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A B S T R A C T   

The acceleration of urbanization and the increasing demand for precise city planning have made the extraction of 
buildings and roads from remote sensing images crucial. Deep learning-based methods have propelled the 
progress of object extraction technology, but there are still challenges such as the missing and incomplete 
extraction of buildings and roads for small objects and occlusions. To address this issue, we propose a dual-path 
extraction network based on CNN and Transformer, combining local and global features to fully extract the 
semantic information of objects. To further enhance the semantic reconstruction capability of features, this paper 
introduces a multi-scale upsampling mechanism, thereby expanding the visual range of reconstruction. Finally, 
we adopt a deep supervision strategy to improve the reconstruction accuracy of objects at different resolutions. 
Our method has been tested on four remote sensing image datasets and has achieved excellent IoU scores on all 
datasets (Massachusetts Building and Roads Dataset: 76.69% and 66.41%, LRSNY and CHN6-CUG Roads Dataset: 
88.96% and 61.99%). Furthermore, our method demonstrates superior performance compared to other main-
stream image segmentation algorithms, fully demonstrating the effectiveness of our approach.   

1. Introduction 

Object extraction is a vital aspect of remote sensing image processing 
as it involves the precise and efficient identification and extraction of 
objects of interest from remote sensing imagery (Chen et al., 2022c). In 
recent years, the rapid advancement of high-resolution optical remote 
sensing technology has made object extraction from high-resolution 
optical images a prominent research focus (Guan et al., 2021). 

High-resolution optical remote sensing images offer exceptional 
spatial resolution and abundant information content, allowing for the 
detection of even subtle changes on the Earth’s surface (Li et al., 2021b; 
Liu et al., 2023a; Mao et al., 2023). As a result, utilizing high-resolution 
optical remote sensing images for object extraction becomes the 
preferred approach to achieve accurate object identification and spatial 
analysis (Chen et al., 2022b; Chen et al., 2021c; Guan et al., 2022). 

Object extraction holds immense practical value and finds applica-
tion in a wide range of fields (Zhu et al., 2020). During emergency 

earthquake response, the rapid extraction of building damage levels in 
affected areas provides indispensable reference information for rescue 
operations (Li et al., 2021c; Xu et al., 2018). In the realm of smart city 
development, object extraction enables automatic identification and 
monitoring of urban infrastructure, road traffic flow, land utilization, 
and other aspects, thus offering decision support for smart city planning 
and management (Ding et al., 2021; Yan et al., 2022). In the field of 
automotive navigation, precise vehicle positioning and navigation 
guidance can be achieved by extracting objects such as roads and 
buildings (Xu et al., 2021; Zhou et al., 2022). Additionally, object 
extraction technology plays a significant role in critical areas such as 
ecological environment monitoring, agricultural production, and mili-
tary applications (Li et al., 2021a; Waldner and Diakogiannis, 2020). 

However, object extraction from high-resolution optical remote 
sensing images poses several challenges, including the complexity of the 
imagery, object diversity, interference from lighting conditions, trees, 
and shadow effects, as illustrated in Fig. 1 (c) and (d). These factors often 
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lead to insufficient object extraction, resulting in issues of omission and 
incorrect identification. Moreover, in urban and rural environments, 
building objects may exhibit substantial variations in appearance and 
contextual surroundings. To address these challenges, researchers have 
proposed various algorithms and techniques, leveraging feature 
extraction, machine learning, and deep learning approaches. These 
methods drive the progress and development of object extraction tech-
nology. However, based on our investigation, the current algorithms for 
extracting objects from high-resolution remote sensing images still suf-
fer from limitations in feature extraction and information reconstruc-
tion, especially when dealing with small or intricately shaped object 
objects, as depicted in Fig. 1 (a) and (b). The small size of building ob-
jects and the complex shapes of road objects pose significant challenges 
for semantic segmentation. 

To overcome the above challenges, this study primarily investigates 
three aspects of research. Firstly, we introduce a novel dual-path object 
extraction network based on CNN and Transformer. The network em-
ploys the CNN branch to extract spatially detailed contextual informa-
tion from the features of remote sensing images. Concurrently, the 
Transformer branch captures global object dependencies from the global 
contextual information of the remote sensing images. By combining 
these two paths, the network effectively integrates global information 
with local spatial details, facilitating the comprehensive extraction of 
building or road objects. 

Additionally, to ensure that the decoder in the network can effec-
tively handle diverse image features and improve the reconstruction 
capability of the network, we enhance the visual range of multi- 
sampling in the dual-path network extraction mechanism. By incorpo-
rating multi-view upsampling convolutional operations, we increase the 
complexity of the network’s reconstruction structure, thereby aug-
menting its ability to extract building and road objects in complex 
environments. 

In order to enhance object extraction at different resolutions and 
achieve precise reconstruction, we implement a deep supervision strat-
egy within the framework of multiple upsampling mechanisms. Specif-
ically, within the reconstruction branch, we incorporate multiple 
segmentation heads of varying sizes to supervise the object extraction 
process at different scales. This approach ensures the accurate extraction 
of building or road objects. 

The paper makes significant contributions in the following three 
aspects:  

(1) We propose a novel dual-path object extraction network that 
combines the strengths of CNN and Transformer. The network 
integrates a spatial detail branch and a global semantic branch, 
leading to exceptional precision in extracting building and road 
objects.  

(2) To enhance the network’s reconstruction capability for building 
and road objects, we introduce a multi-view fusion-based multi- 
sampling mechanism in the reconstruction branch. This 

mechanism ensures that the network captures finer object details, 
significantly improving its ability to reconstruct these objects. 

(3) We employ a deep supervision strategy by designing segmenta-
tion heads at different levels in the reconstruction branch. This 
strategy allows for comprehensive supervision of the recon-
struction process for building and road object features at different 
resolutions. 

