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Abstract— Nowadays, researchers have developed various deep1

neural networks for processing point clouds effectively. Due2

to the enormous parameters in deep learning-based models,3

a lot of manual efforts have to be invested into annotating4

sufficient training samples. To mitigate such manual efforts5

of annotating samples for a new scanning device, this letter6

focuses on proposing a new neural network to achieve domain7

adaptation in 3-D object classification. Specifically, to minimize8

the data discrepancy of intraclass objects in different domains,9

an Asymmetrical Siamese (AS) module is designed to align the10

intraclass features. To preserve the discriminative information11

for distinguishing interclass objects in different domains, a Con-12

ditional Adversarial (CA) module is leveraged to consider the13

classification information conveyed from the classifier. To verify14

the effectiveness of the proposed method on object classification15

in heterogeneous point clouds, evaluations are conducted on three16

point cloud datasets, which are collected in different scenarios by17

different laser scanning devices. Furthermore, the comparative18

experiments also demonstrate the superior performance of the19

proposed method on the classification accuracy.20

Index Terms— 3-D object classification, asymmetrical Siamese21

(AS) network, domain adaptation, feature alignment, point22

clouds.23

I. INTRODUCTION24

RECENT advances in deep learning technologies have25

enlighten researchers to develop a variety of neural net-26

works for processing point cloud data. These neural networks27

have been shown to be effective at assisting machine in under-28

standing the geometric shapes of 3-D objects [1], [2]. How-29

ever, manually annotating massive samples for training neural30

Manuscript received 5 July 2022; revised 28 August 2022; accepted
19 September 2022. Date of publication 22 September 2022; date of current
version 4 October 2022. This work was supported in part by the National
Natural Science Foundation of China under Grant 61801121, Grant 62002064,
and Grant U21A20472; and in part by the National Key Research and
Development Plan of China under Grant 2021YFB3600503. (Corresponding
author: Hanyun Wang.)

Huan Luo, Lingkai Li, and Wenzhong Guo are with the College of
Computer and Data Science, the Fujian Provincial Key Laboratory of Network
Computing and Intelligent Information Processing, and the Key Laboratory of
Spatial Data Mining and Information Sharing, Ministry of Education, Fuzhou
University, Fuzhou 350003, China (e-mail: hluo@fzu.edu.cn).

Lina Fang is with the Academy of Digital China (Fujian), Fuzhou Univer-
sity, Fuzhou 350003, China.

Hanyun Wang is with the School of Surveying and Mapping,
Information Engineering University, Zhengzhou 450000, China (e-mail:
why.scholar@gmail.com).

Cheng Wang is with the Fujian Key Laboratory of Sensing and Computing
for Smart Cities, Xiamen University, Xiamen 361005, China.

Jonathan Li is with the Department of Geography and Environmental
Management, and the Department of Systems Design Engineering, University
of Waterloo, Waterloo, ON N2L 3G1, Canada.

