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Domain Adaptation for Object Classification in
Point Clouds via Asymmetrical Siamese and
Conditional Adversarial Network

Huan Luo™, Lingkai Li, Lina Fang
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Abstract— Nowadays, researchers have developed various deep
neural networks for processing point clouds effectively. Due
to the enormous parameters in deep learning-based models,
a lot of manual efforts have to be invested into annotating
sufficient training samples. To mitigate such manual efforts
of annotating samples for a new scanning device, this letter
focuses on proposing a new neural network to achieve domain
adaptation in 3-D object classification. Specifically, to minimize
the data discrepancy of intraclass objects in different domains,
an Asymmetrical Siamese (AS) module is designed to align the
intraclass features. To preserve the discriminative information
for distinguishing interclass objects in different domains, a Con-
ditional Adversarial (CA) module is leveraged to consider the
classification information conveyed from the classifier. To verify
the effectiveness of the proposed method on object classification
in heterogeneous point clouds, evaluations are conducted on three
point cloud datasets, which are collected in different scenarios by
different laser scanning devices. Furthermore, the comparative
experiments also demonstrate the superior performance of the
proposed method on the classification accuracy.

Index Terms—3-D object classification, asymmetrical Siamese
(AS) network, domain adaptation, feature alignment, point
clouds.

I. INTRODUCTION
ECENT advances in deep learning technologies have
enlighten researchers to develop a variety of neural net-
works for processing point cloud data. These neural networks
have been shown to be effective at assisting machine in under-
standing the geometric shapes of 3-D objects [1], [2]. How-
ever, manually annotating massive samples for training neural
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networks is often time-consuming and labor-intensive [3].
In addition, due to the data discrepancy in the heterogeneous
point clouds which are collected by different laser scanning
systems, training datasets need to be created for each type of
laser scanning system [4].

To ease the annotation burden for a new task, domain
adaption, as a branch of machine learning, is studied exten-
sively [5]. The goal of domain adaption is to transfer knowl-
edge from a source domain containing sufficient annotated
samples to a target domain where annotated samples are scarce
or unavailable. Some pioneering studies focused on proposing
domain adaption approaches to process the heterogeneous
point clouds [6], [7], [8]. To achieve point cloud representation
across different domains, a domain adaptation network was
proposed to simultaneously implement global-level and local-
level feature alignments [6]. Inspired by domain adaptation
in 2-D images, a multihead network was designed to inte-
grate the classification loss and deformation reconstruction
loss for globally aligning feature descriptions, which achieves
self-supervised learning in point cloud classification [7].
To reduce the domain discrepancies caused by different laser
scanners, a local adversarial learning is proposed to leverage
the local surface prior to assist the semantic label transfer
across different domains [8]. Different laser scanning systems
inevitably induce the measured point clouds with different
point densities and different point distributions, resulting in
severe intraclass variations in heterogeneous point clouds.
Meanwhile, the local similarities of objects in different sce-
narios lead to the interclass similarities in heterogeneous point
clouds. However, current studies neglect to explicitly preserve
the intraclass similarities and interclass dissimilarities, both
of which influence the performance of domain adaptation in
heterogeneous point clouds.

To jointly consider the intraclass similarities and inter-
class dissimilarities into domain adaptation of heterogeneous
point clouds, this letter mainly focuses on proposing an
Asymmetrical Siamese and Conditional Adversarial Network
(ASCA-Net). The new ASCA-Net contains two main com-
ponents, i.e., Asymmetrical Siamese (AS) module and Con-
ditional Adversarial (CA) module. Specifically, on the one
hand, we propose to design an AS module to minimize the
discrepancy of intraclass objects by aligning their latent space
extracted from source domain and target domain to be as close
as possible. The discrepancy minimization of intraclass objects
from different domains is beneficial to preserve the intraclass
similarities in the domain adaptation procedure. In addition,
due to the scarce or unavailable supervised information in tar-
get domain, we propose an unsupervised method to effectively
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Fig. 1.

Network architecture of the ASCA-Net. With the point cloud objects from the source and target domains as inputs, a pretrained backbone network

is first used to extract the initial features. Then, an AS module is trained to minimize the feature discrepancy of intraclass objects. Finally, the CA module
accomplishes domain adaptation by preserving the discriminative information for interclass objects.

find the intraclass objects from different domains. On the other
hand, we propose to design a CA module to consider the
discriminative information conveyed from the classifier pre-
dictions into domain adaptation procedure. Such discriminative
information largely assists in guaranteeing the dissimilarities
of interclass objects in the domain adaptation procedure.
Intuitively, intraclass similarities and interclass dissimilarities
can largely improve the performance of object classification
in heterogeneous point clouds. The main contributions of this
letter to classify objects in heterogeneous point clouds can be
summarized as follows.