2. Related work 

2.1. Building extraction 

Building object extraction is a computer vision technique that aims to 
automatically detect and locate buildings in images or videos. It enables 
the identification of buildings within an image and the extraction of 
their bounding boxes or contours, thereby supporting applications such 
as building recognition, map creation, and urban planning. 

In recent years, significant breakthroughs have been achieved in 
building segmentation and extraction based on Convolutional Neural 
Networks (CNN) Considering the rapid advancements in deep learning 
and computer vision. Ding et al. (2022) introduced Adversarial Shape 
Learning Network (ASLNet) to model the shape patterns of buildings and 
enhance the precision of building object extraction. However, chal-
lenges arise in the form of missing and incomplete objects, especially 
when extracting larger objects, due to variations in color and texture 
within buildings. To overcome these issues, Shao et al. (2020) designed a 
method called Building Region Refinement Network (BRRNet), 
comprising a prediction module and a residual refinement module. This 
method demonstrates better handling of building object extraction and 
reduces the occurrence of missing and incomplete objects. For achieving 
highly accurate building object extraction, Guo et al. (2020) introduced 
an attention-based multi-loss neural network. By incorporating atten-
tion modules, they improved the sensitivity of the model to critical 
features and suppressed the influence of irrelevant feature regions. To 
fully utilize features at different levels in object extraction, Liu et al. 
(2019) introduced a novel Fully Convolutional Network (FCN). This 
network captures and aggregates multi-scale contextual information by 
progressively fusing multi-level features, thereby achieving semantic 
understanding of object images. Xu et al. (2022) utilized rich back-
ground features in remote sensing images to assist in object extraction, 
preserving the shape of the extracted results. Their method effectively 
enhances the accuracy of building extraction. Zhu et al. (2020) proposed 
a novel Multi-Participation Path Neural Network (MAPNet) for accurate 
extraction of multi-scale building contours and boundaries, demon-
strating excellent performance in capturing building shapes. 

Deng et al. (2021) successfully differentiated building objects from 
complex environmental objects by designing grid-based attention gating 
and dilated convolutional pyramid modules. However, insufficient uti-
lization of multi-scale building object features resulted in issues such as 
blurry edges when extracting complex-shaped building objects. To 

Fig. 1. Illustrative examples of building and road objects in remote sensing images.  
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address this problem, Guo et al. (2022) proposed a coarse-to-fine 
Building Boundary Extraction Network (CBR-Net). Feng et al. (2022) 
enhanced the extraction of high-frequency and low-frequency infor-
mation in remote sensing images and proposed a Spectrum Intensity 
Attention Network (FSIANet), thereby enhancing the expressive power 
of building semantic features. Due to domain differences among 
different remote sensing image datasets, the generalization ability of the 
network on unknown datasets is relatively poor. To overcome this, Peng 
et al. (2021) presented a global domain adaptive extraction network that 
effectively enhanced the network’s generalization capability across 
different domain images. Liu et al. (2022) obtained vector components 
of building objects by establishing an additional edge segmentation 
branch and performed semantic segmentation based on the obtained 
vector components as guidance, ensuring the accuracy and shape of the 
extraction results. Wei and Ji (2021) proposed the utilization of Graph 
Convolutional Networks (GCN) to generate building vector maps auto-
matically from aerial images. This approach facilitates the polygonal 
prediction of building objects. 

On the other hand, Transformer-based techniques have demon-
strated significant advancements in the field of natural language pro-
cessing (NLP), and in recent years, they have also been applied to 
computer vision tasks, including building image segmentation and 
extraction. Chen et al. (2021a) investigated the application of Trans-
formers in building extraction and devised a streamlined dual-channel 
Transformer architecture to maximize efficiency. This architecture en-
ables the model to capture long-range dependencies in both spatial and 
channel dimensions, thereby enhancing the performance of building 
extraction. Chen et al. (2021b) introduced a U-Net network that com-
bines Transformer self-attention and reconstruction deviation modules, 
effectively enhancing the capability of semantic segmentation and 
achieving extraction of complex building objects. In their work, Wang 
et al. (2022) introduced a novel approach named BuildFormer, which is 
based on Vision Transformer (ViT). It features a dual-path structure and 
allows for the application of large windows to capture global context, 
greatly improving its potential in handling large-scale remote sensing 
images. However, inadequate integration of global and local informa-
tion can still result in incomplete, false, or missing extraction results. To 
mitigate these issues, Xu et al. (2023) presented a novel segmentation 
approach based on the Bi-branch Cross-fusion Transformer Network 
(BCTNet). 

2.2. Road extraction 

Road object extraction plays a significant role in computer vision 
applications, aiming to accurately identify and extract road-related ob-
jects from images or videos. Numerous studies have employed deep 
learning models such as Convolutional Neural Networks (CNNs) and 
Transformers to enhance the accuracy and robustness of object 
extraction. 

In recent years, Convolutional Neural Networks (CNNs) have 
emerged as a powerful tool for road extraction tasks. Tan et al. (2021) 
designed a novel end-to-end road segmentation method that effectively 
leverages convolutional layers at different levels, enhancing the model’s 
accurate perception of road edges and shapes, and mitigating the 
imbalance between CNN network depth and spatial resolution. To 
address challenges such as complex backgrounds, high density, insuffi-
cient training data, or high manual annotation costs in road extraction, 
Shamsolmoali et al. (2021) introduced domain adaptation-based 
methods for synthesizing images to meet the requirements of road 
extraction. To reduce the need for a large training dataset, efforts have 
been made to address the challenge of data acquisition, Hu et al. (2021) 
presented an improved Generative Adversarial Network called WSGAN, 
which utilizes weakly supervised methods for efficient road object 
extraction. Inspired by human pose estimation work, Lian and Huang 
(2020) proposed an automated road object extraction method called 
DeepWindow. They employed a CNN-based decision function to guide 

