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Abstract

Safe Micro Aerial Vehicle (MAV) navigation requires detecting and avoiding

obstacles. For safe MAV navigation, expansion‐based algorithms are effective for

detecting obstacles. However, accurate and real‐time obstacle detection is a

fundamental challenge. Some traditional methods focus on extracting geometric

features from images and applying geometric constraints to identify potential

obstacles. Others may leverage machine learning algorithms for object detection and

classification, using features such as texture, shape, and context to distinguish

obstacles from background clutter. The choice of approach depends on factors such

as the specific requirements of the application, the complexity of the scene, and the

available computational resources. Since obstacles, in reality, take the form of

objects (e.g., persons, walls, pillars, trees, automobiles, and other structures), it is

preferable to represent them according to human comprehension and as objects.

Therefore, the objective of this study is to reflect on the previous research and

address the issues mentioned above by extracting objects from the fisheye image

using a panoptic deep‐learning network. The extracted object regions are, then, used

to identify obstacles with a novel area‐based expansion rate we developed in a

previous study. We compared the accuracy of obstacle detection in our proposed

method to the existing method when moving forward and to the right; thus, we

improved it between 10% and 18%, respectively. In addition, compared with the

existing method, and due to replacing a single object with multiple regions, obstacle‐

detection runtime for forward and right direction is 15.71 and 25.5 times faster,

respectively, and the required match points have decreased by 49% and 55%.
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1 | INTRODUCTION

Obstacle detection is essential for self‐driving Micro Aerial Vehicles

(MAVs). Detection of obstacles can be categorized into image‐based

(Aharchi & Kbir, 2022; Shi et al., 2023), sensor‐based (Goodin

et al., 2021; Wilshin et al., 2023), and hybrid (Beul et al., 2017; Hu

et al., 2020). Image‐based approaches use image information, such as

gray levels (Mashaly et al., 2016), points (Aguilar et al., 2017; Al‐Kaff

et al., 2017), edges (Mashaly et al., 2016), and regions (Badrloo

et al., 2022b). Initially, image‐based approaches employed conven-

tional image processing algorithms for obstacle detection (Al‐Kaff

et al., 2017; Ball et al., 2016, 2017; Chen, 2019; Gharani &

Karimi, 2017; Häne et al., 2017; Jiang et al., 2023; Tsai et al., 2018;

Zhang et al., 2020). Although, real‐time and precise detection of
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obstacles was challenging using conventional image processing

techniques (Badrloo et al., 2022b; Bharati et al., 2018; Liu, Li, Liu,

et al., 2021; Tijmons et al., 2017). Recent studies have demonstrated

significant developments in deep‐learning artificial neural networks,

which have improved image processing quality (LeCun et al., 2015).

Therefore, several obstacle‐detection methods have recently em-

ployed deep‐learning artificial neural networks for obstacle detection

(Gayathri et al., 2023; He et al., 2022; Opromolla & Fasano, 2021;

Pehlivan et al., 2019; Rane et al., 2020). Following this, image‐based

approaches to obstacle detection are studied so that deep‐learning

neural networks can be employed in accurate and real‐time obstacle

detection for MAVs. There are two categories of image‐based

methods: (a) stereo methods and (b) monocular methods (Badrloo

et al., 2022a).

Two cameras are employed in stereo techniques to detect

obstacles (Barry et al., 2018; Grinberg & Ruf, 2021; Sun et al., 2022).

In addition, deep‐learning neural networks have recently been used

for stereo techniques (Dairi et al., 2018; Yu et al., 2023). Evidently,

stereo approaches are computationally inefficient for microproces-

sors in MAVs (Vargas et al., 2021; Zhang et al., 2023). Therefore, a

strong Graphics Processing Unit (GPU) is necessary (Mendes

et al., 2017). Moreover, as these technologies rely on precise system

calibration, any errors can deteriorate the method's reliability with

time (Lin et al., 2020).

Contrary to that, monocular obstacle‐detection algorithms employ

one camera. These techniques detect obstacles by installing cameras

on the sides or front of the autonomous vehicle (Badrloo et al., 2022b;

Lee et al., 2021; Shi et al., 2023). Monocular methods are classified as

follows: appearance‐based (Rane et al., 2020; Talele et al., 2019),

motion‐based (Tsai et al., 2018), depth‐based (Hatch et al., 2021; Ho

et al., 2018), and expansion‐based (Escobar‐Alvarez et al., 2018; Lee

et al., 2021). Recently, these methods have employed deep‐learning

neural networks for real‐time applications (see Section 2). Appearance‐

based approaches are based on a simple assumption and usually

encounter difficulties in the outdoor environment due to the presence

of numerous obstacles and objects (Mashaly et al., 2016). In addition,

motion‐based approaches typically fail to identify frontal obstacles.

Depth‐based approaches generate a complete depth map of the

surrounding environment and use it for obstacle detection (Häne

et al., 2017; Ho et al., 2018). However, when detecting obstacles, we

only want close ones. Hence, a depth map with numerous calculations

is unnecessary. Expansion‐based approaches are one of the easiest

and quickest monocular algorithms that use the expansion of an object

(in sequential frames) to detect obstacles (Badrloo et al., 2022b; Lee

et al., 2021). In fact, they work on a much simpler principle than

methods based on appearance, motion, and depth. For this, we have

chosen this technique to detect obstacles.

Currently, expansion‐based methods are limited because most

rely on conventional image processing techniques, such as point

extraction and matching algorithms (Al‐Kaff et al., 2017; Padhy

et al., 2019; Zeng et al., 2016). As a result of using points and

detecting points of the obstacle, they lose a complete and correct

detection of the obstacle.

To overcome this challenge, Badrloo et al. (2022b) presented new

research that employs image regions for obstacle detection. So that it

captures two sequential images from the front‐mounted camera of the

drone. It segments the regions of the second image and extracts the

points in the first and second images that are matched (Badrloo

et al., 2022b). Then, the area of regions in two sequential frames is

calculated using the matched points. If the area expansion rate exceeds a

specified threshold, the area is considered to be an obstacle (Badrloo

et al., 2022b). Due to the use of conventional image processing

techniques for segmentation, Seeded Region Growing (SRG) (Asmussen

et al., 2015), their research requires a sufficient threshold value for each

image. Additionally, at least three noncollinear match points are required

in each region to calculate the area. Also, extracting and analyzing each

image region in images with various objects is time‐consuming. Although

it divides the image into three equal parts to reduce the obstacle‐

detection time and selects the desired part of the image based on the

direction of the MAV's movement, the usage of a part of the image

restricts the observation space, and the obstacle‐detection time is still

long. Nevertheless, it is capable of detecting an obstacle completely and

accurately to a high percentage. However, due to the high processing

time and the need for a large number of matched points, their method is

unsuitable for use in real‐time applications. While complete and real‐time

obstacle detection is crucial for the safe navigation of MAVs, especially, in

situations where MAVs are traveling through a complex environment

with various objects.