1) To jointly and explicitly preserve the intraclass similar-
ities and interclass dissimilarities, we propose a new
domain adaptation network called ASCA-Net, which
can effectively classify objects in heterogeneous point
clouds.

2) To minimize the discrepancy of intraclass objects from
different domains, we design an AS module to lever-
age AS network to align the intraclass features in an
unsupervised manner.

3) We conduct extensive experiments on three datasets
collected by different laser scanners. The comparative
experiments demonstrate the superior performance of
ASCA-Net over other methods on classifying objects
in heterogeneous point clouds.

II. METHODOLOGY

Fig. 1 presents the network architecture of the ASCA-Net
to achieve object classification across different domains. To be
specific, the inputs of the ASCA-Net contain 3-D objects from
a source domain Dy = {(x7, yf)}fvz"o and a target domain D, =
{(xﬁ)}f\’:’ o- Here, x; and y; represent point cloud object and its
class label, respectively. Ny and N, are the number of objects
in source domain Dy and target domain Dy, respectively. Each
object consists of N points, where each point is represented
by 3-D coordinates (x, y, z). The goal of the ASCA-Net is to
leverage the labeled objects in source domain D; to predict the
class label y’ for the unlabeled object x’ in target domain D,.
As shown in Fig. 1, the ASCA-Net is composed of three
components: backbone network, AS module, and CA module.

Specifically, we first pretrain a backbone network to gener-
ate the initial feature representations of objects from the source
and target domains (see Section II-A). Then, the AS module is
trained to minimize the discrepancy between intraclass objects
in heterogeneous point clouds (see Section II-B). Finally, the
CA module is proposed to accomplish adversarial domain
adaptation by considering conditional information conveyed
from classifier (see Section II-C).

A. Backbone Network

The backbone network is responsible for extracting initial
features for each object in different domains. Any off-the-shelf
networks for point cloud feature extraction can be used as the
backbone network. Here, we leverage RandLA-Net [9] as
our backbone network to gradually aggregate local features
for object description. The backbone network consists of four
dilated residual blocks, each of which stacks multiple local
spatial encoding units and attentive pooling units with a skip
connection. Specifically, local spatial encoding unit encodes
neighboring geometries of points which are selected by the
random sampling. Attentive pooling unit aggregates the set of
neighboring point features by automatically assigning different
weights according to the attention mechanism. After applying
dilated residual blocks, we aggregate features to one point
feature, Fi, for globally describing an object.

B. AS Module

To reduce the feature dissimilarities among the intraclass
objects in heterogeneous point clouds, we propose an AS
module to conduct feature alignment in the feature space.
The goal of AS module is to push the latent feature space
of intraclass objects in source and target domains to be as
close as possible.

Inspired by the AS network [10], we design an AS module
consisting of two encoders and a metric learning mechanism.
We use MLPs as the encoders and the two encoders have an
identical network architecture. Specifically, an encoder E; for
source domain is first trained by adding a softmax layer to
implement the classification task with the supervised informa-
tion y*. Once the training procedure terminates, the weights
of the encoder will be frozen and the encoder E; is able to
project each object in source domain into a high-dimensional
codeword F®. Then, an encoder E, also maps the object
from target domain into a high-dimensional codeword F'.
Here, the lengths of F* and F' are identically set to 1024.
We hope that the distribution of intraclass objects in differ-
ent domains should be consistent by optimizing the feature
matching distance. Notably, we only update the weights of the
encoder in E; using a feature matching loss in the training
stage. In the feature matching loss, the similarity between
two high-dimensional feature vectors can be calculated by
L2-Norm as follows:

N,
Las="x")=D |F = F'l, (1)

i=0
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where F* and F' represent the encoded features of objects
x* and x', respectively. Note that the smaller value of Lgy
implies the smaller discrepancy between intraclass objects in
different domains.

