized domain. For instance, 3D mesh scenes are parameter-
ized to four-way rotationally symmetric (4-RoSy) fields using Quadri-
Flow (Huang et al., 2018) in TextureNet (Huang et al., 2019) to
generate a uniformly distributed orientation field of sampled points.
A trade-off of the parameterization process is the inducement of direc-
tional ambiguity in the parameterized field. To extract features from the
field, the authors developed a purposefully-built convolution operation
i.e. TextureConv that gets rid of the directional ambiguity. Using the
TextureConv operation, a UNet (Ronneberger et al., 2015) (Fig. 4)
architecture is used to extract per-point features that are subsequently
used for the downstream task of semantic segmentation. Borrowing
from the concept of connections from differential geometry (Ray et al.,
2009), local geodesic patches are sampled from the mesh scene and
projected to regular tangent planes i.e.  -direction parallel frame fields
that are connected together to form flat Euclidean surfaces that support
2D convolution. By using frame fields, the authors of PFCNN (Yang
et al., 2020) were able to connect and align the tangent planes to
the geometric attributes on the mesh surface via parallel transport
technique and also to aggregate learned features in  -directions. A
purposefully-built convolution operation i.e. PFConv combined with
mesh simplification techniques (Garland and Heckbert, 1997; Hoppe,
1996) (Fig. 6) (pooling) are then used in a UNet-based (Ronneberger
8

et al., 2015) (Fig. 4) network to extract per-vertex features that are used
for classifying the mesh scenes. Similarly, tangent-based convolutions
(continuous kernel convolution) are used in TangentCNN (Tatarchenko
et al., 2018) to extract features from 2D-based tangent images that are
generated from per-point tangent planes sampled from point cloud and
mesh surfaces.

Even though the global nature of the parameterization process
has enabled DNNs to process large-scale urban scenes, methods in
this category still face a lot of challenges. These problems include
distortions, discretizations, and occlusions that are usually induced in
the parameterized domain as a result of the parameterization process.
This inevitably affects semantic segmentation results, negatively.

3.3.2. Multimodal methods
The methods under this category are hybrid models that utilize

information from other data formats like point clouds and images in
conjunction with 3D meshes for the segmentation task. These methods
leverage the more matured image- and point cloud-based DNN archi-
tectures for element-wise feature extraction and label prediction from
images and point clouds that are usually generated from related 3D
meshes. Evaluations are usually mesh-based in these methods.

The first category of methods combines image and mesh pro-
cessing to achieve semantic segmentation. For facet-wise classification
of reconstructed urban meshes from calibrated unlabeled images, a
set of the images are used to fine-tune a 2D segmentation network
i.e. DeepLabv3+(Chen et al., 2018) and predict the probabilities of
pixels’ labels in IterativeActiveLearning (Rong et al., 2021). These prob-
abilities are back-projected onto the 3D reconstructed scenes followed
by an MRF framework that assigns labels to the faces of the mesh
scenes. This process is repeated iteratively using the quality of the
labeled mesh scenes as criteria to evaluate the 2D segmentation process
and to choose suitable images that will be returned to the training
set as labeled for subsequent iterations. In InstanceSegMesh (Chen
et al., 2022a), 2D–3D fusion is used for instance segmentation of 3D
mesh buildings in urban scenes. To enable the hybrid segmentation
process, the authors developed the first mesh-based instance segmen-
tation benchmark dataset i.e. InstanceBuilding that comprises labeled
UAV images and their corresponding 3D mesh scenes. The method
first uses the Swin transformer network (Liu et al., 2021) to segment
and compute instance masks for roofs in the UAV images followed
by a back-projection of the masks onto the 3D mesh buildings to
generate corresponding 3D instances. Finally, an MRF formulation is
used to segment the remaining parts of the 3D mesh buildings. To
our best knowledge, InstanceSegMesh (Chen et al., 2022a) is the first
mesh-based method for instance segmentation.

The second category of methods is a hybrid of point clouds and 3D
meshes. In Mesh-Sampled-PC (Grzeczkowicz and Vallet, 2022), point
clouds are generated by sampling urban scenes from the SUM (Gao
et al., 2021b) dataset. Using the well-known point cloud semantic
segmentation network KPConv (Thomas et al., 2019), points are seman-
tically labeled and converted to face-wise classification by adding the
predicted probabilities of points that comprise each face.