the sliding window for highly accurate road object extraction. Wei et al. 
(2020) presented a novel multi-level framework based on deep learning, 
which utilizes accelerated segmentation, multi-start tracking, and fusion 
mechanisms for extracting objects such as road surfaces and centerlines. 
To improve road connectivity and maintain precise alignment between 
images and real roads, Tan et al. (2020) designed an iterative graph 
exploration approach guided by point and segment cues. Dai et al. 
(2021) developed a model-driven to sample-driven road extraction 
method based on road geometry features. Zhou et al. (2020) introduced 
a boundary and topology-aware road extraction framework (BT-Road-
Net) to address issues such as boundary quality, noise, and occlusion in 
existing automatic road extraction methods. Zhang et al. (2019)pre-
sented an approach for road extraction that leverages Fully Convolu-
tional Networks (FCNs) and incorporates strategies to address the issue 
of imbalanced road-background data distribution. 

Chen et al. (2021c)designed an asymmetric road extraction network 
that utilizes an end-to-end CNN model. By introducing multi-level 
upsampling biases, they improved the segmentation accuracy and per-
formance of road objects. Chen et al. (2022a) converted binary classi-
fication maps into continuous symbolic distance maps for input 
transformation and proposed a distance-based road extraction method, 
which effectively alleviates the issue of discontinuity in road extraction. 
By combining the dual-branch multi-task structure and integrating road 
boundary details with road intersection information, Chen et al. (2022b) 
designs a road extraction framework that learns collaborative feature 
representations and enhances road connectivity. Zhou et al. (2021) 
introduced a deep separable graph convolutional network (SGCN) that 
enhances the expression capability of road features by capturing global 
contextual information of channel and spatial features. Lu et al. (2022) 
introduced a cascaded multi-task framework for road extraction, which 
effectively extracts road surfaces, centerlines, and edges while 
enhancing road connectivity. To reduce dependence on annotated data, 
Chen et al. (2023) presented a semi-supervised road extraction frame-
work, known as SemiRoadExNet, which utilizes Generative Adversarial 
Networks (GANs) for improved performance. By utilizing multiple dis-
criminators, to ensure coherence in feature distributions between an-
notated and unannotated data, they enforce consistency in the 
distribution of features, thereby enhancing the model’s generalization 
ability. 

Similarly, research on road extraction methods based on Trans-
formers has achieved remarkable improvements. CNNs struggle to 
effectively capture global representations. To address this, Luo et al. 
(2022) presented a bidirectional Transformer network called BDTNet, 
based on a hybrid encoder-decoder architecture, this enhances the 
capture of both global and local information in aerial imagery, 
improving the extraction process. To overcome the challenge of CNNs in 
capturing contextual information effectively, Yang et al. (2022) intro-
duced a road extraction approach for remote sensing images that in-
tegrates high-level semantic features with foreground context 
information, enhancing the accuracy of the extraction process. Jiang 
et al. (2022) developed a pyramid-based vision Transformer network 
specifically designed for the extraction of roads in remote sensing im-
ages. By adopting a multi-view contextual observation strategy to obtain 
higher-quality token embeddings, they effectively enhance the quality 
and robustness of feature representation. Tao et al. (2023) introduced a 
road model called Seg-Road, which improves road connectivity. While a 
convolutional neural network (CNN) structure is employed to extract 
local context information for improved road detail segmentation, they 
utilize a Transformer architecture to capture long-range dependencies 
and incorporate global contextual information, further enhancing road 
segmentation in the images. Zhang et al. (2022) developed a mountain 
road extraction network called Light Roadformer, based on Transformer 
and self-attention modules, to accurately extract road objects in envi-
ronments with blurred road edges and sand coverage. Given the limi-
tations of CNN convolutional kernels in capturing long-range 
information and global context, their performance is suboptimal in 
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scenarios involving road objects distributed over long distances and 
highly structured environments. To overcome this challenge, Liu et al. 
(2023b) introduced an innovative model named RoadFormer, which 
utilizes the Swin Transformer as its backbone. This approach effectively 
captures complex road structures and improves the performance of road 
extraction tasks. 

3. Method 

In this section, we will initially introduce the general framework of 
our proposed Dual-Path Extraction Network (DPENet). Subsequently, 
we will introduce the key modules employed in the framework through 
various branches. Finally, we will provide a brief overview of the loss 
functions used in this paper. 

3.1. Network structure 

As shown in Fig. 2, our proposed Dual-Path Extraction Network 
(DPENet) consists of three main components: a CNN-based spatial detail 
extraction branch, a Transformer-based global information extraction 
branch, and a feature reconstruction branch. The network architecture 
we employ is based on an encoder-decoder framework, with two distinct 
encoder parts: the spatial detail branch and the global information 
branch. 

3.1.1. Spatial detail extraction branch based on CNN 
The CNN-based spatial detail extraction branch consists of five 

extraction stages. In the first stage of this branch, the image is processed 
through two 3X3 convolutional layers, followed by batch normalization 
(BN) and ReLU activation function, transforming the channel size of the 
image features from 3 to 64. To prevent difficulties in gradient propa-
gation caused by an excessive number of convolutional layers, we 

incorporate a residual connection with a 1X1 convolutional kernel be-
tween the two convolutional modules. This process is illustrated in Fig. 3 
(a). Next, the image features are passed to the second stage of the 
extraction branch, which includes a 2X2 max pooling layer and two 3X3 
convolutional layers with BN and ReLU activation function, also 

Fig. 2. Overall architecture of the designed DPENet.  