To effectively calculate the feature matching loss in (2),
we need to find the pairwise intraclass objects in advance. Due
to the scarce or unavailable supervised information provided in
target domain, we propose an unsupervised method to search
the pairs of intraclass objects which should be mapped in
the same region. Concretely, in the source domain, we first
calculate the feature centroid, F?, for class c as

s 1 S
F. = ﬁs Z Finit,i )
x; €Dy

s

where Fj ; is the object x;’s initial feature representation
obtained by the backbone network.

After that, the Euclid distance between each object in target
domain and the feature centroid, F?, is computed. According
to the Euclid distance, the pairwise objects (Fy, Fi; ;) can be
determined by searching the nearest centroid of the object, x}.
Finally, we can optimize the matching loss function to mini-
mize the distance between source domain and supervised tar-
get domain in different feature spaces. Note that, the pairwise
intraclass objects are dynamically determined according to the
updated parameters of backbone network.

C. CA Module

To preserve discriminability for intraclass objects from dif-
ferent domains, we design a CA module to condition domain
adaption on the discriminative information conveyed in the
classifier predictions. Inspired by Conditional Domain Adver-
sarial Network (CDAN) [5], the CA module contains three
components: generator G, discriminator D, and classifier C.
The generator G is built by a three-layer MLP, and it is used
to generate transferable feature representations to confuse the
discriminator. The discriminator D aims to distinguish which
domain an object comes from. The classifier C predicts class
labels for objects. Hence, the CA module can be represented
as a minimax optimization problem with two loss terms, i.e.,
the classification loss, L¢, and the discrimination loss, Lp.

Specifically, the classification loss, L¢, which is used to
train classifier C, is calculated by the labeled objects from
source domain, and it can be formulated as follows:

Le= > L(C(g).y) 3)

x}eDy

where L(-, -) computes the cross-entropy loss. g; is the feature
representation of object x?, which is obtained by generator G.
C(-) is the class probability predicted by classifier C.

The discrimination loss, £p, is used to train the discrimi-
nator, D, on objects with the domain information, and it can
be formulated as follows:

Lp= > L(D(g, C@)D,Y:) )

x;€eDs U D,

where Y; is the label indicating whether the object x; belongs
to source domain or target domain. [-, -] is an operation that
concatenates two vectors. Thus, the inputs of discriminator
D contain not only the feature representations generated
by G, but also the classifier predictions obtained by C,
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which provides the discriminative information to distinguish
intraclass objects during the domain adaptation. The design of
Lp constrains the generator G to generate the discriminative
features for interclass objects and to preserve the consistent
features for intraclass objects.

The training procedure of CA module iteratively implements
a minimax game of two stages described as follows.

1) Train the generator G on source domain to minimize
the classification loss, L¢, while maximizing the dis-
crimination loss, £p, on source and target domains for
confusing the discriminator G. The minimization of L¢
and maximization of £ enable generator G to generate
the discriminative features for interclass objects.
Formally, we formulate the objective function as follows:

min Lca = rg}g(ﬁc — ALp) (5

where 1 is a hyperparameter which controls the weights
of the classification loss and the discriminator loss.

2) Freeze the trained generator G and update the weights
of the discriminator D to minimize the discrimination
loss, Lp, as

mgn Lp. (6)

The minimization of £, improves the ability of dis-
criminator D to distinguish whether the feature belongs
to source domain or target domain. The total loss of
ASCA-Net is formulated as follows:

Liotal = Las + aLca (7

where the factor a controls the weights of Las and Lca.

III. EXPERIMENT
A. Dataset

To verify the effectiveness of the proposed ASCA-Net on
object classification in heterogeneous point clouds, extensive
experiments are conducted on three datasets: Semantic3D [11],
Xiamen [12], and Meizhou. Specifically, Semantic3D dataset
is acquired by a Terrestrial Laser Scanning (TLS) system in
urban outdoor scenes. Xiamen dataset is collected by the Reigl
VMX450 Mobile Laser Scanning (MLS) system in Xiamen
city with two laser scanners, and Meizhou dataset is collected
by the Reigl VMX450 MLS system in Meizhou island with
only one laser scanner. As shown in Fig. 2, intraclass objects in
different datasets have obvious discrepancies. Table I presents
the number of objects in five classes: vehicle, tree, traffic
sign, light pole, and other. To evaluate the performance of
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TABLE I
NUMBER OF OBJECTS IN THREE DATASETS
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TABLE 11
CLASSIFICATION RESULTS ON DIFFERENT DATASETS

