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A B S T R A C T

The capability of partially penetrating vegetation canopy and efficiently collecting high-precision point clouds
over large areas makes airborne laser scanning (ALS) a valuable tool for various geospatial applications.
However, automated ground filtering (GF), one fundamental and challenging step for most ALS applications,
has remained a widely researched yet unsolved problem for decades. The recent breakthroughs in supervised
deep learning (DL) techniques, which rely on sufficient and high-quality labeled datasets, provide a new
solution to better solve this problem. Unfortunately, public 3D geospatial datasets are scarce, especially for
those tailored for the landform-scale GF task. Moreover, whether advanced deep neural networks (DNNs) can
be well-scaled to the problem of GF remains an open question. To comprehensively advance the development
of effective DL-based GF pipelines, we first publish an ultra-large-scale GF dataset built upon open-access ALS
point clouds of four different countries worldwide, which covers over 47 km2 and nine different terrain scenes.
Then, multiple attractive advantages of DL techniques in GF are evaluated through extensive experimental
comparisons with traditional GF methods on the presented dataset. Furthermore, we reveal several issues
faced by generalizing existing advanced 3D DNNs into GF tasks with a series of in-depth experimental analyses.
Finally, some promising directions for future research are suggested in response to the identified challenges.
Our dataset, named OpenGF, is available at https://github.com/Nathan-UW/OpenGF.
1. Introduction

With the fast development of 3D acquisition techniques, including
inexpensive laser scanning, depth sensors, or advanced photogram-
metric reconstruction pipelines, point clouds have become easier to
capture and have driven a series of interesting studies in the fields of
autonomous driving (Geiger et al., 2012), robots (Valada et al., 2017),
and remote sensing (Xue et al., 2020; Bulatov et al., 2021). Owing to
the ability of vegetation canopy penetration and efficiently collecting
high-precision point clouds over a large area, airborne laser scanning
(ALS) has been widely used in many large-scale geospatial applica-
tions. In forest monitoring, ALS data is used to estimate above-ground
biomass or wildfire fuel consumption (Andersen et al., 2014; McCarley
et al., 2020). In archaeology, ALS point clouds are important for the
identification and monitoring of archaeological sites and landscapes
which are hidden deeply underneath vegetation (Canuto et al., 2018;
Doneus et al., 2020). In flood modeling, detailed elevation information
of the ground surface for predicting flood-prone areas can be extracted
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from ALS data (Muhadi et al., 2020). In addition, ALS point clouds are
also widely used in powerline corridor surveying (Ortega et al., 2019)
and 3D urban scene understanding (Schmohl and Sörgel, 2019; Mao
et al., 2022).

Since raw ALS data contains both ground points of the bare earth
and non-ground points of land covers, one crucial and challenging
pretreatment for most ALS applications is to discriminate ground points
from non-ground points, often called ground filtering (GF). However,
the significant topographic fluctuations and complex structures of ob-
jects result in notable differences within the class ground or non-
ground. Meanwhile, highly similar geometric structures are frequently
observed between the above two categories. The large intra-class differ-
ences and inter-class similarities bring great difficulties to the accurate
GF of ALS point clouds. Furthermore, the ubiquitous outliers in point
clouds make the problem more challenging. Although numerous GF
methods were proposed in the last three decades, the problem of
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extracting the ground from large-scale point clouds has not yet been
completely solved.

More recently, a growing number of deep learning (DL) methods
have been investigated for 3D scene parsing with a notable string of
empirical successes (Qi et al., 2017b; Thomas et al., 2019; Hu et al.,
2020; Zhang et al., 2020b; Zhu et al., 2021). The rapid advances in deep
neural networks (DNNs), which are mainly benefited from abundant
public datasets, has also attracted the attention of many studies (Hu
and Yuan, 2016; Rizaldy et al., 2018; Gevaert et al., 2018; Jin et al.,
2020; Zhang et al., 2020a; Nurunnabi et al., 2021) to resolve the limita-
tions of traditional GF methods. Although these DL-based GF methods
achieved impressive performance, the datasets they used are either
unpublished or lack scene diversity. At the same time, the widely used
public International Society for Photogrammetry and Remote Sensing
(ISPRS) filtertest dataset (Sithole and Vosselman, 2004) contains too
few labeled samples to release the power of supervised DL techniques.
Thus, it is remarkably essential to publish a new high-quality GF dataset
with wide coverage and diverse terrain scenes.

In addition, whether advanced deep neural networks (DNNs) can
be well-scaled to the problem of GF remains an open question. On one
hand, it is still unclear which problems of traditional GF methods are
also faced by DL-based GF methods. For example, classic GF methods
often make serious misclassifications in difficult local areas, resulting
in time-consuming and labor-intensive manual refinements. Are the
micro-topography errors made by the state-of-the-art DNNs few enough
to eliminate post-processing? On the other hand, new issues brought by
DL techniques to GF have not yet been in-depth explored. In contrast
to the majority of 3D understanding tasks (e.g., semantic segmentation
of rooms, streets, or even urban scenes), the research target of GF
is the earth’s surface which typically spans significantly wider areas.
Can existing DNNs for small-scale 3D understanding effectively process
large-scale topographic point clouds under limited GPU memory? Fur-
thermore, existing supervised DL techniques typically tend to overfit
a specific data distribution. Do the trained DL models for GF have
the capability to be well applied to the unknown data? Extensive
experimental comparisons and in-depth analyses would help answer
these questions. Nevertheless, such evaluations were lacking in the field
of GF.

To fully promote the development of advanced DL-based GF
pipelines, we first built a public ultra-large-scale GF dataset, by taking
advantage of worldwide open-access ALS point clouds with accurate
ground labels. The dataset, named OpenGF, has a coverage of over
47 km2 area and nine different terrain scenes. Meanwhile, over 542
million accurately labeled points make our dataset thousands of times
larger than the ISPRS filtertest dataset. Then, extensive experimental
comparisons of eight representative methods for GF were carried out
on the proposed dataset, which highlights multiple strengths of DL
techniques in GF. Furthermore, we revealed several key issues faced
by generalizing existing 3D DNNs into GF tasks through a series of
in-depth experimental analyses. Finally, some promising directions
for future GF research were suggested in response to the identified
challenges. A preliminary version of this work has been published
in a conference proceedings (Qin et al., 2021). In this paper, we
concentrate on conducting more detailed comparative evaluations and
much deeper issue analyses, on the basis of supplementing new test
data and methods. In short, the main contributions of our work include:

• Publishing a new ultra-large-scale ALS dataset dedicated to promoting
the development of advanced DL-based GF pipelines, which contains
both high-quality ground labels and diverse terrain types.

• Providing comparative evaluations of representative 3D DNNs and
classic GF methods on OpenGF, which both highlights the strengths
of DL techniques in GF and serves as a solid benchmark.

• Clarifying several key issues faced by generalizing existing DNNs
to extract the ground from ALS point clouds, which provides some
247

implications for future research.
• Presenting a detailed strategy for the rapid construction of landform-
scale datasets with worldwide open-access data, which points to a
new possibility to quickly build large-scale datasets.

• Converting traditional GF metrics into equivalent or similar modern
classification metrics, in order to facilitate researchers in related
fields.

The remainder of this paper is structured as follows: Related work
is introduced in Section 2. Section 3 describes the detailed strategy
to construct the OpenGF dataset, and Section 4 provides comparative
evaluations of representative methods for GF on the proposed dataset.
The issues faced by generalizing DL techniques into GF tasks are further
clarified in Section 5. In addition, a comprehensive discussion and
observed limitations are given in Section 6. Section 7 concludes the
paper with outlooks.

2. Related work

2.1. Datasets for 3D geospatial labeling

The number of outdoor point cloud datasets has been increasing due
to the fast-growing 3D acquisition techniques, and many of them have
become publicly accessible. These datasets promote the development
of 3D geospatial data intelligence with DL techniques.