Fig. 3. Two types of Convolutional Blocks used in the spatial detail extrac-
tion branch. 
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utilizing a residual connection. This process is depicted in Fig. 3(b). The 
third, fourth, and fifth stages follow a similar extraction process as the 
second stage, progressively increasing the channel size of the image 
features and reducing the resolution to enhance the extraction capability 
of spatial details. In the first to fifth stages, the channel size of the image 
features increases from 64 to 128, 256, 512, and 1024, respectively, 
while the resolution of the image features gradually decreases from 
256X256 to 128X128, 64X64, 32X32, and 16X16. 

3.1.2. Global information extraction branch based on Transformer 
The global information extraction branch in our design is based on 

the fine-tuned Swin Transformer(Liu et al., 2021). Swin Transformer 

possesses powerful capabilities in extracting global information, which 
is particularly crucial in semantic segmentation tasks. Therefore, it 
meets the requirements of our global information extraction branch. The 
branch can be divided into four stages. What we use is tiny Swin 
Transformer, as shown in Fig. 2. The network is divided into four stages, 
and its depths are [2,2,6,2] respectively. Each stage is Patch embedding 
and Swin Transformer block except the operation of the first stage is 
patch partition, Liner embedding and Swin Transformer block, and the 
remaining stages are patch embedding and Swin Transformer block. 
Moreover, the size of feature extraction in the first stage is H/2*W/2*C, 
and the feature size is reduced by two times and the number of channels 
is increased by two times in each stage after that. 

Fig. 4. A multi-residual combination mechanism.  
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In the first stage, we perform initial processing on the original 
256X256 image by upsampling its resolution to 512X512. This is done to 
enable high-resolution image input into the global information extrac-
tion branch. In this stage, the high-resolution image undergoes block- 
wise processing using the Patch Partition module and then undergoes 
Patch Embedding. The resulting features are then fed into the Swin 
Transformer Block, producing output features with a resolution of 
128X128. 

Subsequently, these features enter the second, third, and fourth 
stages of the extraction branch. These stages consist of Patch Embedding 
and multiple Swin Transformer Blocks. Each stage produces image fea-
tures with resolutions of 64X64, 32X32, and 16X16, respectively. 

The window-based attention mechanism is computed as follows: 

Attention(Q,K,V) = Softmax(
QKT

̅̅̅
d

√ + B)V (1)  

where Q,K,V denote Query, Key, Value, d denotes scaling factor, and B 
denotes relative position encoding, respectively. 

3.1.3. Feature reconstruction branch 
Object extraction networks typically consist of two components: a 

feature extraction part and a reconstruction output part. The recon-
struction output part faces more challenging tasks compared to the 
feature extraction part, but it is often not enhanced in terms of structure, 
making it difficult to handle long-range dependencies between rich 
spatial details and global information. To enhance the reconstruction 
capability of our network under the dual-path feature extraction 
mechanism and improve the semantic perception ability of the extrac-
tion network, we introduce a multi-residual combination mechanism in 
the reconstruction part to improve the network’s semantic reconstruc-
tion ability. The Encoder Block in Fig. 2 showcases the design of this 
network module. 

Furthermore, in the multi-residual combination at each level, we 
employ a multi-branch mechanism and attempt to simulate semantic 
reconstruction under multiple perspectives by using residual convolu-
tion combinations of different depths. By enhancing the field of view 
through multiple sampling and increasing the complexity of the network 
reconstruction structure, we further enhance the ability of the extraction 
network to handle building and road objects in complex environments. 

Assuming each upsampling layer adopts a 5-branch mechanism, the 
structural design of this layer is illustrated in Fig. 4. In the first stage, the 
Multi-Residual Group module simultaneously receives three input fea-
tures: the input feature from the previous level, the input feature from 
the spatial branch, and the input feature from the global information. 
The main objective of the second stage is to process these three types of 
features. 

Firstly, the input feature from the previous level is upsampled by a 
factor of 2, resulting in a feature map of size, and different depths of 
residual convolution combinations in the multi-branch mechanism are 
utilized to capture reconstructed semantic information from different 
perspectives. The basic module of the employed residual convolution 
combination consists of a 3X3 convolution, BN, ReLU activation func-
tion, and residual connection, with varying feature channel numbers in 
each residual convolution branch. 

Secondly, the input feature from the global information branch un-
dergoes deconvolution, BN, and ReLU processing to meet the re-
quirements of size. 

Next, the output features from different branches of the residual 
convolution combination, the spatial detail features of the same size, 
and the global information features are stacked together to obtain a 
fused feature map of size. This fused feature map not only incorporates 
the detail features provided by the spatial branch and the contextual 
dependencies from the global branch but also accommodates the high- 
level semantic information extracted from the dual-branch network. 

Finally, the fused feature map is inputted into the Convolutional 

Blocks and then passed to the next layer of the encoder. The feature 
channel can be computed using the following formula: 

CRn =
CR0

2n
(2)  

CM =
∑n

0

CR0

2n
+Cs +CG (3)  

Here, CR1,CR2,…,CRn represents the feature channel number in the nth 
branch of the Rth residual combination group, CM denotes the total 
channel sum in the entire module, Cs, CG represent the channel numbers 
in the spatial branch and the global branch, respectively. 

3.1.4. Deep monitoring strategy 
The multi-residual module enhances the complexity of image fea-

tures during reconstruction and enables multi-scale sampling of image 
features at different resolutions in various stages of the reconstruction 
part. However, solely outputting the reconstruction results in the final 
stage may not fully meet our requirements for accurate multi-scale 
reconstruction of objects at different resolutions. Therefore, under the 
mechanism of multi-scale upsampling, we employ a deep supervision 
strategy. Specifically, different scales of prediction heads are used in 
different stages of the reconstruction part to achieve supervision for 
object extraction at different scales, enabling precise extraction of road 
and building objects at different resolutions. As shown in Fig. 2, the 
prediction head structure in the low-resolution stage of the reconstruc-
tion part remains consistent with the final prediction head. It mainly 
consists of a 1X1 convolution layer and a Sigmoid activation function, 
and the output low-resolution reconstruction image maintains the same 
resolution as the current stage. 