The third category of methods transforms the 3D mesh scene to a
centre of gravity (COG) point cloud representation and subsequently
uses point-based DNNs to semantically segment the COG cloud. The
COG cloud is an abstraction of the mesh surface that represents faces
with their centers of gravity and their associated features e.g. geometric
and radiometric face-wise features. Generated COG clouds usually have
the same number of points with the faces of the mesh. The advantage
of COG clouds over point clouds is the fusion of mesh-intrinsic features
e.g. geometric, radiometric, and adjacency information to the former.
In MultiBranch1D-CNN (Tutzauer et al., 2019), multi-scale radiometric
and geometric feature vectors are computed per face to generate a COG
cloud that is fed into a 1D CNN (George et al., 2018) that is extended
to classify faces of the mesh scene. To evaluate their Point Cloud-Mesh-

Association (PCMA) mechanism, a technique of transferring point cloud



International Journal of Applied Earth Observation and Geoinformation 121 (2023) 103365J.M. Adam et al.
Fig. 4. A template of the UNet architecture for vertex-wise (ScanNet (Dai et al., 2017) dataset) classification using 𝑁 locally flat cover sheets, 4-RoSy tangent vectors and 2D tangent
images as inputs and PFConv, TextureConv and Tangent convolutions as convolutions in PFCNN (Yang et al., 2020), TextureNet (Huang et al., 2019) and TangentCNN (Tatarchenko
et al., 2018) respectively. While for classification of vertices of the ScanNet (Dai et al., 2017) dataset.
Fig. 5. An illustration of the three modules involved in the classification of superfacets in PSSNet (Weixiao et al., 2023). The Node Feature Embedding module learns and refines
per-superfacet features, 𝐹 (𝑆𝑘)256 from face centroids and RGB values 𝐹𝑝(𝑆𝑘)6 using PointNet (Qi et al., 2017a) while handcrafted features (HFG), 𝐹ℎ(𝑆𝑘)48 are embedded via Gated
Recurrent Units (Cho et al., 2014) (GRUs). Edge Feature Embedding module uses a filter generating network (FGN) to learn features (𝐹ℎ(𝑒𝑘,𝑘+1)48) of edges between superfacets
through which they exchange information for the refinement process. Finally, Gated Graph Neural Networks (Li et al., 2016) (GGNN) and Edge-Conditions Convolutions (Simonovsky
and Komodakis, 2017) (ECC) take as input both embeddings and predict classes of superfacets (𝐿(𝑆𝑘)) which are transferred to its constituent faces (𝐿(𝑖)) in the Segment Classification
module.
Source: Figure taken from PSSNet (Weixiao et al., 2023).
Fig. 6. An illustration of QEM-based (Garland and Heckbert, 1997) simplification operation where edges between adjacent vertices are repeatedly contracted to generate a new
vertex. The feature of the new vertex is computed as the average of the contracted vertices. It is used to generate multi-resolution hierarchies of 3D meshes in DCM-Net (Schult
et al., 2020) and as a pooling operation in PFCNN (Yang et al., 2020), PicassoNet and PicassoNet-II (Lei et al., 2021a,b) (GPU-accelerated version).
features and labels to faces of 3D mesh scenes, the authors of PCMA-
Net (Laupheimer et al., 2020b) constructed per-face COG clouds and
employed PointNet++ (Qi et al., 2017b) to classify the cloud points
(faces of the mesh) to urban classes like roofs, buildings, vegetation and
vehicles of the H3D (Cramer et al., 2018; Kölle M. Laupheimer et al.,
2021) dataset. Using the PCMA (Laupheimer et al., 2020b) mechanism,
ablation experiments were conducted in MultiModal-Net (Laupheimer
and Haala, 2022) which showed the superiority of using multimodal
features over mesh-only features. Similarly, ablation studies were car-
ried out on COG clouds with enhanced radiometric information to
investigate the effect of the feature on semantic segmentation results
in RadiometricNet (Laupheimer et al., 2020a). PointNet++ (Qi et al.,
2017b) was shown to outperform PointNet (Qi et al., 2017a) and RF
classifiers in the semantic segmentation task due to its multi-scale
learning ability from subsampled COG clouds. Finally, the ability of
transformer (Vaswani et al., 2017) networks to learn and handle long
9

dependencies between entities is leveraged in TransformerMesh (Tang
et al., 2022) to encode contextual information between points of COG
clouds that are abstracted from mesh scenes of the SUM (Gao et al.,
2021b) and Wuhan (Tang et al., 2022) datasets. By representing the
COG cloud as a graph, the authors of TransformerMesh (Tang et al.,
2022) introduced a sampling method (based on edge distances) that
is used to downsample and upsample the COG graph for efficient
hierarchical feature extraction. Using a PointNet++-inspired (Qi et al.,
2017b) architecture, the extracted features are used in labeling the
faces (points on the COG cloud) of the mesh urban scenes.