As it can be seen, some traditional methods focus on extracting

geometric features from images and applying geometric constraints to

identify potential obstacles. Others may leverage machine learning

algorithms for object detection and classification, using features such as

texture, shape, and context to distinguish obstacles from background

clutter. The choice of approach depends on factors, such as the specific

requirements of the application, the complexity of the scene, and the

available computational resources. Thus, in continuation of our previous

work (i.e., Badrloo et al., 2022b), in this paper, we have employed a

panoptic segmentation with deep learning (Kirillov et al., 2019) to extract

image objects. The algorithm calculates the expansion rate of the object

across sequential frames and detects the obstacles. Additionally, we used

a fisheye camera that can scan wide parts of the surrounding area. This

camera is positioned in front of MAV. Consequently, the suggested

method improves existing methods and provides more accurate

outcomes. Overall, the main contributions of this study are as follows:

• Several regions are replaced with each extracted object.

• In contrast to conventional segmentation techniques, in panoptic

segmentation (Kirillov et al., 2019), obstacles are extracted

accurately and without merging.

• The need for match points and time for obstacle detection is

reduced significantly.

• The detected obstacle also has a label.

• It uses the entire fisheye image to detect the obstacle.

This article contains five sections. Section 2 explains the related

works for monocular techniques with deep‐learning neural networks.
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The proposed algorithm steps for obstacle detection are described in

Section 3. Experiments evaluating the proposed method and

comparing its findings to those of one of the most effective region‐

based techniques by Badrloo et al. (2022b) are analyzed in Section 4

and followed by limitations in Section 5. Additionally, Section 6 offers

conclusions, future research, and suggestions.

2 | RELATED WORK

In monocular methods, the camera is located around or in front of the

MAV for obstacle detection (Liu, Li, Luo, et al., 2021; Rane et al., 2020;

Shikishima et al., 2022; Sleaman et al., 2023). Then, the camera

captures an image at each instant, and the captured image or

sequential images are processed for obstacle detection. Monocular

methods can be divided into four groups (Badrloo et al., 2022a): (a)

appearance‐based (Rane et al., 2020), (b) motion‐based (Tsai

et al., 2018), (c) depth‐based (Hatch et al., 2021), and (d)

expansion‐based (Lee et al., 2021). Various studies have employed

monocular methods for obstacle detection; initially, conventional

image processing techniques were used for obstacle detection in

these studies (Badrloo et al., 2022b; Liu, Li, Liu, et al., 2021; Padhy

et al., 2019). Recently, studies applied artificial neural networks to

real‐time obstacle identification due to insufficient conventional

image processing techniques for real‐time applications (Hatch

et al., 2021; Lambert et al., 2022; Shi et al., 2023). Among these

four monocular techniques, appearance‐based, depth‐based, and

expansion‐based methods have been the focus of most of the

research that has utilized artificial neural networks for obstacle

detection. Since the goal of our proposed method is complete and

real‐time obstacle detection using monocular methods and artificial

neural networks, we will now discuss the works that studied

monocular methods using artificial neural networks. Appearance‐

based techniques regard the obstacle as a foreground object on a

unified background (e.g., sky or road). These methods require prior

background information, such as edge features (Liu, Li, Liu,

et al., 2021), color (Shih An et al., 2019), texture (Mashaly et al., 2016),

or shape (Liu, Li, Luo, et al., 2021). Detection of obstacles is

performed on a single image. It is decided whether the image pixel

matches the sky or the ground. If not, it is classified as an obstacle

pixel. Also, this procedure is executed on each image pixel. The

outcome is a binary image with white pixels representing obstacles

and black ones representing others (Badrloo et al., 2022a). For

example, using TensorFlow (Abadi et al., 2016) and OpenCV

(Bradski, 2000), Talele et al. (2019) detected pixels distinct from

the ground as obstacles. Similarly, Rane et al. (2020) uncovered

obstacles using TensorFlow. Qiu et al. (2020) have employed You

Only Look Once v3 (YOLOv3) (Redmon & Farhadi, 2018) and deep

Simple Online and Real‐time Tracking to identify and monitor

dynamic obstacles. Moreover, Liu, Li, Luo, et al. (2021) created a

fast feature integration strategy to enhance obstacle detection in

hazy conditions. Liu, Li, Liu, et al. (2021) have introduced a new

technique for semantic segmentation (Kirillov et al., 2019) that finds

obstacles in the water in real‐time. In another study, Du et al. (2022)

introduced the YOLO model for locating and classifying traffic

obstacles. On the basis of the improved YOLOv3 (YOLOv‐4L)

algorithm, Wang et al. (2022) also proposed intelligent obstacle

detection for unmanned electric locomotives. He et al. (2022)

suggested ME Mask R‐CNN to enhance the precision of rail transit

obstacle detection. Kumar et al. (2022) created an integrated

intelligent central processing of the YOLOv3 neural network to

detect obstacles and visualize traffic signs from the input image of a

moving vehicle camera. In general, appearance‐based approaches are

applied to cases where the obstacle is easily distinguishable from the

background. However, this supposition is invalidated in complicated

environments with diverse objects, like, buildings, trees, and people

(Zeng et al., 2016). Although deep‐learning neural networks resolved

this issue by identifying the object and differentiating them with

semantic labels, accurate obstacle detection is currently dependent

on the variety and quantity of training data required by these

networks (Lee et al., 2021). In addition, these methods do not

estimate the distance to the obstacle.

Also, in recent years, several researchers have used artificial

neural networks and deep learning to detect obstacles with better

accuracy (Haseeb et al., 2018; Hatch et al., 2021; Urban &

Caplier, 2021). Initially, once trained, the network can build a depth

map from one image (Lee et al., 2020). Then, similar to a conventional

method (Häne et al., 2017), pixels with a depth less than a certain

threshold are detected as obstacles. Kumar et al. (2018) used a

Convolutional Neural Network (CNN) and four fisheye cameras to

estimate the depth around the automobile. Mancini et al. (2018) have

introduced a new CNN structure called Joint Monocular Obstacle

Detection (J‐MOD2). Then, they used it to estimate the depth and

detect the obstacle. In addition, Haseeb et al. (2018) introduced

DisNet, a multi‐hidden‐layer neural network distance estimator.