3.2. Loss function 

During the learning process of the model, binary cross-entropy (BCE) 
loss function is one of the most commonly used loss functions. However, 
this loss function does not take into account the issue of sample imbal-
ance. In semantic segmentation, there is an extreme imbalance between 
positive and negative samples, which requires a loss function capable of 
handling such cases. The Dice loss function is precisely designed to 
address this problem and is well-suited for our network’s need to extract 
building and road objects. Therefore, in this study, we adopt a deep- 
supervised multi-level joint loss function that combines binary cross- 
entropy loss and Dice loss. Specifically, the binary cross-entropy loss 
can be expressed as follows: 

Lbce =
1
N

∑N

i
(gilogpi + (1 − gi)log(1 − pi)) (4) 

Among them, Lbce represents the BCE loss, pi represents the predicted 
probability value of the i-th pixel in the image, gi represents the ground 
truth of the i-th pixel in the image, and N represents the total number of 
pixels in the image. 

The loss function used during the training of the network is Dice loss, 
which is calculated using the following formula: 

Ldice = 1 − Dice (5)  

where Ldice represents the Dice loss and Dice is the coefficient of the loss. 
The calculation of the Dice loss coefficient is given by the following 

formula: 

Dice =
∑N

i pi × gi
∑N

i p2
i +

∑N
i g2

i
(6)  

where pi represents the predicted probability value of the i-th pixel in the 
image, gi represents the ground truth value of the i-th pixel in the image, 
and N represents the total number of pixels in the image. The proposed 
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multi-level cascaded loss function is as follows: 

Lall = λ1Lbce(P1,G1)+ λ2Lbce(P2,G2)+ λ3Lbce(P3,G3)+ λ4Lbce(P4,G4)

+ λ5(Lbce(P5,G5) + Ldice(P5,G5))
(7)  

where P1, P2,P3,P4,P5 represent the object prediction outputs at 
different resolutions in the reconstruction part. G1,G2,G3,G4,G5 
represent the corresponding ground truth objects at different resolu-
tions, where the ground truth objects at different resolutions are ob-
tained by down-sampling the original resolution ground truth using 
bilinear interpolation.λ1, λ2, λ3, λ4, λ5 represent the loss coefficients for 
different resolutions in the multi-level cascaded loss. 

4. Experiments 

4.1. Datasets 

To evaluate the performance of our proposed DPENet in extracting 
building and road objects, we conducted experimental analysis using 
four publicly available remote sensing image datasets. These datasets 
include the Massachusetts Building Dataset(Hinton and Mnih, 2013), 
Massachusetts Roads Dataset(Hinton and Mnih, 2013), LRSNY Roads 
Segmentation Dataset(Chen et al., 2021d), and CHN6-CUG Roads 
Dataset(Zhu et al., 2021), as shown in Fig. 5(a), (b), (c), and (d) 
respectively. 

1)Massachusetts Building Dataset: 
The dataset is a collection of aerial building images captured from 

the Boston area in the United States. It consists of 151 aerial images with 

a resolution of 1500X1500 pixels, providing a spatial resolution of 1 m. 
This dataset covers buildings of various sizes and scales in both urban 
and suburban areas of Boston, with a total coverage area of 340 square 
kilometers. Due to the uniqueness of the dataset, evaluating building 
extraction models poses significant challenges. We followed the official 
data partition provided with the dataset, where 137 images were used 
for training, 10 images for validation, and an additional 4 images for 
testing. To adapt to the input size of our model, we cropped the images 
into 256X256 patches with a 64-pixel overlap region. As a result, we 
obtained a dataset comprising 8,768 training images, 256 validation 
images, and 640 testing images. 

2)Massachusetts Roads Dataset 
The road dataset consists of 1,171 satellite images with a resolution 

of 1500X1500 pixels. It includes 1,108 images for training, 14 images for 
validation, and 49 images for testing. This dataset covers a wide range of 
urban, suburban, and rural areas, with a total coverage area of 
approximately 2,600 square kilometers. The image resolution is 120 
cm/pixel. Similar to the Massachusetts Building Dataset, we cropped the 
images into 256X256 patches without using any overlap regions. As a 
result, we obtained a dataset comprising 27,700 training images, 350 
validation images, and 1,225 testing images. 

3)LRSNY Roads Segmentation Dataset 
The dataset is a large-scale road segmentation dataset sourced from 

optical remote sensing images of New York City. It covers a significant 
portion of the city center, with a spatial resolution of approximately 0.5 
m. The dataset consists of 1,368 road object images with dimensions of 
256X256 pixels. Among these, 716 images are used for training, 220 
images for validation, and 432 images for testing purposes. 

Fig. 5. Examples of remote sensing image datasets.  
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4)CHN6-CUG Roads Dataset 
The dataset is sourced from Google Earth and includes road remote 

sensing images of six major cities in China. It consists of a total of 4,511 
images, covering areas such as Chaoyang District in Beijing, Yangpu 
District in Shanghai, the central area of Wuhan, Nanshan District in 
Shenzhen, Sha Tin District in Hong Kong, and Macau. Each image has 
dimensions of 512X512 pixels with a resolution of 50 cm/pixel. The 
dataset comprises 3,608 images for training and 903 images for testing. 
Similarly, we have cropped the dataset to a size of 256X256 pixels, 
ensuring that there is no overlap between the cropped images. 