Similar to parameterization-based methods 3.3.1, methods in this
category leverage the feature learning abilities of well-known 2D
and/or point-based DNNs in conjunction with relevant information
from 3D meshes for element-wise classification. On the other side,
the detour of segmenting mesh scenes via other data formats affects
the performance of these methods due to the loss of information that
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Fig. 7. An illustration of themes and trends of the progress made by semantic segmentation methods in various aspects of deep learning.
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ccompanies the sampling, projection, or COG abstraction techniques.
esh-intrinsic challenges are sometimes carried over to the abstracted

urface such as the non-uniformity of face densities on mesh surfaces
ffecting class labels in abstracted COG clouds by assigning more points
nd labels to less planar surfaces like vegetation than more planar
urfaces like walls. This point and class imbalance have to be addressed
y transfer techniques like PCMA (Laupheimer et al., 2020b). Also, the
inal segmentation results significantly depends on the performance of
he sub-networks that process the other data formats.

.3.3. Graph-based methods
The recent successes of geometric deep learning (Bronstein et al.,

017, 2021) methods in areas like social sciences and computer graph-
cs have enabled researchers to employ different learning techniques
.g. convolution, pooling, and feature aggregation on non-Euclidean
ata formats like social networks and 3D mesh surfaces respectively.
n mesh-based semantic scene analysis, the mesh is represented as a
raph with the chosen elements (mostly vertices and faces) denoting
odes of the graph while adjacency of elements is represented as
dges connecting adjacent nodes on the graph. Using this graph-based
epresentation, methods in this category design or leverage (Wu et al.,
020; Bronstein et al., 2017, 2021) the feature processing abilities of
raph neural networks (GNNs) to construct architectures for semantic
egmentation of urban-scale 3D mesh scenes.

The first category of methods in this category extract and fuse
earned features from the geodesic and Euclidean domains of the
esh graph and use them for the semantic segmentation task. In
CM-Net (Schult et al., 2020), geodesic and Euclidean graph-based con-
olutions (Wang et al., 2019) are simultaneously operated on geodesic
nd Euclidean neighborhoods of mesh-induced graphs in a UNet-
ased (Ronneberger et al., 2015) architecture to compute vertex-based
redictions for labeling mesh scenes in three (Dai et al., 2017; Chang
t al., 2017; Armeni et al., 2016) large scale indoor scenes. To extract
ulti-scale features from different resolutions of the mesh scenes,

he authors adapted two mesh simplification techniques i.e. quadric
rror metrics (QEM) (Garland and Heckbert, 1997) (Fig. 6) and vertex
lustering (VC) (Rossignac and Borrel, 1993) to generate downsampled
10

ersions of the scenes at each level of the architecture. To enhance 2
ontext information learning, the method concatenates learned features
rom the geodesic and Euclidean convolutions in each layer thereby
using local objects features with geodesically disconnected inter-object
eatures respectively. A major addition of DCM-Net (Schult et al., 2020)
s the development of an edge-based sampling method i.e. random edge
ampling (RES) on the Euclidean neighborhood of the mesh-graph that
nhances the generalizability of the network and at the same time,
ecreases the computational cost of training the network. A similar
ashion of dual feature learning from Euclidean and geodesic domains
s employed in VMNet (Hu et al., 2021), where multi-scale contextual
eatures that are extracted (Tang et al., 2020) from downsampled (Gar-
and and Heckbert, 1997; Rossignac and Borrel, 1993) hierarchies of
oxelized versions of the mesh in Euclidean domain are projected
ack onto vertices in the geodesic domain. Afterward, the projected
eatures are refined and aggregated in the geodesic domain followed
y fusing them with the learned Euclidean-based features. Similar to
CM-Net (Schult et al., 2020), a UNet-based (Ronneberger et al., 2015)
rchitecture is employed to extract the vertex-based features that are
sed for the downstream task of semantic segmentation.