Hatch et al. (2021) demonstrated a system for collision avoidance

with obstacles in another study. This system is effective due to the

combination of an emergency policy, a network for collision

prediction, and a high‐level control network. Moreover, Urban and

Caplier (2021) built a subsystem for visually impaired person's

navigation that uses CNN to estimate the location and distance of

the obstacle from the pedestrian. Even though depth estimation

based on a single image and deep learning has been widely

investigated and improved over recent years, it still has serious

limitations that need to be overcome. One of these limitations is

improving accuracy; researchers deepen the neural network for this

goal, increasing memory usage and computational complexity (Ming

et al., 2021). Also, depth estimation based on deep‐learning

techniques always uses several networks, which increases the

processing and memory requirements. The second limitation is the

availability of numerous, high‐quality, and various educational data

(Ming et al., 2021). More training data improve the results of these

approaches. Therefore, the algorithm learns the objects' properties

during training and can reveal them as a result.

Consequently, the need for radiometrically high‐quality training

data is the main issue of these approaches (Lee et al., 2021).
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Also, since we are faced with various and unknown locations in

obstacle detection, providing suitable training data in these situations

would be time‐consuming and costly. In addition, improving depth

calculation in complex environments to meet the requirements of

actual applications is still a hard task (Ming et al., 2021). In general,

depth‐based approaches have a significant volume of calculations

due to the preparation of three‐dimensional (3D) information from

the surrounding environment (Silva et al., 2020). Moreover, due to

the limitation on heavy processing and the requirement for a

powerful GPU, this problem is more severe in MAVs (Pestana

et al., 2019). In obstacle detection, however, there is no need to

generate a depth map from the surrounding places; it is sufficient to

identify the location of obstacles without creating a depth map.

In addition to the above research, expansion‐based methods use

the expansion rate of the object between sequential photos, which is

the same principle that is used to detect obstacles. We know that as

an object approach grows in size; consequently, various expansion

criteria such as points (Aguilar et al., 2017), distances (Padhy

et al., 2019), or regions (Badrloo et al., 2022b) can be used to

estimate the expansion rate of an object in sequential images

(Badrloo et al., 2022a). In expansion‐based techniques, an object is

regarded as an obstacle if its expansion rate exceeds a certain

threshold. For example, Lee et al. (2021) trained the Faster Region‐

based CNN to recognize tree trunks for Unmanned Aerial Vehicle

(UAV) navigation. Then, the obstacle trees are detected by calculating

the tree image height to image height ratio. In addition, the image

width of the trees was employed to locate paths free of obstacles.

However, their research is limited to detecting tree trunks and does

not provide a complete or accurate representation of the obstacle

(Lee et al., 2021; Zeng et al., 2016).

Expansion‐based approaches outperform the two other tech-

niques by recognizing obstacles without the requirement to generate

a depth map of the surrounding areas. In addition, they employ

Speeded Up Robust Features (Mori & Scherer, 2013), Scale Invariant

Feature Transform point scale (Aguilar et al., 2017; Al‐Kaff

et al., 2017), and distance ratio (Padhy et al., 2019), therefore, they

are used in scenarios with a variety of objects. However, if the

texture is smooth and featureless, it is challenging to extract the

necessary features; hence, the identified obstacle points may be

insufficient or include gaps that result in obstacle‐detection failure.

Badrloo et al. (2022b) have used the extraction of image regions

and their rate of area change to detect obstacles. Due to the use of

traditional image processing algorithms for segmentation, the

research mentioned above requires an appropriate threshold for

each image. Additionally, at least three noncollinear match points are

required in each region to calculate the area. Moreover, extracting

and analyzing each image region in images with various objects is

time‐consuming. Furthermore, due to the high processing time and

the necessity for a large number of match points, the method

mentioned above is impractical for real‐time applications. Yet, it has a

high degree of completeness and accuracy in detecting obstacles.

To improve the speed and accuracy of our previous work (i.e.,

Badrloo et al., 2022b), we present a new method in which a panoptic

deep‐learning segmentation is employed to define object regions.

Indeed, we use deep learning for object identification and, like, our

previous paper, the object area expansion rate for accurate obstacle

detection. This approach potentially streamlines the obstacle‐

detection process by reducing the need for manual threshold

adjustments and enhancing the interpretation of obstacles as distinct

entities. In addition to increasing the speed, this could improve

handling complex scenes with respect to other expansion‐based

approaches that may employ feature extraction, image segmentation,

and depth estimation for obstacle detection. The technique could be

versatile and less sensitive to noise and variations in image quality. It

also has more potential for automatic learning and adaptation to

different environmental conditions. Section 3 describes our proposed

obstacle‐detecting mechanism.

3 | METHODOLOGY FRAMEWORK

This section explains the general framework of the proposed

technique (Figure 1). This structure includes three parts: (1) data

acquisition and preparation, (2) object extraction and point matching,

and (3) obstacle detection. The outcomes of applying various steps of

the suggested method to one of the data are displayed in Figure 2.

3.1 | Data acquisition and preparation

This step includes calibrating the fisheye camera in the lab and taking

images. Images captured by a fisheye camera are highly distorted, which

distortion increases with distance from the image's center, particularly at

the image's edges; thus, this distortion decreases the accuracy of the

measurements. Therefore, before performing computations, determining

and applying the calibration parameters to the image coordinates is

essential (Zhou et al., 2022). In this study, calibration is accomplished once

in the lab using a set of chessboard images. These images were captured

from various positions, angles, and distances from the chessboard.

Figure 3 displays an example of images.

Several models and techniques for calibrating fisheye images

have been presented (Huang et al., 2022; Ji et al., 2020;

Scaramuzza, 2014; Urban et al., 2015; Xue et al., 2019). Urban et al.