Digital Object Identifier 10.1109/LGRS.2022.3208589

networks is often time-consuming and labor-intensive [3]. 31

In addition, due to the data discrepancy in the heterogeneous 32

point clouds which are collected by different laser scanning 33

systems, training datasets need to be created for each type of 34

laser scanning system [4]. 35

To ease the annotation burden for a new task, domain 36

adaption, as a branch of machine learning, is studied exten- 37

sively [5]. The goal of domain adaption is to transfer knowl- 38

edge from a source domain containing sufficient annotated 39

samples to a target domain where annotated samples are scarce 40

or unavailable. Some pioneering studies focused on proposing 41

domain adaption approaches to process the heterogeneous 42

point clouds [6], [7], [8]. To achieve point cloud representation 43

across different domains, a domain adaptation network was 44

proposed to simultaneously implement global-level and local- 45

level feature alignments [6]. Inspired by domain adaptation 46

in 2-D images, a multihead network was designed to inte- 47

grate the classification loss and deformation reconstruction 48

loss for globally aligning feature descriptions, which achieves 49

self-supervised learning in point cloud classification [7]. 50

To reduce the domain discrepancies caused by different laser 51

scanners, a local adversarial learning is proposed to leverage 52

the local surface prior to assist the semantic label transfer 53

across different domains [8]. Different laser scanning systems 54

inevitably induce the measured point clouds with different 55

point densities and different point distributions, resulting in 56

severe intraclass variations in heterogeneous point clouds. 57

Meanwhile, the local similarities of objects in different sce- 58

narios lead to the interclass similarities in heterogeneous point 59

clouds. However, current studies neglect to explicitly preserve 60

the intraclass similarities and interclass dissimilarities, both 61

of which influence the performance of domain adaptation in 62

heterogeneous point clouds. 63

To jointly consider the intraclass similarities and inter- 64

class dissimilarities into domain adaptation of heterogeneous 65

point clouds, this letter mainly focuses on proposing an 66

Asymmetrical Siamese and Conditional Adversarial Network 67

(ASCA-Net). The new ASCA-Net contains two main com- 68

ponents, i.e., Asymmetrical Siamese (AS) module and Con- 69

ditional Adversarial (CA) module. Specifically, on the one 70

hand, we propose to design an AS module to minimize the 71

discrepancy of intraclass objects by aligning their latent space 72

extracted from source domain and target domain to be as close 73

as possible. The discrepancy minimization of intraclass objects 74

from different domains is beneficial to preserve the intraclass 75

similarities in the domain adaptation procedure. In addition, 76

due to the scarce or unavailable supervised information in tar- 77

get domain, we propose an unsupervised method to effectively 78
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Fig. 1. Network architecture of the ASCA-Net. With the point cloud objects from the source and target domains as inputs, a pretrained backbone network
is first used to extract the initial features. Then, an AS module is trained to minimize the feature discrepancy of intraclass objects. Finally, the CA module
accomplishes domain adaptation by preserving the discriminative information for interclass objects.