The second category of methods is overegmentation-based. The
ethods cluster similar elements into homogeneous segments and use

he segments as processing units for semantic segmentation DNNs. This
ay, the computational load of processing large-scale urban scenes is

educed to a tractable one. Also, the intra-relationship between ele-
ents in segments and inter-relationship between segments can be used

o encode local and global contextual information between elements
nd semantic entities in scenes. Following this, planarity-preserving
egments are generated from urban scenes by clustering planar and
on-planar faces of the SUM (Gao et al., 2021b) and H3D (Kölle
. Laupheimer et al., 2021) datasets into homogeneous segments using
combination of RF-MRF framework and graph cut (Boykov et al.,

001) algorithm in PSSNet (Weixiao et al., 2023). Inspired by large-
cale point-based oversegmentation methods like SPG (Landrieu and
imonovsky, 2018) and SSP (Landrieu and Boussaha, 2019), graphs
hat have the segments as nodes are constructed with edges connect-
ng adjacent segments and also representing contextual dependencies
etween semantic entities of urban scenes. Using PointNet (Qi et al.,

017a), nodal embeddings are generated and subsequently used in
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classifying the segments using a well-known GNN (Li et al., 2016).
The final per-segment label predictions are then transferred to their
constituent faces to evaluate the per-face labeling accuracy of the
method (Figs. 5 and 10).

The methods in this category are much closer to processing meshes
directly because graphs are data formats that represent the underly-
ing meshes as closely as possible. Improvements and new methods
are increasingly introduced in the field of geometric deep learning
which opens new opportunities for researchers to adapt them for se-
mantic segmentation of urban 3D meshes. However, methods in this
category face challenges such as non-differentiability of clustering or
simplification algorithms which prevents end-to-end learning. Also,
graph-based methods tend to store complete graphs in memory dur-
ing training which makes it computationally prohibitive to process
large-scale urban scenes.

3.3.4. Mesh-intrinsic methods
The methods in this category define learning operations directly on

the intrinsic geometric entities i.e. faces, vertices, and/or edges thereby
circumventing all pre-processing techniques like parameterization or
transformation to graphs or COG clouds. This way, these methods do
not suffer from the information loss induced by the pre-processing
techniques and also they benefit from directly learning and extracting
rich features from the mesh scenes.

The first category of methods learns features directly from the
vertices and faces of the mesh scenes. In both PicassoNet (Lei et al.,
021a) and PicassoNet-II (Lei et al., 2021b), vertex- and face-based con-
olution operations together with a GPU-accelerated QEM-based (Gar-
and and Heckbert, 1997) (Fig. 6) simplification method that is used for
ooling and unpooling operations were developed as part of the Picasso
ibrary. By enabling parallel GPU processing of the QEM (Garland
nd Heckbert, 1997) (Fig. 6) technique, large-scale mesh segmentation
etworks i.e. PicassoNet and PicassoNet-II that process batches on the
ly are trained in an end-to-end manner. The simplification technique
s also used in PicassoNet-II (Lei et al., 2021b) to generate the multi-
esolution meshes from which multi-layered features are extracted for
ertex-based labeling in an encoder–decoder architecture.

The second category of methods is edge-based. In Urban-MeshCNN
Knott and Groenendijk, 2021), urban mesh scenes were classified
nto four classes i.e. building, ground, low vegetation, and high vegeta-
ion using an extended version of MeshCNN (Hanocka et al., 2019).
eshCNN (Hanocka et al., 2019) is a well-known mesh-based DNN

hat utilizes edge-specific convolutions, pooling, and unpooling oper-
tions for processing mostly synthetic small-scale toy datasets. To en-
ble its utilization on photogrammetric meshes, the authors of Urban-
eshCNN (Knott and Groenendijk, 2021) made two significant ad-

itions: breadth-first search (BFS) partitioning technique to generate
anageable chunks of the scenes for efficient processing and the ad-
ition of photometric features to the existing geometric features to
mprove the discriminative abilities of the network. Using these en-
ancements, per-edge predictions are computed.

Methods under this category are the end goal of mesh DNNs because
hey leverage the intrinsic geometries of the mesh scenes thereby
nabling direct feature learning and processing. Still, techniques that
ill alleviate challenges of end-to-end large-scale learning e.g. QEM-
ased (Garland and Heckbert, 1997) simplification (Fig. 6) in Picas-
oNet, PicassoNet-II (Lei et al., 2021a,b) and the BFS chunking tech-
ique in Urban-MeshCNN (Knott and Groenendijk, 2021) are needed
or tractable and efficient processing of urban-scale mesh scenes.