In the light of different data collection techniques, existing geospa-
tial datasets for 3D semantic segmentation can be roughly divided
into three groups: (1) Photogrammetric 3D datasets. The point
clouds/meshes of these datasets, such as Campus3D (Li et al., 2020),
SensatUrban (Hu et al., 2022) and SUM-Helsinki (Gao et al., 2021),
are produced using photogrammetry techniques. The photogrammetric
3D point clouds/meshes contain almost no ground points in areas
under the vegetation canopy owing to the limitations of passive image
acquisition, so such datasets have inherent shortcomings in training DL
models for ground extraction in dense vegetation areas. (2) TLS/MLS
3D datasets. This kind of datasets is usually collected at the street level
for roadway scene understanding, and some representative datasets
include Semantic3D (Hackel et al., 2017), Paris-Lille-3D (Roynard et al.,
2018), SemanticKITTI (Behley et al., 2019), and Toronto-3D (Tan et al.,
2020). Due to the limited geographic coverage, such datasets are not
suitable for large-scale ground extraction although they have a high
point density with a large data volume. (3) ALS/UAV-LS 3D datasets.
These datasets collected by airborne LiDAR sensors are commonly used
for 3D urban classification and urban environmental perception, such
as the ISPRS Vaihingen 3D (V3D) semantic labeling dataset (Niemeyer
et al., 2014), DublinCity (Zolanvari et al., 2019), LASDU (Ye et al.,
2020), DALES (Varney et al., 2020), and the Hessigheim 3D (H3D)
dataset (Kölle et al., 2021). They concentrate on recognizing a variety
of urban objects (e.g., grass, fence, cars, facades) rather than accurately
extracting the ground. Besides, the coverage of typical non-urban
scenes (e.g., mountains and forests) in this kind of dataset is very
limited. All these factors make such datasets less suitable for GF studies.

To our best knowledge, there mainly exists two types of point cloud
datasets for evaluating GF methods nowadays. The first kind is the
well-known ISPRS filtertest dataset released before 2003. This dataset
contains 15 reference samples with different terrain characteristics. Yet,
each sample contains too few points to be used for training DL models.
The latter is the experimental datasets used in recent publications on
DL-based GF pipelines (Hu and Yuan, 2016; Jin et al., 2020). This kind
of datasets typically contains massive training data, but it is either
proprietary or contains insufficient terrain types.

The goal of the GF task is to robustly distinguish ground points
from non-ground points in various terrain scenes, which requires a GF
dataset containing both sufficient training data and different terrain
types. To this end, OpenGF is published in this work to encourage the
development of creative DL-based GF pipelines. Comprehensive spec-
ifications of the aforementioned representative datasets are compared

in Table 1.
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Table 1
Comprehensive specifications of representative geospatial datasets for 3D semantic labeling.

Dataset Year Coverage Points RGB Collection Application

ISPRS filtertest (Sithole and Vosselman, 2004) – 1.1 × 106 m2 0.4 M No ALS Landform-scale
ground filteringOpenGF (Ours) 2021 47.7 × 106 m2 542.1 M No ALS

ISPRS V3D (Niemeyer et al., 2014) 2014 – 1.2 M No ALS

Urban-scale
semantic segmentation

DublinCity (Zolanvari et al., 2019) 2019 2 × 106 m2 260 M No ALS
LASDU (Ye et al., 2020) 2020 1.02 × 106 m2 3.12 M No ALS
DALES (Varney et al., 2020) 2020 10 × 106 m2 505 M No ALS
H3D (Kölle et al., 2021) 2021 1 × 105 m2 73 M Yes UAV ALS
Campus3D (Li et al., 2020) 2020 1.6 × 106 m2 937.1 M Yes UAV photogrammetry
SensatUrban (Hu et al., 2022) 2020 7.6 × 106 m2 2847 M Yes UAV photogrammetry
SUM-Helsinki (Gao et al., 2021) 2021 4 × 106 m2 19 M Yes Airplane photogrammetry

Semantic3D (Hackel et al., 2017) 2017 – 4000 M Yes TLS
Street-scale
semantic segmentation

Paris-Lille-3D (Roynard et al., 2018) 2018 1940 m 143 M No MLS
SemanticKITTI (Behley et al., 2019) 2019 39 200 m 4549 M No MLS
Toronto-3D (Tan et al., 2020) 2020 1000 m 78 M Yes MLS
2.2. GF methods for ALS point clouds

The problem of GF has seen great progress over the last three
decades, and numerous methods have been proposed. Generally, these
approaches can be divided into two categories: classic ground filters
and learning-based pipelines.

Classic ground filters. Prior to the emergence of machine learning
techniques, the GF problem was often formulated as artificially de-
signed rules or optimization problems constrained by geometric priors,
in which no supervised information is required. According to different
algorithm concepts, they can be broadly categorized into five groups:
(1) Morphology-based filters (Zhang et al., 2003; Pingel et al., 2013;
Duan et al., 2019). These methods usually conduct a number of mor-
phological operations (e.g., erosion and dilation) within a local window
to filter non-ground points. (2) Surface-based filters (Axelsson, 2000;
Evans and Hudak, 2007; Nie et al., 2017; Pfeifer et al., 2001; Elmqvist,
2002; Hu et al., 2015; Zhang et al., 2016). In this case, a reference
surface is firstly constructed by discriminant functions, and then the
ground points are determined by analyzing the spatial relationship
between the point location and the corresponding buffer zone of the
reference surface. (3) Slope-based filters (Vosselman, 2000; Sithole and
Vosselman, 2001; Susaki, 2012). In these algorithms, the category is
judged according to the slope between two points. The higher point will
be labeled as the class 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑, if the slope is greater than a certain
hreshold. (4) Segmentation-based filters (Sithole and Vosselman, 2005;
ingee et al., 2016; Beumier and Idrissa, 2016). In such approaches, the

imilar points are first segmented by applying segmentation methods,
nd then some rules (e.g., slope and elevation differences) are adopted
o separate ground segments. (5) Statistic-based filters (Bartels et al.,
006; Özcan and Ünsalan, 2016). They usually assume that the eleva-
ion of ground points obeys a certain distribution while the existence
f non-ground points may disturb this distribution. In addition, many
ybrid methods (Zhang and Lin, 2013; Mongus et al., 2014; Su et al.,
015; Zhao et al., 2016) based on the above two or more typical filters
ave been proposed to improve the filtering performance. In general,
lassic ground filters perform well in relatively flat and low-vegetated
reas, but they typically have defects to deal with complex landforms
uch as hybrid terrains, steep slopes, dense vegetation, and terrain
iscontinuities.
Learning-based pipelines. Different from the above classic filters,

earning-based pipelines convert GF into a probability classification
roblem and rely on sufficient supervised samples. Early works (Lu
t al., 2009; Jahromi et al., 2011; Ayazi and Saadat Seresht, 2019)
ocused on various traditional classifiers that can directly learn the
iscrimination rules from hand-crafted features. Nevertheless, their
erformance is generally limited by the low-level descriptiveness of
and-crafted features. In contrast, semantic information learned by
NNs can achieve superior performance in GF tasks. For example, Hu
nd Yuan (2016) first proposed a GF pipeline based on 2D DNNs and
248
achieved impressive filtering performance. However, this approach is
inefficient due to its point-wise classification strategy and redundant
calculations in the conversion of points to images (Rizaldy et al.,
2018). To alleviate this problem, improved GF pipelines based on 2D
semantic segmentation networks were proposed (Rizaldy et al., 2018).
However, this kind of pipelines will not be suitable for mountain areas
with dense vegetation because of the considerable overlap between
ground and non-ground points in the 2D projection map. To tackle
this limitation, Schmohl and Sörgel (2019) adapted submanifold sparse
convolutional networks (Graham et al., 2018) for the classification of
voxelized ALS point clouds. However, the loss of 3D detail information
is still unavoidable due to the voxelization process. Point-based DNNs
were then introduced to further improve the accuracy and efficiency
of GF in mountain areas (Zhang et al., 2020a; Jin et al., 2020). Such
methods effectively reduced the time consumption and errors caused
by converting point clouds into feature maps or voxels. However,
due to the small-scale input that can be processed at one time, they
are not suitable for urban areas with large buildings (Zhang et al.,
2020a). To reduce the dependence on massive training data, Nurunnabi
et al. (2021) introduced a feature-based DL architecture for ground
extraction, but it needs a thorough understanding of the related hand-
crafted features. In addition, DL-based digital terrain model (DTM)
regressions were also explored (Luo et al., 2017; Amini Amirkolaee
et al., 2022) to improve the quality of DTM generation in steep and
dense forested areas. Overall, whether state-of-the-art DNNs can be
well-scaled to the challenging GF problem remains an open question.