find the intraclass objects from different domains. On the other79

hand, we propose to design a CA module to consider the80

discriminative information conveyed from the classifier pre-81

dictions into domain adaptation procedure. Such discriminative82

information largely assists in guaranteeing the dissimilarities83

of interclass objects in the domain adaptation procedure.84

Intuitively, intraclass similarities and interclass dissimilarities85

can largely improve the performance of object classification86

in heterogeneous point clouds. The main contributions of this87

letter to classify objects in heterogeneous point clouds can be88

summarized as follows.89

1) To jointly and explicitly preserve the intraclass similar-90

ities and interclass dissimilarities, we propose a new91

domain adaptation network called ASCA-Net, which92

can effectively classify objects in heterogeneous point93

clouds.94

2) To minimize the discrepancy of intraclass objects from95

different domains, we design an AS module to lever-96

age AS network to align the intraclass features in an97

unsupervised manner.98

3) We conduct extensive experiments on three datasets99

collected by different laser scanners. The comparative100

experiments demonstrate the superior performance of101

ASCA-Net over other methods on classifying objects102

in heterogeneous point clouds.103

II. METHODOLOGY104

Fig. 1 presents the network architecture of the ASCA-Net105

to achieve object classification across different domains. To be106

specific, the inputs of the ASCA-Net contain 3-D objects from107

a source domain Ds = {(xs
i , ys

i )}Ns
i=0 and a target domain Dt =108

{(xt
i )}Nt

i=0. Here, xi and yi represent point cloud object and its109

class label, respectively. Ns and Nt are the number of objects110

in source domain Ds and target domain Dt , respectively. Each111

object consists of N points, where each point is represented112

by 3-D coordinates (x, y, z). The goal of the ASCA-Net is to113

leverage the labeled objects in source domain Ds to predict the114

class label yt for the unlabeled object xt in target domain Dt .115

As shown in Fig. 1, the ASCA-Net is composed of three116

components: backbone network, AS module, and CA module.117

Specifically, we first pretrain a backbone network to gener-118

ate the initial feature representations of objects from the source119

and target domains (see Section II-A). Then, the AS module is120

trained to minimize the discrepancy between intraclass objects121

in heterogeneous point clouds (see Section II-B). Finally, the122

CA module is proposed to accomplish adversarial domain123

adaptation by considering conditional information conveyed124

from classifier (see Section II-C).125

A. Backbone Network 126

The backbone network is responsible for extracting initial 127

features for each object in different domains. Any off-the-shelf 128

networks for point cloud feature extraction can be used as the 129

backbone network. Here, we leverage RandLA-Net [9] as 130

our backbone network to gradually aggregate local features 131

for object description. The backbone network consists of four 132

dilated residual blocks, each of which stacks multiple local 133

spatial encoding units and attentive pooling units with a skip 134

connection. Specifically, local spatial encoding unit encodes 135

neighboring geometries of points which are selected by the 136

random sampling. Attentive pooling unit aggregates the set of 137

neighboring point features by automatically assigning different 138

weights according to the attention mechanism. After applying 139

dilated residual blocks, we aggregate features to one point 140

feature, Finit , for globally describing an object. 141

B. AS Module 142

To reduce the feature dissimilarities among the intraclass 143

objects in heterogeneous point clouds, we propose an AS 144

module to conduct feature alignment in the feature space. 145

The goal of AS module is to push the latent feature space 146

of intraclass objects in source and target domains to be as 147

close as possible. 148

Inspired by the AS network [10], we design an AS module 149

consisting of two encoders and a metric learning mechanism. 150

We use MLPs as the encoders and the two encoders have an 151

identical network architecture. Specifically, an encoder E1 for 152

source domain is first trained by adding a softmax layer to 153

implement the classification task with the supervised informa- 154

tion ys . Once the training procedure terminates, the weights 155

of the encoder will be frozen and the encoder E1 is able to 156

project each object in source domain into a high-dimensional 157

codeword Fs . Then, an encoder E2 also maps the object 158

from target domain into a high-dimensional codeword Ft . 159

Here, the lengths of Fs and Ft are identically set to 1024. 160

We hope that the distribution of intraclass objects in differ- 161

ent domains should be consistent by optimizing the feature 162

matching distance. Notably, we only update the weights of the 163

encoder in E2 using a feature matching loss in the training 164

stage. In the feature matching loss, the similarity between 165

two high-dimensional feature vectors can be calculated by 166

L2-Norm as follows: 167

LAS = (xs, x t) =
Nc∑

i=0

‖Fs − Ft‖2 (1) 168
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where Fs and Ft represent the encoded features of objects169