(2015) improved the method of Scaramuzza (2014) and presented a

novel method for fisheye image calibration with an accuracy of less

than one pixel that is able to model a fisheye camera with a 195°

viewing angle (Urban et al., 2015). As a result, this model has been

incorporated into the proposed methodology. This equation com-

putes camera parameters:

λ g m λ u v f u v λ u v f ρ X λ· ( ) = ·( , , ( , )) = ·( , , ( )) = , > 0,T T
c (1)

where u and v are the point's image coordinates, Xc are the point's

ground coordinates, and λ is the scale parameter. ρ u v= +2 2

represents the radial Euclidean distance between the point and the

center of the image. The projection is typically modeled by the

function f, which depends on the system lens. Urban et al. (2015)

4 | PIRASTEH ET AL.
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approximate it with the Taylor expansion (Equation 2) and make it

applicable to other lenses without requiring prior knowledge. The

goal of calibration is to obtain coefficients a a a, , …, n0 2 .

f ρ a a ρ a ρ( ) = + + + .n
n

0 2
2 ⋯ (2)

After calibration, sequential images are captured while MAV

moves towards the object (Figure 2a,b). The spatial distance between

the images is determined according to the drone's desired speed and

the camera's frame rate.

3.2 | Object extraction and matching object points

In this phase of the proposed method, objects are extracted from the

recent image (i.e., the second image). Also, the matched points in the

first and second images are obtained. We implemented panoptic

segmentation to extract objects (Kirillov et al., 2019). Because the

proposed method aimed to complete obstacle detection, this

algorithm extracts all countable and uncountable image objects (Li

et al., 2020). Thus, it is now the most comprehensive segmentation

approach (Kirillov et al., 2019; Li et al., 2020; Petrovai &

Nedevschi, 2022). The panoptic segmentation is explained below.

Two deep‐learning neural networks, instance segmentation and

semantic segmentation, are merged in panoptic segmentation.

Semantic segmentation allocates a label corresponding to a semantic

class to each pixel, such as a car, house, tree, or similar object. There

are two types of semantic class tags: (a) stuff (including uncountable

nouns, such as road, sky, and sea) and (b) thing. Moreover, instance

segmentation segments pixels with common labels, such as cars,

individually and uniquely and assigns each one a unique identifier

(Kirillov et al., 2019). Consequently, panoptic segmentation allocates

F IGURE 1 The overall structure of the suggested technique. [Color figure can be viewed at wileyonlinelibrary.com]

PIRASTEH ET AL. | 5
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a semantic class label (li) and an instance identifier (zi) to each pixel i

of the image by combining both techniques. Therefore, objects are

extracted entirely separately and without overlap in the panoptic

segmentation method. li is a member of the set l L{0, …, − 1}≔ with

the number L of the semantic class. Also, the zi identifier divides

pixels belonging to a class into separate features. If the pixel class

label is of type stuff, then the class will be uncountable, and the entire

class will be assigned a zi ID. In contrast, distinct pixels of a class‐

labeled thing will have different zi identifiers due to countability

(Kirillov et al., 2019).

For panoptic segmentation, several deep‐learning networks have

been introduced. These networks include UPSNet (Xiong et al., 2019),

FPSNet (de Geus et al., 2020), EPSNet (Chang et al., 2020), VPSNet

(Kim et al., 2020), DenseBox (Hou et al., 2020), Panoptic‐deepLab

(Cheng et al., 2020), and LPSNet (Hong et al., 2021). Also, various

data sets are used to train panoptic segmentation, which includes:

Cityscapes (Cordts et al., 2016) with traffic‐related images containing

8 thing‐type data and 11 stuff‐type data, COCO (Lin et al., 2014) with

80 thing‐type data and 91 stuff‐type data, and Mapillary Vistas

(Neuhold et al., 2017) with traffic‐related images containing 37 thing

F IGURE 2 Process of obstacle detection. (a) The first image, (b) the second image, (c) objects that have been extracted from the second
image, (d) matched points, (e) an object selected, (f) the object's convex hull in the second image, (g) the object's convex hull in the first image,
and (h) the obstacle's binary image. [Color figure can be viewed at wileyonlinelibrary.com]
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type data and 28 stuff type data. The proposed approach should have

used one of these networks and data sets. The proposed obstacle‐

detection approach should be as precise and real‐time as possible and

able to detect numerous environmental objects. This approach

requires using a precise and quick network that has been as fully

trained as possible to detect various objects using the appropriate

data set. In addition, COCO is one of the most commonly used and

difficult data sets for implementing and evaluating panoptic

segmentation outcomes in images with a variety of objects (Hong

et al., 2021; Kirillov et al., 2019; Li et al., 2020; Petrovai &

Nedevschi, 2022; Xiong et al., 2019). Therefore, we select COCO

as our data set. Furthermore, Panoptic‐deepLab networks (Cheng

et al., 2020), FPSNet (de Geus et al., 2020), LPSNet (Hong et al., 2021),

and PanoNet (Chen et al., 2020) are presented in recent research for

fast panoptic segmentation. In addition to the speed parameter, from

existing networks, Panoptic‐deepLab networks (Cheng et al., 2020)

employing COCO data have a better degree of precision (Elharrouss

et al., 2021; Petrovai & Nedevschi, 2022). Therefore, the proposed

method uses a Panoptic‐deepLab network trained with COCO data

to extract objects. The Panoptic‐deepLab design is conceptually

straightforward. So that it is composed of four parts (Cheng

et al., 2020): (1) encoder backbone for use in semantic and instance

segmentation, (2) decoupled ASPP components for semantic seg-

mentation, (3) decoupled decoder components for instance segmen-

tation, and (4) task‐specific forecasting units. In addition, as shown in

Figure 4, the Panoptic‐deepLab network has a single‐shot, bottom‐up

architecture.

After object extraction with the Panoptic‐deepLab network

trained on COCO data (Figure 2c), there will be pixels in the image

that are not segmented and do not belong to any object, resulting in

image gaps. Besides, the lack of variety in the training data for the

network causes this issue. Therefore, similar to Badrloo et al. (2022b),

we applied the SRG segmentation (Asmussen et al., 2015) method to

segment the remaining pixels and fill the gaps.

In addition to extracting objects from the second image, we

obtained the match points from the two images (Figure 2d). The

matching algorithm must be able to extract sufficient matching

points from highly distorted fisheye images. It should also be quick

to accelerate the obstacle‐detection process. For matching, we

employed the Fast Affine Invariant (FAI) image‐matching algorithm

(Rodríguez et al., 2018). This algorithm is independent of the four

affine transformation parameters; therefore, it can extract suffi-

cient points from fisheye images despite severe distortion.