Fig. 7 illustrates the different themes and trends in deep learning-
ased semantic segmentation of 3D mesh scenes. In terms of datasets, it
an be observed that mesh-specific datasets i.e. SUM (Gao et al., 2021b)
nd H3D (Kölle M. Laupheimer et al., 2021) are beginning to replace
mage- and point-based (Cramer, 2010) datasets. This is due to the
ncreasing interest in directly processing and classifying the mesh sur-
11

ace instead of obtaining results from other data formats and projecting
hem back to the mesh for evaluation. Semantic segmentation results
btained from direct processing of mesh scenes faithfully represent the
erceived scenes more than results from other data formats. This is the
ame justification for the ‘‘Learning on mesh surface’’ theme where the
rogression of defining learning-based operations on 2D projections (Li
t al., 2019; Huang et al., 2019; Yang et al., 2020; Tatarchenko et al.,
018), sampled point clouds (Grzeczkowicz and Vallet, 2022) and
raph abstractions (Schult et al., 2020; Weixiao et al., 2023) to intrinsic
eometry (Lei et al., 2021a,b) of the mesh surface. It is a progression
rom indirect to direct classification of mesh scenes. As for the ‘‘Learning
pproach’’ theme, initial methods especially the modeling-based (Zhu
t al., 2018; Verdie et al., 2015) approaches used unsupervised clus-
ering techniques to segment mesh scenes into homogeneous segments
superfacets) which are subsequently classified into urban classes using
mostly) graphical models. The increasing availability of annotated
atasets (Gao et al., 2021b; Kölle M. Laupheimer et al., 2021; Dai et al.,
017) has enabled methods to use supervised approaches like RF (Gao
t al., 2021b; Rouhani et al., 2017) and DNNs (Schult et al., 2020; Yang
t al., 2020; Wilk et al., 2022) to classify elements of 3D meshes.

Another theme that is not shown in Fig. 7 is the progression of
he various techniques of reducing urban meshes to tractable units
o handle the computational load of training methods. Early methods
sed unsupervised clustering algorithms like the region-growing tech-
ique (Lafarge and Mallet, 2012) in RF-MRF (Rouhani et al., 2017)
o cluster similar faces into superfacets that are later used as pro-
essing units in the downstream task of semantic segmentation. These
echniques are usually time-consuming and therefore, later methods pa-
ameterized whole mesh scenes into 2D (Yang et al., 2020; Huang et al.,
019; Li et al., 2019) and point-based (Grzeczkowicz and Vallet, 2022;
ang et al., 2022) data formats that are suitable and computationally-
fficient to process using standard 2D CNNs (Chen et al., 2018; Liu
t al., 2021) and point-based (Qi et al., 2017a,b; Thomas et al., 2019)
ethods respectively. However, these techniques are not mesh-intrinsic

nd differentiable which leads to a loss of information and the inability
o use them in collaboration with other modules in an end-to-end
rainable method. As a solution, recent methods used mesh-intrinsic
implification methods such as the use of QEM (Garland and Heck-
ert, 1997) and learning-based edge collapse (Hanocka et al., 2019)
echniques which are topology-preserving edge collapse methods in
CM-Net (Schult et al., 2020) PicassoNet-II (Lei et al., 2021b) and
rban-MeshCNN (Knott and Groenendijk, 2021) respectively. Further-
ore, the QEM6 simplification method in PicassoNet (Lei et al., 2021a)

nd PicassoNet-II (Lei et al., 2021b) is GPU-accelerated which makes it
eamless to use it in an end-to-end DNN.

. Datasets and evaluation metrics

Here, we give brief descriptions of the benchmark urban- and large-
cale mesh datasets for semantic segmentation tasks. We also provide
he evaluation metrics that are used in assessing the performance of
egmentation methods.

.1. Datasets

Urban-scale mesh scenes are usually generated from natural scenes
f point clouds or multi-view images using MVS and structure-from-
otion (SfM) reconstruction methods (Lafarge et al., 2012; Vu et al.,
011) or off-the-shelf commercial products like SURE Aerial,1
IX4Dmapper2 (PIX4D), ContextCapture3 (Bentley Solutions) and
eshLab (open source) (Cignoni et al., 2008). The reconstructed mesh

cenes are then processed and labeled manually or by transferring pixel
r point labels from the images or point clouds respectively to the mesh.