2.3. Ground extraction from photogrammetric data

Due to dependency on only 3D point coordinates, many GF methods
designed for ALS point clouds are also applicable to photogrammet-
ric point clouds (Serifoglu Yilmaz et al., 2018; Serifoglu Yilmaz and
Gungor, 2018; Zeybek and Şanlıoğlu, 2019; Klápště et al., 2020). For
example, Serifoglu Yilmaz et al. (2018) investigated the performances
of seven widely used ground filters on UAV photogrammetric point
clouds. Zeybek and Şanlıoğlu (2019) compared the performance of four
different ground filters on UAV photogrammetry-based point clouds.
To determine whether can the same performance be achieved by GF
methods on ALS and photogrammetric data, Klápště et al. (2020)
compared six classic ground filters on both types of point clouds in
the same area. In addition, a number of raster-based methods (Perko
et al., 2015; Mousa et al., 2017; Gevaert et al., 2018; Mousa et al.,
2019; Duan et al., 2019; Hingee et al., 2019) were designed for DTM
extraction from photogrammetry-based digital surface models (DSMs).
In particular, Gevaert et al. (2018) proposed a DL framework for
DTM extraction from photogrammetric DSMs, in which additional true-
orthophotos were also used. However, the concept of DTMs and DSMs
is generally senseless in overhanging landforms (Bulatov et al., 2021).
For extremely steep or even overhanging 3D point clouds, Bulatov et al.
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(2021) and Štroner et al. (2021) proposed novel filtering strategies
recently. On the whole, there are relatively few ground extraction
methods tailored for photogrammetric data, especially those based on
DL techniques. This study is expected to provide a reference for more
advanced ground extraction from photogrammetric data.

3. The openGF dataset

It is extremely difficult for one individual academic institution or
research team to build large-scale datasets in a short time, especially
high-quality GF datasets with wide spatial coverage and rich terrain
types. Fortunately, lots of worldwide ALS data in different terrain
scenes have become publicly available. In particular, some of them
have been finely labeled with the category 𝑔𝑟𝑜𝑢𝑛𝑑. These existing
friendly open-access data provide us an excellent opportunity to quickly
build an ultra-large-scale GF dataset, named OpenGF. The specific
details of constructing OpenGF are as follows.

3.1. Preprocessing

3.1.1. Selection of point cloud blocks
Although ground annotations have been provided in most open-

access ALS point clouds, a lot of inconsistencies are observed in the
classification quality. To tackle this problem, only point clouds with
high-quality ground annotations were chosen. Then, these data was
further picked to cover four prime terrain types, including 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠
(areas with flat ground and dense/large roofs), 𝑆𝑚𝑎𝑙𝑙 𝐶𝑖𝑡𝑦 (areas with
flat/rugged ground and many middle-sized roofs), 𝑉 𝑖𝑙𝑙𝑎𝑔𝑒 (areas with
natural ground and scattered roofs), and 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛 (areas with sloped
ground and dense/sparse forests). Eventually, several large-sized point
clouds with accurate ground annotations in different prime terrain
scenes were extracted from the open-access ALS data (Qin et al., 2021).

Similar to previous works (Varney et al., 2020; Hu et al., 2022),
the extracted large-sized point clouds were further split into blocks
in the size of 500 × 500 m2. There is no overlapping areas between
adjacent blocks, so that each block is distinctly independent. In order
to keep a balanced scene distribution, 40 point cloud blocks were
selected from each prime terrain scene. In particular, to ensure as
much scene diversity as possible, we concentrated on choosing blocks
belonging to different sub-scenes. Finally, the four prime terrain types
were subdivided into nine fine-grained terrain types (i.e., sub-scenes
𝑆1–𝑆9). Specifically, among the selected 160 point cloud blocks, 20
belong to 𝑆1 (metropolis with large roofs), 20 belong to 𝑆2 (metropolis
with dense roofs), 10 belong to 𝑆3 (small city with flat ground), 20
belong to 𝑆4 (small city with local undulating ground), 10 belong to
𝑆5 (small city with rugged ground), 40 belong to 𝑆6 (village with
scattered roofs), 10 belong to 𝑆7 (mountain with gentle slopes and
dense vegetation), 10 belong to 𝑆8 (mountain with steep slopes and
sparse vegetation), and 20 belong to 𝑆9 (mountain with steep slopes
and dense vegetation).

3.1.2. Annotation of ground and non-ground points
Besides high-quality ground labels, the majority of selected point

cloud blocks have also been labeled with many other detailed cate-
gories such as 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠, 𝑤𝑎𝑡𝑒𝑟, 𝑏𝑟𝑖𝑑𝑔𝑒𝑠, 𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝.
Nevertheless, the GF task focuses only on distinguishing two categories
(i.e., 𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑), which means that the other categories
have to be merged.

Owing to containing both ground and non-ground points, the sur-
face points of water mixed with vegetation and the points labeled
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 were firstly removed directly. Then, we changed the labels of
the remaining points to 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑, 𝑔𝑟𝑜𝑢𝑛𝑑, or 𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑. Table 2
shows the definitions of the final three categories. Note that, low and
high outliers were relabeled as a separate category 𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑, so that
researchers have the option to merge them into non-ground points or
delete them directly. Eventually, the three consolidated categories were
repeatedly checked for quality assurance. In fact, only a few hours were
needed to complete the annotation of the selected point cloud blocks.
Several examples of the annotation results are shown in Fig. 1.
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Table 2
Class definitions of OpenGF.

Class number Class name Definition

0 𝑈𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑 Low/high outliers

1 𝑁𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑 Buildings,
low/medium/high vegetation,
bridges, cars, etc.

2 𝐺𝑟𝑜𝑢𝑛𝑑 Bare terrain, clean water surfaces

3.2. Statistics of the training set

The training set is composed of the 160 point cloud blocks processed
above (see Section 3.1.1), which are distributed in four countries
worldwide (see the red stars in Fig. 2a). The different geographical
locations of these samples enhance the data diversity of the training
set.

In addition, the number of ground and non-ground points in each
terrain scene was displayed in Fig. 2b. It can be observed that the
number distribution of points in the two categories is extremely unbal-
anced in partial terrain scenes. For example, mountain areas with dense
vegetation (i.e., 𝑆7 and 𝑆9) contain significantly more non-ground
points than ground points, while the number of ground points in village
areas (𝑆6) is far more than that of non-ground points. Besides, the scene
𝑆5 includes significantly more points than the scene 𝑆3, despite the fact
that the two scenes have the same spatial coverage (i.e., 10 blocks),
which demonstrates the diversified point density of the training set.

To facilitate choosing the best trained models for testing, nine
representative point clouds belonging to different terrain types were
carefully selected as the validation set, which are shown in Fig. 3. The
remaining point cloud blocks were used for training.

3.3. Challenges of the test set

To fully evaluate the performance of DL-based GF pipelines, we
first chose three challenging point clouds in areas outside the coverage
of the training set, and then relabeled them as the test set using the
methods in Section 3.1.2. The details of the test set, consisting of Test I,
Test II, and Test III, are as follows.

Test I is a large-sized point cloud spanning around 6.6 km2 in
hybrid terrain scenes. It contains around 26.2 million non-ground
points and 20.6 million ground points. The point density of Test I is
uneven due to the mixing of scenes. In Fig. 4a, it can be observed that
Test I contains three prime terrain types, including 𝑣𝑖𝑙𝑙𝑎𝑔𝑒, 𝑠𝑚𝑎𝑙𝑙 𝑐𝑖𝑡𝑦,
nd 𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛. Four typical local areas (named I-A, I-B, I-C, and I-D)
elonging to different terrain types are shown in Fig. 4b. Through
he profiles from points, it can be found that the fine separation of
round and non-ground points in micro-topography areas of Test I is
ery challenging.
Test II is a noise-contaminated point cloud spanning about 1.1 km2

n metropolis areas. It contains over 3.1 million non-ground points and
.1 million ground points. The calculated point density of Test II is
pproximately 6 pts.∕m2 on average, although a larger average point
ensity of 14 pts.∕m2 is reported on the related websites. As shown in
ig. 5b, Test II includes objects in various sizes, such as grass, cars, and
mall/large buildings. In particular, the maximum length and width of
ne building exceeds 200m. Proper recognition of such a large object
equires sufficient spatial context. Test II also contains a large number
f low and high outliers, which brings great challenges to classic ground
ilters.
Test III is a point cloud spanning over 2.3 km2 in complex mountain

reas. It contains about 16.2 million non-ground points and 3.6 million
round points. The point density of Test III is uneven owing to the
ggregative distribution of dense vegetation. Fig. 6 presents Test III
nd its four typical local areas (named III-A, III-B, III-C, and III-D). In

ig. 6b, it can be seen that (1) The ground points under dense forests
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Fig. 1. Examples of the annotation results (top view). Ground and non-ground points are displayed in orange and green with shade effect, respectively. Note that, outliers are
merged into non-ground points when displaying. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Statistics of the training set. (a) Different geographical locations (the red stars) of the training samples. (b) The quantity of ground and non-ground points in nine different
terrain scenes. GR and NG denote 𝑔𝑟𝑜𝑢𝑛𝑑 and 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑, respectively.
are extremely sparse. (2) There are several large concave crack areas
covered by vegetation. (3) Many small buildings are scattered on the
terraced slopes.