xs and xt , respectively. Note that the smaller value of Lfm170

implies the smaller discrepancy between intraclass objects in171

different domains.172

To effectively calculate the feature matching loss in (2),173

we need to find the pairwise intraclass objects in advance. Due174

to the scarce or unavailable supervised information provided in175

target domain, we propose an unsupervised method to search176

the pairs of intraclass objects which should be mapped in177

the same region. Concretely, in the source domain, we first178

calculate the feature centroid, Fs
c, for class c as179

Fs
c = 1

Ns

∑

xi ∈Ds

Fs
init,i (2)180

where Fs
init,i is the object xi ’s initial feature representation181

obtained by the backbone network.182

After that, the Euclid distance between each object in target183

domain and the feature centroid, Fs
c, is computed. According184

to the Euclid distance, the pairwise objects (Fs
c, Ft

init,i) can be185

determined by searching the nearest centroid of the object, x t
i .186

Finally, we can optimize the matching loss function to mini-187

mize the distance between source domain and supervised tar-188

get domain in different feature spaces. Note that, the pairwise189

intraclass objects are dynamically determined according to the190

updated parameters of backbone network.191

C. CA Module192

To preserve discriminability for intraclass objects from dif-193

ferent domains, we design a CA module to condition domain194

adaption on the discriminative information conveyed in the195

classifier predictions. Inspired by Conditional Domain Adver-196

sarial Network (CDAN) [5], the CA module contains three197

components: generator G, discriminator D, and classifier C .198

The generator G is built by a three-layer MLP, and it is used199

to generate transferable feature representations to confuse the200

discriminator. The discriminator D aims to distinguish which201

domain an object comes from. The classifier C predicts class202

labels for objects. Hence, the CA module can be represented203

as a minimax optimization problem with two loss terms, i.e.,204

the classification loss, LC , and the discrimination loss, LD .205

Specifically, the classification loss, LC , which is used to206

train classifier C , is calculated by the labeled objects from207

source domain, and it can be formulated as follows:208

LC =
∑

xs
i ∈Ds

L
(
C

(
gs

i

)
, ys

i

)
(3)209

where L(·, ·) computes the cross-entropy loss. gs
i is the feature210

representation of object xs
i , which is obtained by generator G.211

C(·) is the class probability predicted by classifier C .212

The discrimination loss, LD , is used to train the discrimi-213

nator, D, on objects with the domain information, and it can214

be formulated as follows:215

LD =
∑

xi ∈Ds
⋃

Dt

L(D([gi , C(gi )]), Yi ) (4)216

where Yi is the label indicating whether the object xi belongs217

to source domain or target domain. [·, ·] is an operation that218

concatenates two vectors. Thus, the inputs of discriminator219

D contain not only the feature representations generated220

by G, but also the classifier predictions obtained by C ,221

Fig. 2. Examples of traffic sign, tree, light pole, and vehicle in Xiamen,
Meizhou, and Semantic3D datasets.

which provides the discriminative information to distinguish 222

intraclass objects during the domain adaptation. The design of 223

LD constrains the generator G to generate the discriminative 224

features for interclass objects and to preserve the consistent 225

features for intraclass objects. 226

The training procedure of CA module iteratively implements 227

a minimax game of two stages described as follows. 228

1) Train the generator G on source domain to minimize 229

the classification loss, LC , while maximizing the dis- 230

crimination loss, LD , on source and target domains for 231

confusing the discriminator G. The minimization of LC 232

and maximization of LD enable generator G to generate 233

the discriminative features for interclass objects. 234

Formally, we formulate the objective function as follows: 235

minLCA = min
G,C

(LC − λLD) (5) 236

where λ is a hyperparameter which controls the weights 237

of the classification loss and the discriminator loss. 238

2) Freeze the trained generator G and update the weights 239

of the discriminator D to minimize the discrimination 240

loss, LD , as 241

min
D

LD . (6) 242

The minimization of LD improves the ability of dis- 243

criminator D to distinguish whether the feature belongs 244

to source domain or target domain. The total loss of 245

ASCA-Net is formulated as follows: 246

Ltotal = LAS + αLCA (7) 247

where the factor α controls the weights of LAS and LCA. 248

III. EXPERIMENT 249

A. Dataset 250

To verify the effectiveness of the proposed ASCA-Net on 251

object classification in heterogeneous point clouds, extensive 252

experiments are conducted on three datasets: Semantic3D [11], 253

Xiamen [12], and Meizhou. Specifically, Semantic3D dataset 254

is acquired by a Terrestrial Laser Scanning (TLS) system in 255

urban outdoor scenes. Xiamen dataset is collected by the Reigl 256

VMX450 Mobile Laser Scanning (MLS) system in Xiamen 257

city with two laser scanners, and Meizhou dataset is collected 258

by the Reigl VMX450 MLS system in Meizhou island with 259

only one laser scanner. As shown in Fig. 2, intraclass objects in 260

different datasets have obvious discrepancies. Table I presents 261

the number of objects in five classes: vehicle, tree, traffic 262

sign, light pole, and other. To evaluate the performance of 263
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TABLE I