Moreover, extracting and matching interest points in images is

very fast. We first modified their coordinates to eliminate false

match points using the calibration parameters determined in

Section 3.1. Then, because it is insensitive to false match points,

the fundamental matrix is estimated using the LMedS algorithm

(Rusiecki, 2012). After that, we used the fundamental matrix to

remove the false match points. When there are insufficient match

points in an object (i.e., there are fewer than three noncollinear

points), similar to Badrloo et al. (2022b) by applying the Shi‐Tomasi

algorithm (Mu & Li, 2018), the object is searched for more corner

points in both images. Then, after the Least Square Matching

algorithm (LSM) (Wang et al., 2017), matching match corners are

added to the objects' match points. We hope that, as a

result of this procedure, the object now has sufficient match

points. Otherwise, the object is disregarded as nonobstacles.

F IGURE 3 Example of images used to calibrate the fisheye image. [Color figure can be viewed at wileyonlinelibrary.com]
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After extracting objects and their match points, we determined

whether or not they represent obstacles in Section 3.3.

3.3 | Obstacle detection

Testing for obstacle detection is performed on any object containing at

least three noncollinear match points (Figure 2e). To do it, in both images,

the convex hull of the match points is created (Figure 2g,f), and then the

convex hull area is calculated. According to Badrloo et al. (2022b), we

used the convex hull area ratio to determine whether the object should

be considered an obstacle (Equation 3). In Equation (3), C2area area and

C1area area represent, respectively, the convex hull area of the object in

the second and first images. If CRatio( )area exceeds a predefined

threshold, the object is regarded as an obstacle (Figure 2h). Equation (3)

is used to compute the threshold value (Badrloo et al., 2022b).

C C CRatio( ) = / ,area 2area 1area (3)







C

C

H h

H
=

+
.

2area

1area

2

(4)

In Equation (4), h represents the distance between the two

images, whereas H represents the distance of the second image from

the object. Therefore, the minimum distance a UAV must maintain for

obstacle collision avoidance is regarded as a reaction distance Hm,

which is the smallest value of H. This indicates that the ratio of areas

must be greater than or equal to the amount acquired by inserting

H =Hm into Equation (4).

The above procedure is repeated until every pixel in the second

image has been identified as a nonobstacle or obstacle. The ultimate

result is a binary image in which nonobstacle pixels appear black and

obstacle pixels appear white.

4 | EXPERIMENTAL RESULTS AND
DISCUSSION

We analyzed the performance of the presented algorithm in this

section. In the beginning, sequential images were captured with the

fisheye camera. These images have been taken in the frontal and

lateral directions in an environment containing multiple experimental

objects. In each test, a binary image was generated with obstacles

represented by white pixels and nonobstacles by black pixels, and

then the results were evaluated. In addition, the amount of time

spent on each test was investigated.

Moreover, the outcomes are compared with those of Badrloo

et al. (2022b). The assessment was carried out by using the following

equations (Hong & Oh, 2021):

Recall =
TP

TP + FN
× 100%, (5)

Precision =
TP

TP + FP
× 100%, (6)

Overall accuracy =
TP + TN

TP + FP + FN + TN
× 100%. (7)

The variables in the above equations are defined as follows:

TP: The number of pixels that are obstacles and are detected as

obstacles.

FP: The number of pixels that are not obstacles but are detected

as obstacles.

FN: The number of pixels that are obstacles but are detected as

nonobstacles.

TN: The number of pixels that are not obstacles and are detected

as nonobstacles.

F IGURE 4 The framework of the Panoptic‐deepLab network for performing panoptic segmentation (Cheng et al., 2020). [Color figure can be
viewed at wileyonlinelibrary.com]
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A low recall number indicates that obstacles have not been fully

detected and prevent the UAV's safe navigation. The precision

calculates the accuracy of the approach in nonobstacles detection. A

low value for the precision indicates that the nonobstacles are

mistakenly detected as obstacles (Badrloo et al., 2022b).

4.1 | Data

We took 60 pairs of static images with the LG 360 CAM fisheye

camera. The image dimensions and camera field of view were,

respectively, 1260 × 2560 pixels with 206° field of view. Of these, 30

pairs were taken by moving the camera forward (Figure 5), and

another 30 pairs were taken by moving the camera to the sides

(Figure 6). To calculate the expansion of the objects between

sequential images, the images were processed in pairs. To determine

the distance between each pair of images, we assumed a UAV speed

of 10m/s and a capture rate of 30 frames/second. Consequently, the

computed value for h is 33 cm. In addition, we estimated that the

UAV's minimum response time is equal to 250ms. Therefore, Hm is

equal to 2.5 m. Therefore, objects should be regarded as obstacles if

the convex hull area ratio is greater than 1.28. For greater safety, we

used 1.20 as the threshold that defines an object as an obstacle.

Figures 5 and 6 provide examples of images used in conjunction with

their associated outputs for each step, as described in Section 3.

4.2 | Experimental findings

As described in Section 3.1, we calibrated the camera using the Urban

et al. (2015) method, which has an accuracy of less than one pixel and

can model a fisheye camera with a 195° viewing angle (Urban

et al., 2015). Thus, the image range up to a 195° viewing angle was

utilized. The method of Urban et al. (2015) performed calibration with

F IGURE 5 Obstacle detection in the forward movement. (a) The first image, (b) the second image, (c) objects extracted from the second
image, (d) obstacles detected by our approach, (e) the final obstacle binary image, and (f) the actual obstacles binary image. [Color figure can be
viewed at wileyonlinelibrary.com]
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five optimal parameters of a0, a1, a2, a3, and a4. We calibrated the

fisheye lens with an average reprojection error of 0.53 pixels. Table 1

displays the calibration parameter values.

Then, using a Panoptic‐deepLab network trained on COCO data,

the objects were extracted. In addition, the SRG algorithm with a

threshold value of 10 was used to segment the remaining pixels. To

eliminate false match points, we selected 2000 points at random to

compute the fundamental matrix parameters. In addition, the Shi‐

Tomasi algorithm was used to extract extra corner points. The match

corner points were extracted utilizing the LSM algorithm with a

threshold value of 0.5 and a 15 × 15 pixel window size. The final

findings are displayed in Figures 5e and 6e, with nonobstacles

indicated in black and obstacles marked in white.

Table 2 displays the findings of each step for forward and right

movement. As shown in the first row of Table 3, the average number

of objects searched for moving forward and to the right are 8 and 12,

respectively. A large percentage of objects (between 84% and 88%)

have at least three interest match points. Corner matching is used to

determine the corresponding points for the remaining objects (16%

and 9%). As seen in the fourth line of Table 2, there is no object

without at least three corresponding points during forward move-

ment. However, when moving to the right, due to the fisheye image's

poor quality at the edges, sufficient match points could not be

extracted, and 3% of the objects were regarded as nonobstacle.