Note that, our dataset only provides limited samples in typical
terrain scenes, since its main objective is to facilitate the development
of novel DL-based GF pipelines. If necessary, more training or test
samples can be quickly produced according to the method provided
above.

4. Comparative evaluations

Benefiting from the above constructed dataset, we can fairly com-
pare the performance of classic ground filters and DL-based pipelines
250
on a common dataset. We hope this evaluation would be highly comple-
mentary to the experimental comparison of filter algorithms conducted
by ISPRS Working Group III/3 (Sithole and Vosselman, 2004).

4.1. Evaluated techniques

We carefully selected eight representative techniques for evaluation,
including four classic ground filters and four state-of-the-art 3D DNNs.
These methods cover the two mainstream categories as discussed in
Section 2.2, and serve as solid baselines of our OpenGF benchmark.

4.1.1. Compared ground filters
PTD (Axelsson, 2000) is a progressive triangular irregular network

(TIN) densification method. It first constructs a coarse TIN as the
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Fig. 3. Visualization of the validation set. Different blocks correspond to the nine defined terrain types. Each point cloud block is shown in two forms: the annotation result (𝑙𝑒𝑓 𝑡)
and the reference DTM generated from the labeled ground points (𝑟𝑖𝑔ℎ𝑡).

Fig. 4. An illustration of Test I. (a) The raw point cloud (𝑙𝑒𝑓 𝑡), the annotated result (𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡), and the reference DTM generated from the labeled ground points (𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑖𝑔ℎ𝑡).
(b) Examples of typical local areas. I-A belongs to 𝑉 𝑖𝑙𝑙𝑎𝑔𝑒, I-B belongs to 𝑆𝑚𝑎𝑙𝑙 𝑐𝑖𝑡𝑦, I-C and I-D belong to 𝑀𝑜𝑢𝑛𝑡𝑎𝑖𝑛. Two profiles are extracted from points in each local area,
and shown in different boxes.

Fig. 5. An illustration of Test II. (a) The raw point cloud (𝑙𝑒𝑓 𝑡), the annotated result (𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡), and the reference DTM generated from the labeled ground points (𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑖𝑔ℎ𝑡).
(b) Dense outliers highlighted in red from the side view (𝑡𝑜𝑝), and examples of objects in various sizes (𝐵𝑜𝑡𝑡𝑜𝑚). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 6. An illustration of Test III. (a) The raw point cloud (𝑙𝑒𝑓 𝑡), the annotated result (𝑡𝑜𝑝 𝑟𝑖𝑔ℎ𝑡), and the reference DTM generated from the labeled ground points (𝑏𝑜𝑡𝑡𝑜𝑚 𝑟𝑖𝑔ℎ𝑡).
(b) Examples of typical local areas. III-A and III-B are characterized by dense forests. III-C and III-D are characterized by terraced slopes. Two profiles are extracted from points
in each local area, and shown in different boxes.
reference surface using the local lowest points, then classifies and adds
more ground points to this TIN progressively.

PMF (Zhang et al., 2003) is a progressive morphological algorithm.
It first defines a range of sliding windows with progressively changing
sizes, and then separates ground points from non-ground points by the
leverage of multiple morphological operations within these windows.

MCC (Evans and Hudak, 2007) is an iterative multi-scale classi-
fication method. It first adopts a multi-scale strategy in the process
of surface interpolation and a progressive curvature tolerance that
takes into account slope interaction with the points, then iteratively
classifies ground and non-ground points according to surface curvature
thresholds across multiple scales.

CSF (Zhang et al., 2016) is an easy-to-use approach based on
cloth simulation. It first inverts a point cloud and covers the inverted
data with a rigid cloth, then approximates the bare earth’s surface
according to interactions between the rigid cloth nodes and the points
in corresponding areas, and finally discriminates ground points from
non-ground points based on the generated reference surface.

4.1.2. Selected 3D DNNs
PointNet++ (Qi et al., 2017b) is an improved version of Point-

Net (Qi et al., 2017a), the pioneering work of point-based DL architec-
tures which can directly consume raw 3D points without voxelization
or projection operations. To overcome the limitation of characterizing
local structures of PointNet, local geometrical features are extracted in
a hierarchical way in the pipeline of PointNet++.

KPConv (Thomas et al., 2019) is a DL-based pipeline with kernel
point convolution as the core operation, which can learn spatial cor-
relation from point clouds directly. By the leverage of powerful rigid
or deformable kernel points, its semantic segmentation architectures
have achieved state-of-the-art classification performance on multiple
3D benchmarks.

RandLA-Net (Hu et al., 2020) is a DL-based pipeline focusing on
efficient interpretation of large-scale point clouds. By taking advantage
of the efficient random sampling and the lightweight local spatial
encoding, this work has achieved leading efficiency performance on
several point cloud datasets.

SCF-Net (Fan et al., 2021) is a DL-based pipeline with a learnable
module consisting of a local polar representation block, a dual-distance
attentive pooling block, and a global contextual feature block. By
effectively learning spatial contextual features from large-scale point
clouds, it has achieved state-of-the-art performance on two point cloud
benchmarks.
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4.2. Implementations and configurations

Ground filters. The implementations of the PTD algorithm in Ter-
raScan software, PMF algorithm in PDAL library, MCC algorithm in
MCC-LiDAR software, and CSF algorithm in CloudCompare software
were directly adopted. We carefully chose the fine-tuned parameters of
the four filters for each test data, through the trial-and-error strategy.
The key parameters are specified in Table 3.

3D DNNs. The official or other reliable open-source implementa-
tions of the four selected DNNs were adopted in this work (Qin et al.,
2021). Since none of these DL-based pipelines was tailored for the
GF task, some minor modifications were introduced to make them
adapt better to the OpenGF dataset. In the data preprocessing stage,
we regarded outliers as non-ground points to participate in training by
converting label 0 into label 1. Besides, to avoid numerical overflow
in the process of model calculation, the minimum coordinates of each
point cloud block were offset to the origin of coordinates. The grid
downsampling (GD) size (i.e., the grid size for downsampling) of input
point clouds was set to 1.0 m for the best classification performance
through multiple attempts. We also adjusted the hyper-parameters of
the DNNs according to the downsampled point density. In the training
stage, we set the batch sizes of all DNNs as 4 or 2 due to the limited
GPU memory. In the test stage, we used the trained models with the
best overall accuracy (𝑂𝐴) on the validation set.

All experiments were conducted, under Ubuntu 18.04/Windows 10
system, on a workstation PC equipped with an NVIDIA RTX 2080Ti
GPU and an Intel Core i9-9900K CPU @3.60 GHz, 32 GB RAM.