. traffic | light . traffic  light
vehicle | tree sign pole other | Total Method | vehicle tree sign pole other Avg
Semantic3D 67 51 18 25 20 161 Precision 992 .899 730 750 666 807
Xiamen 91 339 118 53 53 601 StoX Recall 903 .999 703 .800 615 804
Meizhou 132 178 128 123 47 561 F1-Score 945 947 17 174 639  .805
Precision .861 958 .639 877 .681 .803
. . . . . XtoS Recall 958 .804 .846 939 445 798
object classification in heterogeneous point clouds, we conduct Fl-Score | 907 874 728 907 538 80l
experiments on six domain adaption tasks, i.e., Semantic3D Precision | .868  .818 739 795  .805 .805
to Xiamen (SvsX), Xiamen to Semantic3D (XvsS), Meizhou MtoS | Recall 958 991 715 952 408 805
to Semantic3D (MvsS), Semantic3D to Meizhou (SvsM), 51'S°9re 'géé 'ggg 'ggg gg’g géé 'ggg
. . . . recision . . . . . .
Xiamen to Meizhou (XvsM), and Meizhou to Xlamen (MvsX). StoM Recall 982 999 867 939 995 956
In each task, we treat two datasets as source domain and target Fl-Score | 988 999 899 908 985 .956
domain, respectively. Precision | .999 994 983 994 900 .974
XtoM Recall .887 999 992 987 1.00 973
F1-Score 939 997 988 990 948 973
B. Experiments Setup Precision | 987 820 735 910 915 873
. MtoX Recall 909 999 825 927 602 .852
To train our proposed ASCA-Net, we augment the used Fl-Score | .946 901 .778 918 726  .862
datasets by the rotation operation and use Farthest Point
Sampling (FPS) to sample objects with N points. TABLE III

1) Backbone Network: To obtain initial features for objects,
the used RandLA-Net contains four dilated residual blocks,
which gradually aggregate the local features. Specifically, the
size of the point clouds are sampled in every dilated residual
block, ie., [K — (N/5) — (N/5%5) — (N/5%5%6) —
(N/5 %5 % 6 % 10)]. Meanwhile, the dimension of the feature
to describe an object is increased, i.e., (3 —> 64 — 256 —
512 — 1024).

2) AS Module: The AS module consists of two encoders,
each of which is built by a two-layer MLPs with 1024 nodes
in each layer.

3) CA Module: In the CA module, the generator G is built
by a three-layer MLP of (512 — 256 — 64); the discriminator
G is built by a three-layer MLP with 1024 nodes in each
layer; the classifier C is built by two fully connected layers
of (32 — nglass), Where ncpgs is the number of classes in the
classification task.

We implement the proposed ASCA-Net with Tensorflow
and set the optimizer to Adam Optimizer. The learning rates
of all modules and weight decay are set at 0.0001 and 0.05,
respectively. We empirically set the factor a in (7) at 1.

C. 3-D Object Classification in Heterogeneous Point Clouds

The quantitative evaluations of our proposed ACSA-Net
on object classification in heterogeneous point clouds are
reported in Table II. As shown in Table II, the ACSA-Net
achieves the average F'1-Score on the six tasks at 0.805, 0.801,
0.805, 0.956, 0.973, and 0.862, respectively. This exhibits
that our proposed ACSA-Net can effectively align objects
from different domains in the feature space. In addition, the
precision for vehicle, tree, traffic sign, and light pole reaches
an average of 0.950, 0.915, 0.793, and 0.867, respectively. The
precision of vehicle and tree is a little higher than that of traffic
sign and light pole. This is because more severe interclass
similarities and intraclass discrepancies exist in traffic sign
and light pole.

To demonstrate the superiority of our proposed method,
we make a comparison with two methods, i.e., the MCD
method [13] and the PointDAN method [6]. As shown in
Table III, we can see that the average precision of our proposed

AVERAGE CLASSIFICATION PRECISION ON DIFFERENT DATASETS

StoX XtoS MtoS StoM XtoM MtoX
MCD [13] 650 756 740 705 813 798
PointDAN [6] 724 720 764 152 851 .809
no-AS&CA .623 769 .644 .640 179 .682
no-AS 632 785 .668 780 .800 721
ASCA-Net (DGCNN) | .770 772 777 945 972 .860
ASCA-Net (RandLA) | .807 .803  .805 957 974 873