At this step, it is necessary to evaluate the results and compare

the detected obstacles to the actual obstacles. For this purpose, we

F IGURE 6 Obstacle detection in right movement. (a) The first image, (b) the second image, (c) objects extracted from the second image, (d)
obstacles detected by our approach, (e) the final obstacle binary image, and (f) the actual binary obstacle image. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 1 Calculated calibration parameter values.

Calibration parameters a0 a1 a2 a3 a4

Values −941.45672 100 0.0004287517777 −0.0000002060059 0.0000000001971
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manually generated a binary image of obstacles (Figures 5f and 6f).

Thus, pixels belonging to obstacles with a distance of less than 2.5 m

were manually detected and highlighted with white in the binary

image. The overall accuracy, precision, and recall percentages were

then computed through a comparison of the overlap between the

binary image generated by the proposed technique and the actual

binary images of the obstacle. The average results evaluation and

runtime are displayed in Table 3.

Recall accuracy achieved in the first row of Table 3 clearly shows

that the presented technique successfully detects obstacles such as

buildings and humans and other obstacles such as cars in two forward

and rightward motion modes. Due to the training of the Panoptic‐

deepLab network to detect items, such as humans, buildings, and

cars, these objects can be identified and used for obstacle detection

with simplicity. However, compared with other data, the proposed

algorithm performs poorly in detecting trees, pillars, and other

obstacles, particularly when moving to the right. This problem is due

to the poor training of the Panoptic‐deepLab network to recognize

trees and pillars, which results in their nonidentification. Therefore,

when moving to the right, these objects are positioned at the image's

edge, and due to the severe distortion of fisheye images at the

image's edges, it becomes impossible to recognize these objects.

Future research will be necessary to train the Panoptic‐deepLab

network further to recognize obstacles, such as trees and structures.

In addition, the average runtime of each algorithm step is

provided in Table 4 to study algorithm runtime further. Note that a

computer determined the algorithm's runtime in the Python

environment with these details:

• Processor: Intel Core i7‐8550U CPU @ 1.80 GHz.

• Memory: 12 GB.

• Graphics card: NVIDIA GeForce MX130.

In the first step, the camera is calibrated before flight. In addition,

at the moment of flight, the latest captured image is the second

image, and the image before it is the first; therefore, no time is spent

selecting the sequential images. Therefore, the time required for the

first stage, data acquisition and preparation, is deemed to be zero.

The time presented in Table 4 corresponds to the second (object

extraction and matching object points) and third (obstacle‐detection)

phases.

The fourth, fifth, sixth, and eighth rows in Table 4 demonstrate

that the most time is spent on the second stage and significantly for

interest and corner points matching. If faster matching algorithms can

be used to match fisheye images, the time required by the algorithm

for detecting obstacles will be drastically reduced. In addition, the

runtime reduction of the parts of “object extraction” and “false match

points elimination” can be considered in future research.

Additionally, to evaluate the method in different weather and

lighting conditions, we grouped the images into windy, cloudy, rainy,

snowy, and sunny subgroups. Some sample images are shown in

Figure 7. while the results of this experiment are shown inTable 5. As

can be seen, the best results are obtained in sunny conditions and theT
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worst in rainy and snowy circumstances. This could be due to the

quality of the point matching, which is usually degraded in such

situations. Moreover, it was observed that even in the sunny images,

when the object's surface was too shiny, the quality of the results

was, once again, reduced.

In another experiment, we evaluated the results obtained using

video frames (30 frames/second), taken with the LG 360 Cam. The

camera movement speed was around 1m/s. In this experiment, there

were various obstacles, like, humans, buildings, cars, and trees. The

video was recorded while the objects were approached from

different directions, that is, from left to right and back to front. In

total, 3108 frames with dimensions of 1536 × 1152 pixels were

captured, from which 310 frames (one in 10) were selected for the

evaluations. Using the selected frames (310 frames in total), a 3D

model was constructed using AgiSoft's Metashape photogrammetric

module (Figure 8). To scale the model, several scale bars with

millimeter accuracy were used.

Then one in 10 frames was used to evaluate the quality of the

obstacle detection. Overall, 31 pairs of frames were processed for

obstacle detection, the result of which is shown in Table 6. First, the

TABLE 3 The suggested algorithm's
results.

Motion
direction Parameters

Data

TotalPeople Building Tree Pillar
Other
obstacles

Forward Recall (%) 98 99 92 69 95 91

Precision (%) 97 49 87 93 98 85

Overall accuracy (%) 99 49 93 96 98 87

Time (s) 25 29 22 20 20 7.71

Rightward Recall (%) 98 99 67 68 50 76

Precision (%) 97 88 28 48 49 62

Overall accuracy (%) 99 93 66 82 85 85

Time (s) 21 17 16 19 17 6.64

Note: Bold values indicate average results.

TABLE 4 The average runtime of each proposed algorithm step.

Steps

Runtime in the forward direction for an average of
eight objects (seconds)

Runtime in the right direction for an average of
12 objects (seconds)

Parts Steps Total Parts Steps Total

First

Data acquisition and preparation 0 0 7.71 0 0 6.64

Second

Object extraction 1.20 7.458 1.17 6.259

Region extraction in the gaps 0.60 0.48

Image matching 2.00 1.946

False match points elimination 1.10 0.65

Corner points extraction 0.56 0.68

Considering the presence of three
match points in objects

0.488 0.733

Corner points matching 1.50 0.60

Third

Considering the presence of three
match points in objects

0.244 0.253 0.367 0.381

Creating a convex hull in both images

and calculating its area

0.008 0.012

Obstacle image formation 0.001 0.002

Note: Bold values indicate average results.
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frames were processed to obtain the figures in Table 6, and the

corresponding obstacle binary images (see Figure 5e) were created.

Then, for any identified obstacle, its distance to the corresponding

camera was measured within the constructed 3D model. If the

distance was compatible with that used by our algorithm, that object

was considered a true sample. Otherwise, it was considered a false

sample.

As can be seen, the overall accuracy of the algorithm ranges

between 88% and 94% with an average of 92%, which is better than

those obtained by our fisheye camera still images (see Table 3). This

suggests that the camera movement has not caused much problem,

perhaps because of its stability and small speed motion. Also, in this

video experiment, the results were obtained mainly in day‐light stable

conditions, which, as shown in the previous experiment, was shown

to produce the best results (seeTable 5; the values under the “Sunny”

column).