NUMBER OF OBJECTS IN THREE DATASETS

object classification in heterogeneous point clouds, we conduct264

experiments on six domain adaption tasks, i.e., Semantic3D265

to Xiamen (SvsX), Xiamen to Semantic3D (XvsS), Meizhou266

to Semantic3D (MvsS), Semantic3D to Meizhou (SvsM),267

Xiamen to Meizhou (XvsM), and Meizhou to Xiamen (MvsX).268

In each task, we treat two datasets as source domain and target269

domain, respectively.270

B. Experiments Setup271

To train our proposed ASCA-Net, we augment the used272

datasets by the rotation operation and use Farthest Point273

Sampling (FPS) to sample objects with N points.274

1) Backbone Network: To obtain initial features for objects,275

the used RandLA-Net contains four dilated residual blocks,276

which gradually aggregate the local features. Specifically, the277

size of the point clouds are sampled in every dilated residual278

block, i.e., [K → (N/5) → (N/5 ∗ 5) → (N/5 ∗ 5 ∗ 6) →279

(N/5 ∗ 5 ∗ 6 ∗ 10)]. Meanwhile, the dimension of the feature280

to describe an object is increased, i.e., (3 → 64 → 256 →281

512 → 1024).282

2) AS Module: The AS module consists of two encoders,283

each of which is built by a two-layer MLPs with 1024 nodes284

in each layer.285

3) CA Module: In the CA module, the generator G is built286

by a three-layer MLP of (512 → 256 → 64); the discriminator287

G is built by a three-layer MLP with 1024 nodes in each288

layer; the classifier C is built by two fully connected layers289

of (32 → nclass), where nclass is the number of classes in the290

classification task.291

We implement the proposed ASCA-Net with Tensorflow292

and set the optimizer to Adam Optimizer. The learning rates293

of all modules and weight decay are set at 0.0001 and 0.05,294

respectively. We empirically set the factor α in (7) at 1.295

C. 3-D Object Classification in Heterogeneous Point Clouds296

The quantitative evaluations of our proposed ACSA-Net297

on object classification in heterogeneous point clouds are298

reported in Table II. As shown in Table II, the ACSA-Net299

achieves the average F1-Score on the six tasks at 0.805, 0.801,300

0.805, 0.956, 0.973, and 0.862, respectively. This exhibits301

that our proposed ACSA-Net can effectively align objects302

from different domains in the feature space. In addition, the303

precision for vehicle, tree, traffic sign, and light pole reaches304

an average of 0.950, 0.915, 0.793, and 0.867, respectively. The305

precision of vehicle and tree is a little higher than that of traffic306

sign and light pole. This is because more severe interclass307

similarities and intraclass discrepancies exist in traffic sign308

and light pole.309

To demonstrate the superiority of our proposed method,310

we make a comparison with two methods, i.e., the MCD311

method [13] and the PointDAN method [6]. As shown in312

Table III, we can see that the average precision of our proposed313

TABLE II

CLASSIFICATION RESULTS ON DIFFERENT DATASETS

TABLE III

AVERAGE CLASSIFICATION PRECISION ON DIFFERENT DATASETS

ASCA-Net preforms higher than MCD and PointDAN meth- 314

ods, which proves that joint consideration of intraclass similar- 315

ity and interclass dissimilarity can improve the performance of 316

domain adaption. To further evaluate the effectiveness of dif- 317

ferent proposed modules in the proposed ASCA-Net, we also 318

compare it with two methods, i.e.: 1) the RandLA method [9] 319

which is adopted as our backbone network (no-AS&CA) and 320

2) the CA domain adaptation method [5] which removes the 321

AS module in the ACSA-Net architecture (no-AS); As shown 322

in Table III, no-AS&CA method performs poor on classifying 323

objects in target domain when the supervised training infor- 324

mation only comes from source domain. This reflects that 325

the objects in different domains have large data discrepancy, 326

and the classification model only trained on source domain 327

lacks of sufficient generalization to perform well in the target 328

domain. The superior performance of our proposed method 329

demonstrates that our proposed ACSA-Net can effectively 330

eliminate the inconsistency in the intraclass objects and pre- 331

serve discriminative information in the interclass objects from 332