1 https://www.nframes.com/products/sure-aerial/
2 https://www.pix4d.com/product/pix4dmapper-photogrammetry-

oftware/
3 https://www.bentley.com/software/contextcapture/

https://www.nframes.com/products/sure-aerial/
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/
https://www.bentley.com/software/contextcapture/
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Fig. 8. Quantitative results based on the three most frequently used semantic segmentation-based metrics i.e. mIoU, mAcc and OA obtained from experiments on four popular
large-scale mesh datasets i.e. SUM (Gao et al., 2021b), ScanNet v2 (Dai et al., 2017), S3DIS (Armeni et al., 2016) and, Matterport3D (Chang et al., 2017).
There are different categories of semantic segmentation datasets for
urban meshes. We give brief discussions of the prominent mesh-based
semantic segmentation datasets below:

• SUM (Gao et al., 2021b): contains 64 tiles with each covering
an area of 250 × 250 m2. 40, 12, and 10 tiles are used for
training, testing, and validation of methods. The mesh scenes are
reconstructions of Helsinki, Finland covering 4 km2 of its urban
area. The dataset is labeled into six categories i.e. terrain, building,
high vegetation, water, vehicle, and boat, and an unclassified class
that contains distorted and incomplete objects. The labels are
carried on the faces of the mesh.

• Hessigheim 3D (H3D) (Kölle M. Laupheimer et al., 2021): covers
0.19km2 of Hessigheim, a village in Germany. The dataset has
both 3D mesh and point cloud modes with faces carrying the la-
bels in the mesh data mode. 40% of the faces are unlabeled while
the remaining faces are labeled into 11 categories i.e. facade, roof,
shrub, tree, soil/gravel, low vegetation, impervious surface, vehicle,
urban furniture, vertical surface, and chimney.

• Real-world indoor 3D mesh reconstructions: ScanNet v2 (Dai
et al., 2017) contains 1513 3D mesh reconstructions of indoor
scenes with its vertices labeled into 20 categories including
classes such as bathroom, closet, kitchen, gym, hallway e.t.c.
and a miscellaneous class. Matterport3D (Chang et al., 2017)
contains 90 3D mesh building instances reconstructed from RGB-
D scenes using Poisson (Chuang and Kazhdan, 2011) surface
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reconstruction technique. It used the same labeling categories
of ScanNet v2 (Dai et al., 2017) dataset with faces carrying the
labels. Similarly, indoor mesh scenes are reconstructed from RGB-
D scenes in SceneNN (Hua et al., 2016) with vertex-wise labeling.
Stanford Large-scale 3D Indoor Spaces (S3DIS) (Armeni et al.,
2016) is a 2D-3D-S that contains registered 3D annotated 3D
meshes and point clouds reconstructed from RGB-D images. The
labels in the 3D mesh modality are face-wise.

• ETHZ RueMonge 2014 (Riemenschneider et al., 2014): contains
700m long pixel-level annotated street scenes of Rue Monge,
Paris, France along with indexes to their 3D format equivalents
i.e. mesh and point cloud. The dataset can be used for image,
mesh, and point cloud labeling tasks.

• InstanceBuilding (Chen et al., 2022a): 3D instance segmentation
dataset from InstanceSegMesh (Chen et al., 2022a) containing
annotations for UAV building images and their 3D instances.
Out of the 892 building scenes, images have both their 2D and
3D components annotated and is the first dataset specifically
developed for instance segmentation of buildings in urban scenes.

Other relevant datasets are Vaihingen 3D (V3D) (Cramer, 2010)
(point cloud) and SUN RGB-D (Song et al., 2015). For a systematic
and detailed analysis of remotely sensed benchmark datasets for earth
observation, EarthNets (Xiong et al., 2022) is a good resource.

There are also proprietary datasets that are not publicly made
available for researchers in the community. These datasets are used
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Fig. 9. Exhibition of 3D mesh scenes from the SUM (Gao et al., 2021b) urban dataset.
by authors to evaluate the performance of their methods. Examples
include the Wuhan dataset in TransformerMesh (Tang et al., 2022)
and the reconstructed urban scenes of Paris and Toulouse, France in
RF-MRF (Rouhani et al., 2017).

4.2. Evaluation metrics

Several evaluation metrics have been proposed to evaluate the
performance of semantic segmentation methods and other related tasks
such as instance segmentation and oversegmentation. For semantic seg-
mentation (Gao et al., 2021b; Grzeczkowicz and Vallet, 2022), the most
frequently used metrics are Intersection over Union (IoU), mean per-class
Intersection over Union (mIoU), precision, recall, Accuracy (Acc), Overall
Accuracy (OA), mean per-class Accuracy (mAcc), and F1 score. For in-
stance segmentation (Chen et al., 2022a), the well-known instance-level
metric (Lin et al., 2014) of Average Precision (AP) fixed at IoU values
of 0.5 (AP50) and 0.75 (AP75) are used in InstanceSegMesh (Chen
et al., 2022a). The authors used area of faces to compute the IoUs. For
oversegmentation, the authors of PSSNet (Weixiao et al., 2023) devel-
oped mesh-adapted evaluation metrics to assess the oversegmentation
performance of their method. Similar to the point-based (Landrieu
and Simonovsky, 2018; Landrieu and Boussaha, 2019) counterparts
of PSSNet (Weixiao et al., 2023), the authors used object purity (OP),
boundary precision (BP) and boundary recall (BR) to measure the quality
of generated superfacets. Face areas are also used for most of the
computations of these metrics.