ASCA-Net preforms higher than MCD and PointDAN meth-
ods, which proves that joint consideration of intraclass similar-
ity and interclass dissimilarity can improve the performance of
domain adaption. To further evaluate the effectiveness of dif-
ferent proposed modules in the proposed ASCA-Net, we also
compare it with two methods, i.e.: 1) the RandLA method [9]
which is adopted as our backbone network (no-AS&CA) and
2) the CA domain adaptation method [S] which removes the
AS module in the ACSA-Net architecture (no-AS); As shown
in Table III, no-AS&CA method performs poor on classifying
objects in target domain when the supervised training infor-
mation only comes from source domain. This reflects that
the objects in different domains have large data discrepancy,
and the classification model only trained on source domain
lacks of sufficient generalization to perform well in the target
domain. The superior performance of our proposed method
demonstrates that our proposed ACSA-Net can effectively
eliminate the inconsistency in the intraclass objects and pre-
serve discriminative information in the interclass objects from
different domains. In addition, we implement the experiments
on the ASCA-Net by replacing the backbone network with
DGCNN [14]. Although its performance slightly decreases due
to the lower classification precision of DGCNN, the compara-
ble results of ASCA-Net (DGCNN) in Table III demonstrate
the effectiveness of our proposed network architecture.

D. Visualization

As shown in Fig. 3, we use t-SNE to visualize the fea-
ture distributions of the XvsM task achieved by different
methods, i.e., no-AS&CA, no-AS, and ASCA-Net methods.
Furthermore, we add some point cloud objects in the t-SNE
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Fig. 3. t-SNE visualization of different methods applied in the XvsM task.
Object in source domain and target domain is represented as dot and cross,
respectively.
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Fig. 4. Impact of hyper-parameter A on the object classification accuracy.

visualization to better exhibit the domain adaption results.
For the no-AS&CA method and the only-CA method, the
objects in the source and target are discretely distributed in the
feature space and across-domain features are not well-aligned.
As shown in Fig. 3(c), the proposed ASCA-Net better aligns
intraclass objects and better discriminates interclass objects in
different domains than other methods, which guarantees the
superior performance on object classification in the heteroge-
neous point clouds. Additionally, the light pole in region 1 is
misclassified as signpost because of similar geometric shapes.

E. Parameter Sensitivity Analysis

To examine the impact of the hyper-parameter 4 on the
performance of 3-D object classification in heterogeneous
point clouds, the evaluations on the XvsS task are performed
on the following configurations: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8. As shown in Fig. 4, with the value of A increasing
from 0.2 to 1.0, the average accuracy gradually increases.
The average accuracy reaches the peak when A equals to 1.0.
When the value of /4 is larger than 1.0, the average accuracy
decreases slowly. This means that when conducting the feature
alignment in the CA module, the classification loss and the
discriminator loss are equally important. Therefore, we set the
hyper-parameter 4 to be 1.0 in the experiments.

F. Computational Complexity

In the experiments, we implemented the ASCA-Net in Ten-
sorflow using Keras API, and executed it on a HP workstation
with 8 Intel cores of 2.1-GHz, 128 GB memory, and a P100
graphics card. To analyze the time complexity of our proposed
ASCA-Net, we recorded the running time of each module.
During the training phase, the backbone network, AS module,
and CA module take an average of 21.3, 1.5, and 4.2 min,
respectively. During the testing phase, the ASCA-Net takes
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only 8.2 ms to classify an object. Moreover, we also recorded
the running time of other methods for comparison. Specifi-
cally, the training phase of PointDAN and MCD methods takes
86.7 and 64.2 min, respectively. In addition, for classifying an
object, the PointDAN and MCD methods take 10.4 and 10 ms,
respectively. This demonstrates that our proposed method
requires less time in the training and testing phases.

IV. CONCLUSION

This letter has proposed the ASCA-Net, which is an efficient
network architecture to solve 3-D object classification in the
heterogeneous point clouds. To minimize the data discrep-
ancy of intraclass objects in different domains, we design
an AS module to implement the intraclass feature alignment.
To preserve the discriminative information for guaranteeing
the dissimilarities of interclass objects in different domains,
a CA module is integrated into our network to consider the
classification information conveyed from classifier. The pro-
posed ASCA-Net has been evaluated on six tasks built on three
different point cloud datasets. The experimental evaluations
have exhibited that the proposed ASCA-Net can perform well
on object classification in heterogeneous point clouds.
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