4.2. Experimental settings 

To improve the generalization ability of the DPENet network, we 
applied data augmentation techniques during the training process, 
including rotation, horizontal flipping, and vertical flipping. For model 
training, we used the Adam optimizer with a batch size of 16 and a 
learning rate of 0.001. If the test loss did not decrease after 5 epochs of 
training, we would halve the learning rate. The experiments were con-
ducted under the PyTorch framework, and the training was performed 
for 100 epochs on the building and road datasets. We saved the model 
with the highest accuracy during the training process. The experimental 
setup included an Intel(R) Core(TM) i9-12900KF CPU running at 3.20 
GHz, 128 GB of RAM, and two GPUs (NVIDIA GeForce RTX 3090) for 
training. 

4.3. Evaluation indicators 

The extraction of building and road objects from high-resolution 
satellite imagery is commonly regarded as a binary semantic segmen-
tation problem. To evaluate the object extraction performance of the 
network framework, we employed five widely used evaluation metrics, 
including overall accuracy, precision, recall, F1 score, and intersection 
over union (IoU). Overall accuracy measures the overall correctness by 
considering the classification accuracy of all samples without consid-
ering the classes. Precision represents the percentage of pixels predicted 
as building or road objects and correctly classified within the correct 
regions, while recall represents the proportion of correctly predicted 
pixels in the ground truth of building or road objects. The F1 score is the 
harmonic mean of precision and recall, and IoU measures the ratio of the 
intersection area between the predicted building or road objects and the 
ground truth to the union area. These evaluation metrics can be 
expressed using the following formulas after calculating the number of 
true positives (TP), false positives (FP), false negatives (FN), and true 
negatives (TN) of pixels: 

OA =
TP+ TN

TP+ TN + FP+ FN
(8)  

Precision =
TP

TP+ FP
(9)  

Recall =
TP

TP+ FN
(10)  

F1 =
2 × recall× precision
recall+ precision

(11)  

IoU =
TP

TP+ FN + FP
(12)  

4.4. Quantitative analysis 

In this section, we will compare the performance of DPENet with 
several state-of-the-art methods for building and road object extraction 
on four remote sensing image datasets, namely the Massachusetts 
Building Dataset, Massachusetts Roads Dataset, LRSNY Roads 

Segmentation Dataset, and CHN6-CUG Roads Dataset. We trained on 
these four datasets for about 14 h, 36 h, 6 h and 23 h respectively, and 
spent 0.3 s/batch on the test dataset. 

On the Massachusetts Building Dataset, we compared five methods 
that have shown remarkable performance in building object extraction: 
Residual U-Net(Zhang et al., 2017), DANet(Fu et al., 2018), PSPNet101 
(Zhao et al., 2016), SAB U-Net(Chen et al., 2021b), CBRNet(Guo et al., 
2022), and BuildFormer(Wang et al., 2022). inspired by ResNet, com-
bines this concept with U-Net to propose a novel approach for building 
object extraction. DANet enhances the model’s understanding of global 
semantic relationships by incorporating Position Attention Module 
(PAM) and Channel Attention Module (CAM) into an expanded FCN. 
PSPNet101 aggregates contextual information from different regions, 
enabling the model to have a stronger global contextual understanding. 
SAB U-Net achieves high-precision building object extraction through 
self-attention mechanisms and large receptive fields. CBRNet refines 
building boundaries from coarse to fine, enhancing the model’s edge- 
awareness capability. 

On the Massachusetts Roads Dataset, LRSNY Roads Segmentation 
Dataset, and CHN6-CUG Roads Dataset, we compared several methods 
that have demonstrated outstanding performance in road object 
extraction, including U-Net(Ronneberger et al., 2015), SegNet(Badri-
narayanan et al., 2017), Residual U-Net(Zhang et al., 2017), DANet(Fu 
et al., 2018), PSPNet50(Zhao et al., 2016), PSPNet101(Zhao et al., 
2016), DeepLabV3(Chen et al., 2017), DeepLabV3Plus(Chen et al., 
2018), Bias U-Net(Chen et al., 2021d), GCBNet(Zhu et al., 2021), Swin- 
Unet(Cao et al., 2022) and D-LinkNet(Zhou et al., Jun 2018). Among 
them, DeepLabV3 enhances the ability to capture multi-scale informa-
tion of the objects by introducing convolutions with different dilation 
rates into ASPP. DeepLabV3Plus treats the DCNN part of DeepLabV3 as 
the encoder and utilizes upsampling of output feature maps as the 
decoder, strengthening the edge regions of semantic segmentation. Bias 
U-Net improves the reconstruction capability of the objects through 
upsampling operations with multiple convolutional kernels. GCBNet 
combines global contextual awareness modules with batch-independent 
mechanisms to enhance the integrity and continuity of road object 
extraction results. In addition, the bold font in each table in the exper-
imental section indicates the best score achieved on that evaluation 
metric. 

According to Table 1, our method achieved the highest OA, Recall, 

Table 1 
The proposed DPENet was compared with 5 other methods on the Massachusetts 
Building Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

Residual U-Net 92.54  81.69  75.74  64.75  78.60 
DANet 92.60  82.76  74.67  64.62  78.51 
PSPNet101 92.83  82.35  76.86  65.99  79.51 
SAB U-Net 94.18  84.35  83.29  72.14  83.82 
CBRNet 94.67  86.59  84.61  74.81  85.59 
BuildFormer /  87.52  84.90  75.74  86.19 
DPENet 95.06  86.84  86.77  76.69  86.81  

Table 2 
The proposed DPENet was compared with 7 other methods on the Massachusetts 
Roads Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

SegNet 97.91  81.15  72.89  62.34  76.80 
PSPNet50 97.80  82.46  68.06  59.45  74.57 
Residual U-Net 97.89  79.81  74.16  62.45  76.88 
DeepLabV3 97.74  81.81  67.37  58.59  73.89 
DANet 97.87  85.26  66.58  59.70  74.77 
D-LinkNet 97.99  81.93  73.92  63.56  77.72 
Swin-Unet 97.88  77.57  71.5  63.42  77.62 
Bias U-Net /  79.14  78.53  65.06  78.83 
DPENet 98.09  80.17  79.46  66.41  79.81  
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IoU, and F1 scores on the Massachusetts Building Dataset. Compared to 
CBRNet, our DPENet shows comparable performance in terms of OA and 
Precision scores, but it outperforms in Recall, IoU, and F1 scores by 
2.16%, 1.88%, and 1.22%, respectively. Although our DPENet is lower 
than the BuildFormer method in Pre score, we are higher than it in other 
metrics. This improvement can be attributed to the stronger object 
recognition and extraction capabilities of our dual-path network in 
building extraction. 