From the results shown in Fig. 8(a), Mesh-Sampled-PC (Grzeczkow-
icz and Vallet, 2022) performs better in all the reported metrics. This is
mainly due to the utilization of KPConv (Thomas et al., 2019), a well-
known and matured point cloud semantic segmentation method, to
classify sampled point clouds from mesh scenes of the SUM (Gao et al.,
2021b) dataset. It enabled the method to leverage the fine-tuned ability
of the KPConv (Thomas et al., 2019) model to classify the point clouds
hence the superior performance over other mesh-based methods. Even
though Mesh-Sampled-PC (Grzeczkowicz and Vallet, 2022) is +12.5
and +13.4 points (mIoU) (Fig. 8(a)) ahead of TransformerMesh (Tang
et al., 2022) and PSSNet (Weixiao et al., 2023) respectively, we believe
the approaches employed by the latter methods to process the mesh
scenes will continue to garner interest from researchers in the field.
This is because these methods process representations e.g. superfacet-
based graphs in PSSNet (Weixiao et al., 2023) that are much closer to
representing the mesh surface than the sampled point clouds in Mesh-
Sampled-PC (Grzeczkowicz and Vallet, 2022) (Fig. 7). Consequently,
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the results (albeit lower) obtained by these methods are more useful
in understanding labeled mesh scenes because of the proximity of the
representation.

Also, the results (Figs. 8(a) and 8(b)) of PSSNet (Weixiao et al.,
2023) and TransformerMesh (Tang et al., 2022) are very similar which
points to the similarity with which both methods employed in classi-
fying the mesh scenes. Both methods simplify the input meshes into
manageable processing units i.e. superfacets in PSSNet (Weixiao et al.,
2023) and COG clouds in Tang et al. (2022) and subsequently used
well-known models in GCNs and transformer networks respectively for
the semantic segmentation task. It will be interesting to see how end-to-
end mesh-intrinsic methods such as PicassoNet-II (Lei et al., 2021b) will
perform on the urban scenes of the SUM (Gao et al., 2021b) dataset.

From Fig. 8(b), we can observe the superiority of VMNet (Hu et al.,
2021) in terms of the mIoU metric over other methods. This can be
explained by the method’s utilization of a well-matured sparse voxel-
based (Tang et al., 2020) convolution operation in UNet (Ronneberger
et al., 2015) architecture on voxelized hierarchies of the mesh scenes.
Combined with its intra- and inter-domain aggregation modules, we
believe these are the reasons for the superior performance (+8.8 mIoU)
of VMNet (Hu et al., 2021) over its graph-based, multidomain (Eu-
clidean and geodesic) counterpart, DCM-Net (Schult et al., 2020). Of
note are the performances of the mesh-intrinsic end-to-end methods,
PicassoNet (Lei et al., 2021a) and PicassoNet-II (Lei et al., 2021b)
in Figs. 8(b) and 8(c). This is mainly due to the utilization of the
different modules of the Picasso library such as the GPU-accelerated
QEM (Garland and Heckbert, 1997) (Fig. 6) decimation method that
is 30 times faster than its non-GPU counterpart used in methods like
DCM-Net (Schult et al., 2020) and VMNet (Hu et al., 2021).

For global parameterization methods (Section 3.3.1 and Fig. 8(b)),
the best performing method is PFCNN (Yang et al., 2020) with +8.2
(mIoU), +5.9 (OA) and +3.5 (mACC) point increase on the second
best performing method, TextureNet (Huang et al., 2019) based on
experiments on the ScanNet v2 dataset. Even though these methods
benefit from using matured and fine-tuned 2D (Li et al., 2019) and
point-based (Wilk et al., 2022) on parameterized domains, research
interest in the area is waning as shown in Fig. 7 (Learning on mesh
surface) and Table 1. This is partly due to the information loss inherent
in the parameterization method and the growing theme of designing
methods that directly process the mesh geometry. This trend is showing
promise as illustrated by an increase of +3.4 points (mIoU) (Fig. 8(b))
of PicassoNet-II (Lei et al., 2021b) over PFCNN (Yang et al., 2020).
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Fig. 10. Semantic segmentation results obtained by PSSNet (Weixiao et al., 2023) on the SUM (Gao et al., 2021b) dataset.
5. Open challenges and future research directions

Notwithstanding the successes of DNNs in the semantic segmen-
tation of urban scenes, there are contemporary challenges that need
further attention from researchers in this area.