4.3. Evaluation metrics

Earlier works evaluated their GF methods with the metrics pro-
vided in the ISPRS filter test (Sithole and Vosselman, 2004), including
𝑇 𝑦𝑝𝑒 𝐼 (the proportion of ground points misclassified as the category
𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑), 𝑇 𝑦𝑝𝑒 𝐼𝐼 (the proportion of non-ground points misclassi-
fied as the category 𝑔𝑟𝑜𝑢𝑛𝑑), and 𝑇 𝑜𝑡𝑎𝑙 errors (the proportion of all
misclassified points). To facilitate more researchers in related fields
to participate in GF studies, these conventional metrics are converted
into similar or equivalent semantic segmentation metrics in this pa-
per. Specifically, class-wise intersection-over-union (𝐼𝑜𝑈) and 𝑂𝐴 are
introduced. The adapted 𝐼𝑜𝑈s are computed as follows:

𝐼𝑜𝑈1 =
𝑇𝑃1

𝑇𝑃1 + 𝐹𝑃1 + 𝐹𝑃2
, 𝐼𝑜𝑈2 =

𝑇𝑃2
𝑇𝑃2 + 𝐹𝑃2 + 𝐹𝑃1

(1)

where 𝐼𝑜𝑈1 and 𝐼𝑜𝑈2 refer to the 𝐼𝑜𝑈 of 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑 (class 1) and
𝑔𝑟𝑜𝑢𝑛𝑑 (class 2), respectively. 𝑇𝑃1, 𝐹𝑃1, 𝑇𝑃2, and 𝐹𝑃2 denote, re-
spectively, the number of correctly identified non-ground points, the
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Table 3
Fine-tuned key parameters of the compared ground filters. Mb: ‘‘Maximum building size’’, Ia: ‘‘Iteration angle’’, Id: ‘‘Iteration distance’’, Cs:
‘‘Cell size’’, Mw: ‘‘Maximum window size’’, Sd: ‘‘Spacing for scale domain’’, Ct: ‘‘Curvature threshold’’, Cr: ‘‘Cloth resolution’’, Mi: ‘‘Maximum
iterations’’.

Test I Test II Test III

PTD Mb, Ia, Id = 30 m, 40◦, 1 m Mb, Ia, Id = 210 m, 50◦, 1.2 m Mb, Ia, Id = 60 m, 30◦, 0.4 m
PMF Cs, Mw = 0.7 m, 20 m Cs, Mw = 0.7 m, 200 m Cs, Mw = 1 m, 30 m
MCC Sd, Ct = 1 m, 0.3 Sd, Ct = 14 m, 0.3 Sd, Ct = 1 m, 0.3
CSF Cr, Mi = 0.5 m, 800 Cr, Mi = 1.2 m, 500 Cr, Mi = 0.5 m, 500
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Table 4
Evaluation of the selected eight representative methods on Test I.

𝑂𝐴 (%) 𝑅𝑀𝑆𝐸 (m) 𝐼𝑜𝑈1 (%) 𝐼𝑜𝑈2 (%)

PTD 94.82 0.37 91.10 89.00
PMF 90.63 0.51 85.22 79.62
MCC 96.29 0.42 93.63 91.86
CSF 93.07 0.95 88.17 85.64

PointNet++ 97.58 0.25 95.75 94.68
KPConv 97.79 0.20 96.10 95.17
RandLA-Net 96.29 0.29 93.74 91.65
SCF-Net 95.75 0.28 92.90 90.43

number of non-ground points wrongly identified as the category 𝑔𝑟𝑜𝑢𝑛𝑑,
the number of correctly identified ground points, and the number of
ground points wrongly identified as the category 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑.

Furthermore, the filtering performance is also evaluated based on
he quality of the extracted bare-earth surface. For convenience, fol-
owing many previous GF studies (Hu and Yuan, 2016; Duan et al.,
019; Amini Amirkolaee et al., 2022), the root mean square error
𝑅𝑀𝑆𝐸) between the produced and reference DTMs is selected as
nother essential evaluation metric, which is computed as follows:

𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1(𝑃𝑖 − 𝑅𝑖)2

𝑁
(2)

here 𝑁 is the number of valid pixels in the raster DTM. 𝑃𝑖 and 𝑅𝑖
epresent the elevation value of the 𝑖th valid pixel in the produced DTM
nd the reference DTM, respectively.

.4. Performance comparison

The performance of the selected eight representative methods was
ompared qualitatively and quantitatively on the test set of OpenGF
i.e., Test I, Test II, and Test III), which highlights multiple attractive
dvantages of existing DL techniques in the problem of GF.

.4.1. Evaluation on Test I
Test I covers multiple typical terrain types (see Fig. 4), which

akes it a perfect case for evaluating the flexibility of classic ground
ilters and DL-based pipelines in hybrid terrain scenes. Table 4 lists the
uantitative filtering results of the evaluated eight methods on Test I.
ith the help of highlighted errors, we also qualitatively compared the

iltering results in Fig. 7.
In Table 4 and Fig. 7, it can be seen that: (1) In hybrid terrain scenes,

L-based pipelines have an obvious advantage over classic ground fil-
ers in terms of 𝑂𝐴 and 𝑅𝑀𝑆𝐸. Only the worst 𝑂𝐴 (95.75%) achieved
y DL-based pipelines is slightly lower than the best 𝑂𝐴 (96.29%)
btained by classic ground filters. (2) Among DL-based pipelines, KP-
onv achieves the best classification accuracy. Its 𝑅𝑀𝑆𝐸 also surpasses
hose of other 3D DNNs. (3) Among classic ground filters, MCC achieves
he best classification accuracy, but it is inferior to PTD in terms of
𝑀𝑆𝐸. (4) The performance of classic ground filters may vary greatly

n different terrain areas. In contrast, DL-based pipelines have more
daptive performance in hybrid landforms (see Fig. 7).

In addition, according to the 𝐼𝑜𝑈s achieved by different methods
see Table 4), we can further find the following: (1) DL-based pipelines
ave more balanced 𝐼𝑜𝑈 and 𝐼𝑜𝑈 than classic ground filters. A
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1 2 m
alance of 𝐼𝑜𝑈1 and 𝐼𝑜𝑈2 will most probably produce a high 𝑂𝐴 and
a low 𝑅𝑀𝑆𝐸. (2) The performance of DL-based pipelines is generally
more stable than those of classic ground filters in hybrid terrain scenes.
(3) Notably, although PointNet++ is an early work, its performance on
Test I is comparable to that of the more recent and advanced KPConv.
The full potential of PointNet++ has yet to be explored.

Highlighted Strengths of DL: DL-based pipelines are more flexible
than classic ground filters in hybrid terrain scenes.

4.4.2. Evaluation on Test II
A great quantity of high and low outliers exist in Test II (see Fig. 5b),

which provides us a great opportunity to test the effect of dense outliers
on filtering performance. For comparative analyses, the original Test II
was converted into Test II (w outliers) by treating outliers as non-
ground points, and Test II (w/o outliers) by directly removing outliers.
The filtering results of Test II are compared in Table 5 and Fig. 8.

According to the quantitative and qualitative comparisons, it can be
seen that: (1) The adverse effect of outliers on the performance of DL-
based pipelines is much smaller than that of classic ground filters (see
Table 5), despite that denoising prior to filtering may reduce this gap.
(2) For classic ground filters, the influence of outliers on 𝐼𝑜𝑈2 is much
greater than that on 𝐼𝑜𝑈1, which is mainly caused by the low outliers
n Test II (w outliers). (3) On Test II (w/o outliers), PTD achieves a
uch better 𝑅𝑀𝑆𝐸 than all other methods, although its classification

ccuracy is slightly inferior to RandLA-Net.
Highlighted Strengths of DL: The sensitivity of DL-based pipelines

o dense outliers is much lower than those of classic ground filters.

.4.3. Evaluation on Test III
Test III is characterized by extremely sparse ground points under

ense vegetation and terraced slopes with sharply changing elevations,
hich provides us a good chance to compare the robustness of different

epresentative GF methods in complex mountain areas. Table 6 lists the
uantitative filtering results of the evaluated eight methods on Test III.

In Table 6, it can be seen that: (1) In complex mountain areas,
L-based pipelines outperform classic ground filters in terms of clas-

ification accuracy, but they have similar 𝑅𝑀𝑆𝐸 values. (2) Among
L-based pipelines, KPConv achieves the best performance in terms of
ll evaluation metrics. (3) Among the classic ground filters, PMF ob-
ains the best 𝑅𝑀𝑆𝐸 although it has the worst classification accuracy.
n the contrary, PTD achieves the best classification accuracy, but it
as the worst 𝑅𝑀𝑆𝐸.

Moreover, the highlighted misclassifications can be intuitively ob-
erved in Fig. 9. In general, the performance of all the methods is quite
ell in simple terrain scenes (e.g., areas with flat ground/gentle slopes).
omplex landforms, such as areas with dense vegetation, buildings on
erraced slopes, and the discontinuous ground, appear to be the greatest
hallenge. According to the qualitative results in Fig. 9, the reason for
he high 𝑅𝑀𝑆𝐸 of PTD maybe due to the wrong removal of key terrain
oints in ridge areas.
Highlighted Strengths of DL: DL-based pipelines are relatively
ore robust than classic ground filters in complex mountain areas.
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Fig. 7. Qualitative performance of different methods on Test I. The misclassified ground (blue) and non-ground (red) points are overlayed on the extracted bare ground surface.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 5
Evaluation of the selected eight representative methods on Test II with/without outliers.