According to Table 2, Table 3, and Table 4, our proposed method 
achieved the highest IoU and F1-Score on the Massachusetts Roads 
Dataset, LRSNY Roads Segmentation Dataset, and CHN6-CUG Roads 
Dataset, demonstrating the outstanding performance of our DPENet in 
road object extraction. On the Massachusetts Roads Dataset, DANet 
achieved the highest Precision score of 85.25%, but its performance in 
Recall score was not satisfactory, indicating the difficulty of dis-
tinguishing road objects from the environment. On the LRSNY Roads 
Segmentation Dataset, our method showed the best performance across 
all five evaluation metrics, with improvements of 0.33%, 1.22%, 1.10%, 

2.06%, and 1.17% over Bias U-Net, highlighting the effectiveness of our 
approach in the reconstruction part. According to Table 3, our proposed 
method achieved the highest OA, Recall, IoU, and F1 scores on the 
CHN6-CUG Roads Dataset. D-LinkNet performed the best in terms of 
Precision evaluation, but it did not excel in other evaluation metrics. 
Additionally, our method showed improvements of 1.55% and 3.84% in 
the two most important metrics, IoU and F1 scores, compared to 
GCBNet. We also compare with the novel Swin-Unet network, but the 
performance on the three road datasets is not very optimistic. We also 
compare with the novel Swin-Unet network, but the performance on the 
three road datasets is not very optimistic. 

4.5. Visualization analysis 

To further compare and analyze the advantages and limitations of 
our proposed method, in this section, we will present the extraction 
results of DPENet and other comparative methods on four building and 
road datasets. These datasets include the Massachusetts Building Data-
set, Massachusetts Roads Dataset, LRSNY Roads Segmentation Dataset, 
and CHN6-CUG Roads Dataset. 

As shown in the red boxes in Fig. 6, our method demonstrates 
excellent capture and extraction of smaller building objects on the 
Massachusetts Building Dataset, with extracted results exhibiting regu-
lar shapes close to the Ground Truth. The comparison of extraction re-
sults in the second row also indicates the high integrity of our method in 
extracting building objects. On road remote sensing image datasets such 
as the Massachusetts Roads Dataset, LRSNY Roads Segmentation Data-
set, and CHN6-CUG Roads Dataset, our method also showcases 
outstanding object extraction capabilities. When comparing our method 
to Swin-Unet, it becomes evident that the road objects extracted by our 
approach exhibit a notably higher degree of regularity along their edges. 
In Fig. 7, the extraction results in the first row reveal that other methods 
struggle to capture small forks within the red boxes, and both the DANet 
and D-LinkNet methods exhibit incomplete object extraction. However, 
our method successfully extracts such fork-like objects comprehen-
sively. The object extraction results of several comparative methods 
presented in Fig. 8 are satisfactory, as they capture road objects effec-
tively. The only potential drawback is the difficulty in distinguishing 
subtle gap areas between multiple roads. Nonetheless, compared to the 
DeepLabV3Plus method, which performs well in gap distinction, our 
method still maintains an advantage. In Fig. 9, the red box in the first 
row highlights the triangular flower bed in the middle of the intersec-
tion, which is a challenging area to differentiate in road object extrac-
tion and can be misleading. However, compared to other comparative 
methods, our method is capable of separating the triangular flower bed 

Table 3 
The proposed DPENet was compared with 7 other methods on the LRSNY Roads 
Segmentation Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

SegNet  97.54  92.80  91.29  85.25  92.04 
PSPNet101  97.84  93.40  92.64  86.94  93.01 
Residual U-Net  97.53  92.72  91.27  85.16  91.99 
DeepLabV3  97.51  93.23  90.59  85.00  91.89 
DeepLabV3plus  97.80  93.09  92.75  86.78  92.92 
DANet  97.66  94.42  90.32  85.74  92.32 
Swin-Unet  97.22  90.96  91.19  83.61  91.07 
Bias U-Net  97.83  93.42  92.57  86.90  92.99 
DPENet  98.16  94.64  93.67  88.96  94.16  

Table 4 
The proposed DPENet was compared with 7 other methods on the CHN6-CUG 
Roads Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

U-Net 96.36 74.61 55.34  46.58  63.54 
SegNet 96.69 76.24 61.46  51.58  68.06 
Residual U-Net 96.39 71.39 61.78  49.52  66.24 
DeepLabV3 96.92 77.63 64.93  54.70  70.72 
DeepLabV3plus 96.86 74.86 68.27  55.54  71.41 
D-LinkNet 96.91 79.06 62.72  53.79  69.95 
Swin-Unet 96.85 73.46 70.48  56.18  71.94 
GCBNet / / /  60.44  72.70 
DPENet 97.37 74.79 78.37  61.99  76.54  

Fig. 6. An example of the extraction results of DPENet and several other methods on the Massachusetts Building Dataset.  
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more completely. The extraction results within the red box in the second 
row of Fig. 9 demonstrate that our method also excels in complex road 
environments. However, it may slightly struggle in extracting auxiliary 
lanes and differentiating open spaces with colors similar to the road, 
leading to errors in detecting small regions. In addition, compared with 
Swin-Unet, our method excels in extracting road objects with a higher 
degree of regularity along their edges. This enhanced regularity results 
in smoother and more precisely defined road boundaries, leading to 
improved accuracy and consistency in road object segmentation. Our 
approach carefully preserves the intricate details and fine-grained fea-
tures of road edges, ensuring that the extracted road objects closely 

adhere to their actual shapes and contours. This level of precision is 
particularly valuable for applications such as autonomous driving and 
urban planning, where accurately delineated road boundaries are crit-
ical for safe and effective navigation and analysis. 