(1) Annotated datasets: It can be observed from Section 4.1 that
there is an urgent need for annotated urban-scale datasets. There are
only two (Gao et al., 2021b; Kölle M. Laupheimer et al., 2021) anno-
tated urban-scale datasets purposefully built for semantic segmentation
of 3D scenes while the remaining (Dai et al., 2017; Chang et al.,
2017; Armeni et al., 2016; Cramer, 2010; Riemenschneider et al., 2014)
datasets are either for indoor scenes or built for point- and image-
based segmentation tasks. There is also a need for datasets that enable
other segmentation-related tasks like instance segmentation and object
detection as evidenced by only one (Chen et al., 2022a) dataset for
the former task and none for the latter. Therefore, more mesh-specific
publicly available benchmark datasets are needed.

(2) Segmentation-related tasks: As 3D meshes are becoming the
preferred format of visualization in computer vision (Gao et al., 2021b),
more methods for analyzing urban scenes are required for perceiving
and discriminating the various objects and artifacts that make up the
real world. The glaring absence of object detection methods and the
almost non-existence of instance-level detection methods (Chen et al.,
2022a) in the methods we reviewed in this work points to a dire need
for these types of methods in the research area.

(3) End-to-end trainability: Of all the methods we surveyed, only
a few (Lei et al., 2021a,b) are end-to-end trainable. This is mainly
due to the utilization of non-differentiable algorithms like the region-
growing algorithms in SUM (Gao et al., 2021b) and PSSNet (Weixiao
et al., 2023) or the GPU non-compliant simplification methods in DCM-
Net (Schult et al., 2020) and VMNet (Hu et al., 2021). Although there
are attempts to address this challenge such as the GPU-accelerated
QEM (Garland and Heckbert, 1997) (Fig. 6) in PicassoNet (Lei et al.,
2021a) and PicassoNet-II (Lei et al., 2021b), more similar solutions are
needed to help researchers train mesh DNNs efficiently.

(4) Computational tractability: Processing urban-scale mesh
scenes involve dealing with thousands or sometimes millions of vertices
and faces. Existing methods try to strike a balance between techniques
that transforms the scenes into more tractable units such as super-
facets (Weixiao et al., 2023), COG clouds (Tang et al., 2022), or 2D
texture maps (Li et al., 2019) and the information loss that usually
accompanies these techniques. Therefore, more mesh-specific tech-
niques that preserve the geometric and topological features of scenes
as much as possible while at the same time reducing computational
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load are required. One of the steps in this direction is the random edge
sampling (RES) method for sampling the mesh-graph neighborhood in
DCM-Net (Schult et al., 2020).

(5) Defects of urban-scale mesh scenes: Most of the existing
semantic segmentation DNNs for small-scale datasets e.g. MeshCNN
(Hanocka et al., 2019) are designed to process cleaned, manifold, and
genus 0 mesh surfaces. However, reconstructed urban scenes of 3D
meshes contain a lot of geometric and topological defects, noise, dis-
tortions, and non-manifold edges and vertices. Therefore, methods that
process urban-scale scenes must have high robustness and resilience
toward these defects. Mesh-specific convolution and pooling operations
must also be able to generalize on these types of scenes.

6. Conclusion

To our best knowledge, this is the first review paper that focuses on
semantic segmentation of urban-scale mesh scenes using deep learning.
We gave a formulation for the semantic segmentation problem and
pointed out the challenges that are encountered by mesh-based DNNs
in achieving this task. Based on the different techniques employed by
methods to address these challenges, we classified these methods and
described the various ways they achieve the element-wise classification
of mesh scenes. We then presented a comparative analysis of these
methods highlighting their strengths and weaknesses followed by dis-
cussions on the datasets and evaluation metrics involved in executing
and assessing methods. Finally, we discussed the contemporary chal-
lenges faced by researchers in the field and provide insights on future
research avenues for researchers in the community.
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