Test II (w Outliers) Test II (w/o Outliers)

𝑂𝐴 (%) 𝑅𝑀𝑆𝐸 (m) 𝐼𝑜𝑈1 (%) 𝐼𝑜𝑈2 (%) 𝑂𝐴 (%) 𝑅𝑀𝑆𝐸 (m) 𝐼𝑜𝑈1 (%) 𝐼𝑜𝑈2 (%)

PTD 50.32 90.37 50.32 0.00 93.30 0.12 87.64 87.24
PMF 50.87 66.76 50.59 1.15 86.56 1.11 78.50 73.61
MCC 51.84 11.24 51.05 3.25 84.44 1.63 75.39 70.27
CSF 68.36 12.24 59.94 39.90 89.34 1.89 81.08 80.38

PointNet++ 86.40 4.79 75.46 76.63 87.38 4.89 75.19 79.63
KPConv 91.65 2.71 84.46 84.71 91.09 3.87 82.44 84.67
RandLA-Net 94.28 1.84 89.29 89.05 94.96 1.20 90.38 90.42
SCF-Net 90.43 2.58 83.08 81.95 90.91 2.88 83.35 83.32
Table 6
Evaluation of the selected eight representative methods on Test III.

𝑂𝐴 (%) 𝑅𝑀𝑆𝐸 (m) 𝐼𝑜𝑈1 (%) 𝐼𝑜𝑈2 (%)

PTD 97.55 3.24 97.05 87.16
PMF 94.93 0.99 94.09 73.67
MCC 96.97 1.29 96.40 84.12
CSF 95.35 1.77 94.42 78.29

PointNet++ 98.12 3.64 97.72 90.24
KPConv 98.31 0.79 97.94 91.28
RandLA-Net 97.60 1.72 97.14 87.08
SCF-Net 97.23 2.94 96.70 85.18

4.4.4. Computational efficiency
Computational efficiency is another important assessment indicator

for GF techniques. Considering the running time is also decided by the
coding quality, well-engineered software or codes were adopted (see
Section 4.2) for the evaluation of time complexity. Note that, in order to
evaluate as objectively as possible, MCC and PointNet++ were excluded
because their open-source implementations are too time-consuming to
be representative. Besides, the training time of DL-based pipelines is
not reported here since the implementations and training strategies of
different 3D DNNs are not directly comparable.

The running time of six representative methods are shown in Ta-
ble 7. It can be seen that: (1) The inference time of DL-based pipelines
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Table 7
Approximate running time (minute) of six representative methods on the test set.
Notably, the time consumed by fine-tuning of parameters of classic ground filters and
the data preprocessing in DL-based pipelines are both not listed.

Test I Test II (w/o Outliers) Test III

PTD 2.8 0.2 0.8
PMF 0.7 1.5 0.4
CSF 14.6 0.7 7.8

KPConv 2.3 0.2 1.3
RandLA-Net 1.9 0.3 1.2
SCF-Net 2.1 0.3 1.2

increases approximately linearly with the increase of the data size,
while that of classic ground filters is highly influenced by the algorithm
strategy and parameter settings. (2) As the amount of points increases,
the running time of CSF becomes much longer than those of KPConv
and RandLA-Net. (3) Although the amount of data of Test I is about
8 times that of Test II (w/o outliers), the time spent by PMF on
Test II (w/o outliers) is almost 2 times that of Test I. This is mainly
because that PMF needs more iterative processing to filter out the large
buildings in Test II (w/o outliers).

Highlighted Strengths of DL: The variation of the inference time
of DL-based pipelines is more stable than that of classic ground filters
on different amount of data.
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Fig. 8. Qualitative performance of different methods on Test II with/without outliers. The misclassified ground (blue) and non-ground (red) points are overlayed on the extracted
bare ground surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Research issues

As clarifying the remaining challenges is also helpful to stimulate
future research, we further point out several issues faced by general-
izing existing DL techniques into GF tasks with reference to in-depth
experimental analyses.
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5.1. Unsatisfied micro-topography errors

From a practical point of view, correcting a small amount of micro-
topography errors in complex terrain scenes manually often spends
much more time than fixing a large number of apparent misclassifica-
tions in simple terrain scenes. It remains an open question whether the
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Fig. 9. Qualitative performance of different methods on Test III. The misclassified ground (blue) and non-ground (red) points are overlayed on the extracted bare ground surface.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 8
Quantitative results of the selected eight methods in four challenging local areas (I-A, I-C, III-A, and III-D) of the test set.

𝐼𝑜𝑈1 (%) 𝐼𝑜𝑈2 (%) 𝑂𝐴 (%) 𝑅𝑀𝑆𝐸 (m)

I-A I-C III-A III-D I-A I-C III-A III-D I-A I-C III-A III-D I-A I-C III-A III-D

PTD 45.84 91.64 99.08 93.52 84.60 78.68 74.61 87.44 86.38 93.61 99.10 95.53 0.19 0.61 5.83 0.26
PMF 46.82 89.84 98.38 87.62 80.00 70.91 55.10 74.68 83.00 91.86 98.41 90.93 0.16 0.80 1.64 0.80
MCC 50.75 93.25 98.75 93.29 90.88 78.71 66.06 86.91 91.66 94.60 98.78 95.36 0.19 0.59 2.97 0.40
CSF 51.78 88.13 98.06 88.20 91.07 65.39 56.95 80.21 91.85 90.30 98.10 92.02 0.18 2.79 4.67 0.81

PointNet++ 74.84 94.40 99.13 95.46 95.14 83.30 77.96 91.50 95.75 95.62 99.16 96.95 0.18 0.47 9.32 0.67
KPConv 75.08 95.07 99.41 95.74 95.19 85.73 84.37 92.16 95.80 96.20 99.43 97.16 0.16 0.37 1.90 0.67
RandLA-Net 88.62 91.58 99.21 93.98 97.56 71.92 78.14 87.89 97.95 93.07 99.24 95.81 0.13 0.98 5.04 0.36
SCF-Net 88.15 91.64 98.74 93.00 97.43 72.28 66.50 85.88 97.84 93.14 98.77 95.09 0.13 0.59 7.22 1.00
micro-topography errors created by state-of-the-art 3D DNNs are few
enough to be satisfactory.

To determine the impact of these micro-topography errors on the
quality of the extracted bare ground surface, we conducted further
experimental analyses in some challenging local areas of the test set.
Table 8 lists the quantitative results achieved by the selected eight
methods (see Section 4) in four challenging local areas (i.e., I-A, I-C,
III-A, and III-D). Fig. 10 highlights the errors occurring in the extracted
bare ground with different colors.

According to Table 8, it can be seen that: (1) In terms of 𝐼𝑜𝑈s,
the state-of-the-art 3D DNNs have a similar performance trend with
classic ground filters. (2) In local areas dominated by ground points
(e.g., the local area I-A in Fig. 4b), the classification accuracy of the
category 𝑔𝑟𝑜𝑢𝑛𝑑 (i.e., 𝐼𝑜𝑈2) is significantly higher than that of the
category 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑 (see Table 8). Instead, the classification accuracy of
the category 𝑛𝑜𝑛-𝑔𝑟𝑜𝑢𝑛𝑑 (i.e., 𝐼𝑜𝑈1) is significantly higher than that of
the category 𝑔𝑟𝑜𝑢𝑛𝑑 (see Table 8) in local areas with lots of non-ground
points (e.g., the local area III-A in Fig. 6b). In other words, the category
with more points will have a higher classification accuracy, which can
be attributed to the tendency of the evaluated methods to maximize the
𝑂𝐴.