4.3 | Comparative evaluation

In this part, a comparison is performed between the proposed

method and the algorithm presented by Badrloo et al. (2022b), which

we have improved in our present study. Unlike previous algorithms

(Aguilar et al., 2017; Lee et al., 2021; Mori & Scherer, 2013; Padhy

et al., 2019), the method by Badrloo et al. (2022b) detects obstacle

regions. The algorithm presented in this paper is partly based on that

of Badrloo et al. (2022b). The main difference is the way the object

regions are identified. In 2022, we used a region‐growing algorithm,

while in the current study, we employed the panoptic deep lab

network to identify the objects.

To implement their method, Badrloo et al. (2022b) used the second

image's regions extracted using the SRG algorithm with a gray‐level

threshold value of 10. Additionally, regions with fewer than 300 pixels

were eliminated. Then, the closing morphological operation (Said

et al., 2016) with a threshold value of 20 was used to fill the regions'

gaps. In addition to extracting the regions, the Affine Scale Invariant

Feature Transform (ASIFT) algorithm (Yu & Morel, 2011) was used to

extract the match points from both the first and second frames. In the

absence of at least three noncollinear match points in the regions,

additional match points were extracted using corner matching. Therefore,

matched corner points were extracted using the LSM algorithm (Wang

et al., 2017) with a threshold value of 0.5 and a 15×15 pixel window size.

Then, the area of the regions was calculated using the convex hull of

match points. If the area ratio of the region is more than the threshold

value of 1.20, that region is considered an obstacle. This process was

carried out for all regions. In the end, a binary image of the obstacle was

obtained in which the holes were closed using the closing morphological

operation (Said et al., 2016) with a threshold value of 20. The findings of

implementing the proposed method steps and the Badrloo et al. (2022b)

technique are illustrated in Table 7.

The number of regions extracted by Badrloo et al. (2022b) is

significantly greater than the number of objects extracted by the

method suggested in this paper, as indicated in the first row of

Table 8. Consequently, the proposed method will require fewer

match points for obstacle detection. Therefore, a large number of the

required match points (between 84% and 88%) are provided by the

interest point matching algorithm, while a small number are obtained

by corner matching or remain in the state without match points. Due

to a large number of extracted regions in the Badrloo et al. (2022b)

method, only 35% and 33% of the regions have match points

extracted from the ASIFT algorithm.

Consequently, in our new approach, the need for match points to

calculate the expansion rate has decreased by 49% and 55%. In

addition, in the Badrloo et al. (2022b) method, the match points are

extracted for 32% and 27% of the regions using corner matching.

Also, 33% and 40% of the regions have no match points, so these are

F IGURE 7 A sample of images taken in different weather and lighting conditions. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 The suggested algorithm's results for different weather
and lighting conditions.

Parameters

Different weather and lighting conditions

Windy Cloudy Rainy Snowy Sunny

Recall (%) 30 83 17 18 95

Precision (%) 50 80 23 25 96

Overall
accuracy (%)

90 78 89 89 93
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not checked for obstacle detection. Also, Table 8 compares the

assessment of the findings acquired from the proposed technique

and the method of Badrloo et al. (2022b).

According to the first and fifth lines of Table 8, the proposed

technique has improved the recall accuracy by 10% in forward motion

and 18% in rightward motion compared with the Badrloo et al. (2022b)

method. As a result of the complete extraction of objects in the proposed

algorithm, recall, precision, and overall accuracy all have improved.

However, in Badrloo et al. (2022b) setting the threshold value of the gray

levels to a fixed value for the SRG algorithm may result in mixing the

distance of nearby regions or the generation of numerous small regions.

This, in turn, means the reduction of the accuracy of obstacle detection.

Fortunately, in panoptic segmentation (Kirillov et al., 2019), obstacles are

extracted accurately and without merging.

In the proposed algorithm, compared with the method of Badrloo

et al. (2022b), just a limited number of objects are tested for obstacle

detection (first row of Table 7). For example, it extracts a vehicle or a

person as an object. However, in the method of Badrloo et al.

(2022b), it is possible to extract multiple regions for humans or cars.

As a result, the obstacle‐detection time is significantly decreased. So,

the suggested method decreases the time required to detect

obstacles by 15.71 times during forward travel and 25.5 times during

rightward movement. Table 9 shows the runtime of different steps.

As shown inTable 9, all steps have longer implementation times than

those of the proposed method (seeTable 5). Region extraction and image

matching have the longest implementation times, respectively. Therefore,

the proposed method in this paper has significantly reduced the

implementation time by replacing these two components with (1) the

extraction of objects using the Panoptic‐deepLab method and (2) the

employment of the FAI image‐matching algorithm. It should be reminded

that even though the remaining steps in Table 9 require a significant

amount of implementation time, this time is impacted by a large number

of extracted regions, so time is dependent on the number of regions.

Figure 9 also depicts the comparison of the results for several

used image examples. According to Figure 9, it can be seen that the

obstacles detected using the method of Badrloo et al. (2022b) have

not been fully revealed, and in the majority of cases, far and near

regions have been combined. In contrast, in the majority of instances,

the proposed technique has presented a complete form of obstacles.

5 | LIMITATIONS

In Section 4.2, the results of two experiments were analyzed. In the

initial analysis, the assessments were carried out in a forward motion.

In the second analysis, assessments were carried out in a rightward

F IGURE 8 Model made of video frames. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 The suggested algorithm's results for video.

Parameters

Data

TotalPeople Building Tree Pillar
Other
obstacles

Recall (%) 99 97 95 90 97 96

Precision (%) 88 97 96 95 96 94

Overall

accuracy (%)

93 94 93 88 93 92

Note: Bold values indicate average results.
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motion. Then, the new method was compared with the existing

algorithm (see Section 4.3). In the forward movement test (first test),

all obstacles are identified in detail. Whereas the tree and column

data sets had a lower average obstacle‐detection accuracy than the

other data sets because these obstacles were not properly extracted

due to inadequate training of the Panoptic‐deepLab network. In

addition, the results of the second test demonstrated that the data

sets of the tree, column, and other obstacles have a lower average

recall accuracy than the other data sets. Due to the high distortion of

the fisheye images at the edges, it is difficult to identify these objects

using the Panoptic‐deepLab network, leading to their low recall

accuracy. Also, the missing sufficient match points in the image edges

also reduces the accuracy of obstacle detection.

There are two options for improving the segmentation stage.

First, train the segmentation network model with fisheye photos as

input data to learn the semantic properties unique to fisheye images.