different domains. In addition, we implement the experiments 333

on the ASCA-Net by replacing the backbone network with 334

DGCNN [14]. Although its performance slightly decreases due 335

to the lower classification precision of DGCNN, the compara- 336

ble results of ASCA-Net (DGCNN) in Table III demonstrate 337

the effectiveness of our proposed network architecture. 338

D. Visualization 339

As shown in Fig. 3, we use t-SNE to visualize the fea- 340

ture distributions of the XvsM task achieved by different 341

methods, i.e., no-AS&CA, no-AS, and ASCA-Net methods. 342

Furthermore, we add some point cloud objects in the t-SNE 343
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Fig. 3. t-SNE visualization of different methods applied in the XvsM task.
Object in source domain and target domain is represented as dot and cross,
respectively.

Fig. 4. Impact of hyper-parameter λ on the object classification accuracy.

visualization to better exhibit the domain adaption results.344

For the no-AS&CA method and the only-CA method, the345

objects in the source and target are discretely distributed in the346

feature space and across-domain features are not well-aligned.347

As shown in Fig. 3(c), the proposed ASCA-Net better aligns348

intraclass objects and better discriminates interclass objects in349

different domains than other methods, which guarantees the350

superior performance on object classification in the heteroge-351

neous point clouds. Additionally, the light pole in region 1 is352

misclassified as signpost because of similar geometric shapes.353

E. Parameter Sensitivity Analysis354

To examine the impact of the hyper-parameter λ on the355

performance of 3-D object classification in heterogeneous356

point clouds, the evaluations on the XvsS task are performed357

on the following configurations: 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,358

1.6, 1.8. As shown in Fig. 4, with the value of λ increasing359

from 0.2 to 1.0, the average accuracy gradually increases.360

The average accuracy reaches the peak when λ equals to 1.0.361

When the value of λ is larger than 1.0, the average accuracy362

decreases slowly. This means that when conducting the feature363

alignment in the CA module, the classification loss and the364

discriminator loss are equally important. Therefore, we set the365

hyper-parameter λ to be 1.0 in the experiments.366

F. Computational Complexity367

In the experiments, we implemented the ASCA-Net in Ten-368

sorflow using Keras API, and executed it on a HP workstation369

with 8 Intel cores of 2.1-GHz, 128 GB memory, and a P100370

graphics card. To analyze the time complexity of our proposed371

ASCA-Net, we recorded the running time of each module.372

During the training phase, the backbone network, AS module,373

and CA module take an average of 21.3, 1.5, and 4.2 min,374

respectively. During the testing phase, the ASCA-Net takes375

only 8.2 ms to classify an object. Moreover, we also recorded 376

the running time of other methods for comparison. Specifi- 377

cally, the training phase of PointDAN and MCD methods takes 378

86.7 and 64.2 min, respectively. In addition, for classifying an 379

object, the PointDAN and MCD methods take 10.4 and 10 ms, 380

respectively. This demonstrates that our proposed method 381

requires less time in the training and testing phases. 382

IV. CONCLUSION 383

This letter has proposed the ASCA-Net, which is an efficient 384

network architecture to solve 3-D object classification in the 385

heterogeneous point clouds. To minimize the data discrep- 386

ancy of intraclass objects in different domains, we design 387

an AS module to implement the intraclass feature alignment. 388

To preserve the discriminative information for guaranteeing 389

the dissimilarities of interclass objects in different domains, 390

a CA module is integrated into our network to consider the 391

classification information conveyed from classifier. The pro- 392

posed ASCA-Net has been evaluated on six tasks built on three 393

different point cloud datasets. The experimental evaluations 394

have exhibited that the proposed ASCA-Net can perform well 395

on object classification in heterogeneous point clouds. 396
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