In Table 8 and Fig. 10, we can further see that: (1) Both classic
ground filters and DL-based pipelines have made relatively serious er-
rors in challenging local areas. (2) Although an 𝑂𝐴 of over 98% can be
achieved by all the evaluated methods in the local area III-A of Test III,
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the corresponding 𝑅𝑀𝑆𝐸 achieved by these methods is disappointing
(see Table 8). This means that a high classification accuracy does not
necessarily lead to a high-quality bare ground surface. The quality of
bare ground surface depends more on where misclassifications occur
in the terrain scene (see Fig. 10). (3) All the evaluated DNNs failed
to correctly identify small objects close to the bare ground, although
the classification accuracy exceeds that of classic ground filters. Mean-
while, like classic ground filters, many valuable ground points are
wrongly classified (see Fig. 10) by DNNs. This indicates that existing
DL-based pipelines cannot suppress the occurrence of a small amount
of micro-topography errors.

5.2. Failures to recognize large objects

Large point cloud blocks are usually further partitioned into patches
before feeding into existing DNNs owing to the limited GPU memory.
However, the determination of the patch size is usually a thorny
problem. Small-sized patches will break the geometrical structure of
large objects, while large-sized patches will result in an unbearable
GPU memory consumption. To ensure sufficient spatial coverage and
affordable GPU memory at the same time, a compromise is to feed
a downsampled large-sized input to the existing DNNs. Yet, an exces-
sively large GD size will inevitably lose the details of the original data
and decrease the overall classification accuracy.
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Fig. 10. Qualitative performance of the selected eight methods in four challenging local areas (i.e., I-A, I-C, III-A, and III-D) of the test set. The misclassified ground (blue) and
non-ground (red) points are overlayed on the extracted bare ground surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 9
Quantitative results achieved by the evaluated 3D DNNs on Test II (w outliers) under different input configurations.

Input configuration Performance Efficiency

GD size (m) Constant-volume input (m) Constant-number input 𝑂𝐴 (%) 𝐼𝑜𝑈1 (%) 𝐼𝑜𝑈2 (%) Inference time (s)

PointNet++
0.5 35 (cube length) 8192 82.10 66.54 72.22 –
1.0 50 (cube length) 8192 86.40 75.46 76.63 –
1.5 140 (cube length) 8192 85.82 75.91 74.37 –

KPConv
0.5 25 (radius of sphere) – 89.24 79.67 81.40 58
1.0 50 (radius of sphere) – 91.65 84.46 84.71 20
1.5 75 (radius of sphere) – 89.86 80.17 82.81 12

RandLA-Net
0.5 – 65535 91.89 85.01 84.99 39
1.0 – 65 535 94.28 89.29 89.05 21
1.5 – 65 535 91.28 84.39 83.51 19

SCF-Net
0.5 – 65 536 85.19 76.50 71.40 50
1.0 – 65 536 90.43 83.08 81.95 19
1.5 – 65 536 88.38 79.23 79.12 17
Accordingly, we further conducted comparative experiments to find
a trade-off among the GD size, input coverage, performance as well as
efficiency under the limited GPU memory. Table 9 reports the quantita-
tive results achieved by the evaluated 3D DNNs on Test II (w outliers)
under different input configurations. In addition, the qualitative perfor-
mance achieved by RandLA-Net with different input configurations is
shown in Fig. 11.

In general, it can be found from the quantitative and visualization
results that: (1) The evaluated 3D DNNs show similar responses to
the change in the GD size. As the GD size increases, the performance
of the four DNNs increases first and then decreases. This result is
not unexpected. When the GD size is small (e.g., 0.5 m in Table 9),
the details of the original data can be well preserved, but the small
coverage of inputs may lead to the incorrect recognition of many large
objects (e.g., Fig. 11a). Instead, if the GD size is large (e.g., 1.5 m
in Table 9), the input of DNNs will have a large coverage at the
cost of losing the details of the original data, which may result in
more misclassifications in local areas (e.g., Fig. 11c).(2) When using
an appropriate GD size (e.g., 1.0 m in Section 4.2), all the four DNNs
achieve their best performance on Test II (w outliers) at a relatively fast
inference speed. However, lots of points belonging to large buildings
are still misclassified by most DNNs (see Fig. 8). (3) The performance of
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RandLA-Net surpasses those of other DNNs by a large margin on Test II
(w outliers) (see Table 9), which may attribute to that RandLA-Net
has the capability of processing large-scale inputs in a single pass (Hu
et al., 2020). (4) RandLA-Net fails to correctly identify large buildings
(see Fig. 11a) when using a small grid size (e.g., 0.5 m in Table 9) for
downsampling. This demonstrates that large-scale spatial context is a
key factor for the accurate identification of large objects.

5.3. Insufficient generalization capability

Since DNNs are usually trained on given samples and tend to overfit
a specific data distribution, it is meaningful to explore whether DL
models trained on the OpenGF dataset can be well applied to other GF
datasets (e.g., the ISPRS filtertest dataset).

In this paper, four trained DL models with the best performance on
the OpenGF dataset (i.e., the PointNet++, KPConv, RandLA-Net, and
SCF-Net in Section 4) were used directly to test the 15 reference study
sites of the ISPRS filtertest dataset. Note that, the two datasets differ in
many aspects such as the point density and geographical regions, and
thus may follow a different data distribution.

The quantitative results (𝑂𝐴, 𝐼𝑜𝑈1, and 𝐼𝑜𝑈2) on the ISPRS fil-
tertest dataset achieved by the four trained DL models are respectively
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Fig. 11. Qualitative performance achieved by RandLA-Net on Test II (w outliers) with GD size of (a) 0.5 m, (b) 1.0 m, and (c) 1.5 m. The misclassified ground (blue) and
non-ground (red) points are overlayed on the extracted bare ground surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 10
Cross-dataset generalization performance (𝑂𝐴, %) of four DL models trained on OpenGF.

Reference samples of ISPRS filtertest Avg.

11 12 21 22 23 24 31 41 42 51 52 53 54 61 71

PointNet++ 82.20 95.02 95.96 90.61 86.29 90.90 97.56 83.51 98.01 88.87 62.33 63.07 82.99 86.16 77.60 85.40
KPConv 80.00 95.68 97.82 89.30 87.81 90.03 98.60 84.98 96.47 95.12 88.62 84.11 92.95 96.74 96.87 91.67
RandLA-Net 80.11 94.08 95.64 87.05 82.45 90.35 97.62 82.80 91.53 95.38 94.06 77.10 92.43 97.25 97.21 90.34
SCF-Net 80.05 91.46 94.07 85.49 80.39 87.41 96.56 73.61 86.86 96.51 92.55 72.17 93.63 89.17 54.38 84.95

Elmqvist 77.60 91.82 91.47 91.07 87.72 86.17 94.66 91.24 96.32 78.69 42.05 51.55 78.74 64.13 65.78 80.23
Sohn 79.51 91.61 91.20 92.46 90.16 86.67 93.61 88.73 98.22 90.69 87.96 79.81 94.32 97.01 97.80 90.14
Axelsson 89.24 96.75 95.75 96.37 96.00 95.58 95.22 86.09 98.38 97.28 96.93 91.09 96.77 97.92 98.37 94.96
Pfeifer 82.65 95.50 97.43 93.29 91.78 91.36 98.20 89.25 97.36 96.29 80.36 87.40 94.53 93.09 91.15 91.98
Brovelli 63.04 83.72 90.70 77.72 72.20 63.94 87.08 82.97 93.62 77.19 54.44 47.19 76.11 78.32 65.02 74.22
Roggero 79.20 93.39 90.16 76.22 76.80 76.75 97.86 87.79 95.70 96.99 90.22 82.71 95.04 81.01 94.89 87.65
Wack 75.98 93.39 95.45 92.49 89.03 88.47 97.79 90.99 96.46 88.55 76.17 72.76 92.37 86.53 83.03 87.96
Sithole 76.75 89.79 92.24 79.14 77.29 74.72 96.85 76.33 96.15 92.98 72.47 62.93 93.67 78.37 78.17 82.52

Note that, the 𝑂𝐴s achieved by various ground filters, including Elmqvist (Elmqvist et al., 2001), Sohn (Sohn and Dowman, 2002), Axelsson (Axelsson, 2000), Pfeifer (Pfeifer
et al., 2001), Brovelli (Brovelli et al., 2002), Roggero (Roggero, 2001), Wack (Wack and Wimmer, 2002), and Sithole (Sithole and Vosselman, 2001), are converted from the
corresponding 𝑇 𝑜𝑡𝑎𝑙 errors published in Sithole and Vosselman (2003).
Table 11
Cross-dataset generalization performance (𝐼𝑜𝑈1, %) of four DL models trained on OpenGF.