The model could also incorporate fisheye augments to improve its

resistance to distortion and perspective issues. This method,

however, necessitates a huge data set of fisheye photos containing

objects of various sorts. Another solution is to analyze the fisheye

photos at multiple scales at the same time. This method can help

capture finer details of objects in the image's center while also taking

into account contextual information from the distorted edges.

Provided that the implementation of this technique is not time‐

consuming, it may potentially improve segmentation results.

Although our aim in this study was to reduce the time for

accurate and omnidirectional obstacle detection, and it has reduced

the time significantly, it has not yet achieved the desired time. The

high obstacle‐detection time is considerably affected by the point‐

matching element. If faster methods are employed for the matching

part in future studies, the obstacle‐detection time will be significantly

reduced. In addition, a comparison of our method with that of

Badrloo et al. (2022b) revealed that our strategy required significantly

less time to detect the obstacle in all experiments. So that object

extraction reduces the time required for obstacle detection and the

number of required match points. In addition, the suggested method

has relatively good recall, precision, and overall accuracy due to the

use of objects.

Overall, the goal of this paper has been to present a solution for

fast, precise, and omnidirectional obstacle detection. The objects can

be static or moving. The technique is relatively quick and efficient,

requiring only a pair of fisheye images and a simple algorithm. It is

mostly suited for small MAVs, which can only carry light loads and are

vulnerable to approaching obstacles from all directions. Nevertheless,

the presented approach can be used equally on larger vehicles and

worked in indoor and outdoor environments. However, the results'

accuracy depends on the segmentation quality and the matching

process. These two, in turn, are dependent on the strength of the

underlying deep‐learning network and the matching algorithms,

respectively. Also, the method does not work in real‐time. Therefore,

the technique may not be scalable in some practical applications,

especially when the relative camera‐to‐object(s) speed is high. A

solution could be to employ parallel processing units/algorithms to

cope with such conditions.

Moreover, although increasing the speed of obstacle detection

has been the main concern, we have tried to increase the accuracy of

object detection in all directions, as much as possible. The procedure

is precise and reliable, as it does not require depth information or

stereo vision, which can be costly and complex operations. Provided

that the surrounding objects carry appropriate texture, they can

handle different obstacle sizes and shapes. An exception is the

detection of very small or narrow objects. Indeed, the detection of

TABLE 7 The implementation findings of the proposed algorithm compared with those of Badrloo et al. (2022b).

Parameters
Proposed in this study Badrloo et al.'s (2022b)
Forward motion data Right motion data Forward motion data Right motion data

Average number of extracted objects or regions 8 12 150 196

Objects or regions with a minimum of three interest

match points (%)

84 88 35 33

Objects or regions with a minimum of three corner match
points (%)

16 9 32 27

Objects or regions without three match points (%) 0 3 33 40

Note: Bold values indicate average results.

TABLE 8 Results of the suggested algorithm compared with
those of Badrloo et al. (2022b).

Motion
direction Parameters

The method
proposed in this
study

Badrloo
et al.'s
(2022b)

Forward Recall (%) 91 81

Precision (%) 85 56

Overall accuracy (%) 87 77

Time (s) 7.71 121.10

Rightward Recall (%) 76 58

Precision (%) 62 66

Overall accuracy (%) 85 82

Time (s) 6.64 169.32

Note: Bold values indicate average results.
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TABLE 9 The average runtime of each algorithm step.

Steps

Runtime in the forward direction for an average of 150
regions (seconds)

Runtime in the right direction for an average of
196 regions (seconds)

Parts Steps Total Parts Steps Total

First

Data acquisition and preparation 0 0 121.10 0 0 169.32

Second

Region extraction 87.114 116.373 135.406 163.128

Closing the holes 0.150 0.196

Image matching 15.387 11.726

False match points elimination 1.000 1.150

Corner points extraction 0.570 0.680

Considering the presence of three
match points in regions

9.152 11.970

Corner points matching 3.000 2.000

Third

Considering the presence of three

match points in regions

4.575 4.727 5.994 6.192

Creating a convex hull in both

images and calculating its area

0.150 0.196

Obstacle image formation and
closing the holes

0.002 0.002

Note: Bold values indicate average results.

F IGURE 9 Our findings compare to those of an existing method (Badrloo et al., 2022b). (a) The existing method displays the results with
cyan regions, (b) the binary image acquired by the existing method, (c) the obstacle detected by our method, and (d) the final binary image of the
obstacle produced by our method. [Color figure can be viewed at wileyonlinelibrary.com]
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very small and/or narrow objects is still an open problem and should

be addressed in future research.

6 | CONCLUSION

Among the several approaches for detecting obstacles, expansion‐

based methods have simpler computations. However, they still face

challenges in the speed and accuracy of obstacle detection. Recently,

to enhance the accuracy and completeness of obstacle identification,

a method (Badrloo et al., 2022b) has been introduced that uses the

image regions and the match points within them to calculate the

expansion rate between sequential images. The method mentioned

above requires an appropriate threshold value to extract image

regions and at least three noncollinear matching points for each

image region. In addition, it takes time to evaluate a large number of

regions in images containing multiple objects. Therefore, in the

proposed algorithm, image objects are extracted. This is achieved by

extracting objects from the latest image and matching points from

both images. Then, using the match points, the objects' area is

calculated in both images; if the area ratio of the object is more than

the threshold value, it is termed an obstacle. Several tests with

images taken from the front and sides were carried out to assess the

proposed technique. The findings indicated that the proposed

technique is between 76% and 91% accurate at detecting obstacles.

Moreover, in a separate experiment, our results were compared

with a robust region‐based obstacle‐detection method presented by

Badrloo et al. (2022b). Compared with our previous work (Badrloo

et al., 2022b), the proposed technique improved recall accuracy by

10% for forward movement and 18% for right movement on average.

Moreover, the proposed strategy has reduced the obstacle‐detection

time by 15.71 times at forward motion and 25.5 times at rightward

motion.

High distortion in fisheye images at the edges makes it difficult to

identify objects using the Panoptic‐deepLab network, resulting in low

recall accuracy. The missing match points in the image edges also

reduce obstacle‐detection accuracy. The network model can be

trained with fisheye photos to improve segmentation and learn

unique semantic properties. Incorporating fisheye augments can

improve resistance to distortion and perspective issues. Finally,

analyzing fisheye photos at multiple scales can capture finer details

and contextual information simultaneously from distorted edges, and

potentially improving segmentation results.
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