Reference samples of ISPRS filtertest Avg.

11 12 21 22 23 24 31 41 42 51 52 53 54 61 71

PointNet++ 69.93 90.39 83.34 75.63 75.99 74.00 94.77 72.13 97.22 63.37 19.96 9.17 74.74 18.98 31.29 63.39
KPConv 67.72 91.73 90.71 74.04 79.00 72.38 97.00 76.83 95.23 80.67 45.45 19.04 88.11 50.30 77.14 73.69
RandLA-Net 67.81 89.00 83.10 70.31 72.48 73.07 95.01 73.96 89.27 79.15 58.20 11.39 86.07 52.72 76.43 71.86
SCF-Net 67.18 84.00 78.45 68.03 70.07 67.64 92.85 62.92 84.31 84.17 54.45 12.00 88.60 23.78 19.69 63.88
reported in Tables 10, 11, and 12. In addition, Fig. 12 shows the
qualitative comparison of cross-dataset generalization results achieved
by the four trained DL models on two representative ISPRS samples.

It can be seen that: (1) The cross-dataset generalization performance
of the four trained DL models (see Tables 10, 11, and 12) shows
different degrees of degradation, compared with their intra-dataset per-
formance (see Table 6). (2) In common urban areas (e.g., the sample 31
of ISPRS filtertest), the four trained DL models can still obtain relatively
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good performance, while in some special landforms (e.g., the sample
53 of ISPRS filtertest) the four trained DL models make serious errors
(see Table 10 and Fig. 12). (3) KPConv achieves the best generalization
performance among the evaluated 3D DNNs with an average 𝑂𝐴 of
91.67%, although the accuracy is still lower than that achieved by
some classic ground filters (see Table 10). This demonstrates that the
generalization capability of existing DL techniques is insufficient in the
GF task.
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Fig. 12. Qualitative cross-dataset generalization results achieved by four DL models trained on OpenGF. The misclassified ground (blue) and non-ground (red) points are overlayed
on the extracted bare ground surface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 12
Cross-dataset generalization performance (𝐼𝑜𝑈2, %) of four DL models trained on OpenGF.

Reference samples of ISPRS filtertest Avg.

11 12 21 22 23 24 31 41 42 51 52 53 54 61 71

PointNet++ 69.64 90.65 94.93 86.74 75.79 87.71 95.62 71.24 93.43 86.21 58.43 61.64 65.76 85.70 75.06 79.90
KPConv 65.55 91.70 97.24 84.61 77.49 86.50 97.43 70.08 88.02 93.87 87.43 83.50 85.22 96.63 96.51 86.79
RandLA-Net 65.76 88.64 94.45 81.33 67.35 86.93 95.65 66.37 71.25 94.39 93.52 76.41 85.76 97.16 96.94 84.13
SCF-Net 66.28 84.52 92.43 79.01 63.75 82.92 93.77 52.20 55.36 95.71 91.82 71.07 87.40 88.79 48.63 76.91
6. Discussion and limitations

6.1. Comprehensive discussion

Based on the above extensive experimental comparisons and anal-
yses, the advantages, challenges, and directions of DL in GF can be
summarized as following.

Advantages. In simple terrain scenes, both DL-based pipelines and
classic ground filters can achieve good performance. DL-based pipelines
outperform classic ground filters mainly in the following aspects: (1) In
hybrid terrain scenes, DL-based pipelines have an obvious advantage
over classic ground filters in terms of 𝑂𝐴 and 𝑅𝑀𝑆𝐸. The performance
of classic ground filters may vary greatly in different terrain areas.
In contrast, DL-based pipelines have more adaptive performance in
hybrid landforms. (2) Compared with classic ground filters, the adverse
effect of outliers on the performance of DL-based pipelines is much
smaller. The reason for this result may be that classic ground filters
typically assume the local lowest points as the ground, while DL-based
pipelines do not rely on any prior assumptions when classifying points.
(3) In complex mountain areas, DL-based pipelines outperform classic
ground filters in terms of classification accuracy, although both of them
have poor performance in terms of 𝑅𝑀𝑆𝐸. (4) The running time of
classic ground filters is highly influenced by the algorithm strategy and
parameter settings. The variation of the inference time of DL-based
pipelines is more stable than that of classic ground filters on different
amounts of data.

Challenges. Similar to classic ground filters, state-of-the-art 3D
DNNs often lose key ground points or retain low object points in
difficult local areas, indicating that DL-based pipelines also cannot
suppress the occurrence of a small amount of micro-topography errors.
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In addition, adapting advanced DL techniques for GF brings some new
challenges: (1) Due to the limited GPU memory, most of current 3D
DNNs can only handle small-sized inputs while achieving their best
overall performance, causing the misclassification of large buildings in
the filtering results. This is not surprising considering that large-scale
spatial context is essential for the accurate classification of large ob-
jects. (2) Although state-of-the-art 3D DNNs have multiple advantages
in the GF task, they are usually trained on given samples and tend to
overfit a specific data distribution. Owing to the domain gaps between
different datasets, the cross-dataset generalization performance of the
trained DL models for GF shows different degrees of degradation,
compared with their intra-dataset performance.

Directions. In response to the above challenges, some promising
research directions are suggested as follows: (1) To improve the quality
of the extracted bare ground surface in difficult areas, it is considerably
encouraged to develop effective strategies for micro-topography error
suppression. (2) To accurately recognize large objects, it is urgently
needed to design large-scale spatial context embedding mechanisms.
(3) To improve the generalization capability of DL-based pipelines for
GF, it is necessary to introduce advanced transfer learning techniques.

6.2. Current limitations

Although this work has considered many aspects of GF, there are
still some limitations to address: (1) Since ALS point clouds are typically
collected from high altitudes and have relatively low density, they
have problems describing nearly vertical terrains (Štroner et al., 2021).
Inevitably, our ALS point cloud dataset lacks extremely steep even over-
hanging point clouds. From this point of view, the proposed OpenGF
is a little 2.5D-biased. Meanwhile, since the elevation of overhanging
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point clouds cannot be represented as a continuous function of plane
coordinates, the widely used metric 𝑅𝑀𝑆𝐸 would not make much
sense in this situation (Bulatov et al., 2021). In the future, more datasets
and advanced GF techniques are needed to explore, especially in some
important small-scale applications (e.g., civil engineering and natural
disaster monitoring). (2) Thanks to the proposed OpenGF dataset,
extensive investigations on the GF of ALS point clouds can be con-
ducted here. Nevertheless, due to a lack of available large-scale GF
datasets from other sources (e.g., UAV photogrammetry and MLS), the
applicability of DL-based GF methods to other kinds of point clouds
(e.g., photogrammetric point clouds and MLS point clouds) was not in-
depth explored in this paper. In the future, it is encouraged to conduct
a comprehensive survey on ground extraction from different types of
3D point clouds.

7. Conclusion and outlook

This paper first introduced an ultra-large-scale ALS dataset tailored
for the GF task, which covers about 47.7 km2 and contains nine
different terrain types from four countries worldwide. Then, extensive
comparative evaluations of eight representative methods, including
four state-of-the-art 3D DNNs and four classic ground filters, were
carried out on the proposed dataset, which highlights multiple strengths
of DL techniques in GF. Furthermore, several key issues faced by
generalizing existing DNNs into GF tasks were revealed with reference
to in-depth analyses. Finally, some promising directions for future
research were suggested in response to the identified challenges.

Through a series of comparative experiments, it can be concluded
that: (1) The OpenGF dataset has the capability of effectively training
advanced DL models for GF. (2) Compared with classic ground filters,
DL-based GF pipelines have advantages in many aspects, such as flex-
ibility in mixed terrain scenes, sensitivity to dense outliers, robustness
in complex landforms, and stability in computational efficiency. (3)
The issues faced by generalizing advanced DL techniques into GF tasks
mainly lie in unsatisfied micro-topography errors, failures to recognize
large objects, and insufficient generalization. (4) Promising directions
for developing more advanced DL-based GF pipelines include micro-
topography error suppression, large-scale spatial context embedding,
and advanced transfer learning.

In the future, it is valuable to explore more types of GF datasets
and advanced GF techniques, especially in some important small-scale
applications. In addition, a comprehensive survey on the GF of multi-
source point clouds will be useful for both academic and industrial
communities. We hope this work can serve as a reference for these
interesting directions.
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