4.6. Ablation experiment analysis 

In this section, we primarily analyze the effectiveness of the com-
ponents of the proposed DPENet model in extracting building and road 
objects. We conducted ablation experiments and evaluated them on four 
datasets. Through quantitative and qualitative analyses, we explored the 

Fig. 7. An example of the extraction results of DPENet and several other methods on the Massachusetts Roads Dataset.  

Fig. 8. An example of the extraction results of DPENet and several other methods on the LRSNY Roads Segmentation Dataset.  

Fig. 9. An example of the extraction results of DPENet and several other methods on the CHN6-CUG Roads Dataset.  
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impact of different sub-components on the model’s performance in order 
to gain a better understanding of their roles. M (Multi-residual combi-
nation mechanism), G (Global information extraction branch), D (Deep 
monitoring strategy). 

According to Table 5, we introduced a residual mechanism in each 
convolutional operation of the U-Net network and used it as our baseline 
model. We performed supervised training on images and labels using 
BCE loss and Dice loss, and introduced multiple losses during the 
training process. As shown in Table 6, these improved models demon-
strated significant performance improvements. On the Massachusetts 
Building and Roads Dataset, the IoU and F1 scores increased to 75.45% 
and 86.01%, respectively. After introducing the multiple residual 
mechanism, the IoU score on the Massachusetts Building Dataset 
increased by 0.45%, and the Recall on the Massachusetts Road Dataset 
increased by 0.48%. Subsequently, we further introduced the global 
branch, which slightly improved the IoU scores by 0.22% and 0.19% 
respectively. Finally, by introducing the deep supervision strategy, the 
IoU score on the Massachusetts Building Dataset significantly improved 

from 76.12% to 76.69%. On the Massachusetts Road Dataset, the Pre 
score increased from 79.55 to 80.17. This is because the deep supervi-
sion strategy effectively supervises the lower-resolution and smaller- 
scale Massachusetts road and building datasets. As shown in Fig. 10, 
in the extraction results of Massachusetts roads and buildings, the 
completeness of the objects gradually improved, especially within the 
closed-loop regions of the building and road objects. Our proposed 
comprehensive network effectively controls the boundaries of the 
extraction results and obtains more refined results. 

We performed ablation experiments and analysis on the LRSNY 
Roads Segmentation Dataset and CHN6-CUG Roads Dataset to provide 
additional evidence of the effectiveness of our proposed method. As 
demonstrated in Table 6 , Table 7 and Table 8, our comprehensive 
network (Baseline + M + G + D) achieved the highest IoU and F1 scores 
on both datasets, validating the effectiveness of our method. After 
introducing the multiple sampling module on the LRSNY Roads Seg-
mentation Dataset, the IoU and F1 scores increased from 88.09% and 

Table 5 
Experimental analysis of ablation on the Massachusetts Building Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

Baseline  94.77  86.13  85.89  75.45  86.01 
Baseline + M  94.91  86.97  85.63  75.90  86.30 
Baseline + M + G  94.93  86.50  86.38  76.12  86.44 
Baseline + M + G + D  95.06  86.84  86.77  76.69  86.81  

Table 6 
Experimental analysis of ablation on the Massachusetts Roads Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

Baseline  98.05  79.38  79.59  65.95  79.48 
Baseline + M  98.06  79.15  80.07  66.13  79.61 
Baseline + M + G  98.07  79.55  79.94  66.32  79.75 
Baseline + M + G + D  98.09  80.17  79.46  66.41  79.81  

Fig. 10. An example of the results obtained from the ablation experiments conducted on the Massachusetts Building and Roads Dataset.  

Table 7 
Experimental analysis of ablation on LRSNY Roads Segmentation Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

Baseline  98.04  93.90  93.44  88.09  93.67 
Baseline + M  98.14  94.29  93.72  88.69  94.00 
Baseline + M + G  98.19  94.60  93.70  88.94  94.14 
Baseline + M + G + D  98.16  94.64  93.67  88.96  94.16  

Table 8 
Experimental analysis of ablation on CHN6-CUG Roads Dataset.  

Method OA(%) Pre(%) Recall(%) IoU(%) F1(%) 

Baseline  97.24  77.43  73.05  60.23  75.18 
Baseline + M  97.29  77.76  73.79  60.93  75.72 
Baseline + M + G  97.33  77.81  74.62  61.52  76.18 
Baseline + M + G + D  97.37  74.79  78.37  61.99  76.54  
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93.67% to 88.69% and 94.00%, respectively. The introduction of the 
global branch resulted in a 0.25 improvement in the IoU score. The 
introduction of the deep supervision mechanism on the LRSNY dataset 
showed only slight improvements. By observing the extraction results in 
Fig. 11, we can observe a significant improvement in the comprehensive 
network’s ability to control the spacing areas between roads. 

After introducing the multiple sampling mechanism to the Baseline, 
the IoU and F1 scores on the CHN6-CUG dataset increased by 0.7% and 
0.54% respectively. As shown in Fig. 11, the results with multiple 
sampling are more refined. By adding the global branch and deep su-
pervision, significant improvements in the IoU and F1 scores of the 
extraction results can be observed in Table 8. Fig. 11 also demonstrates 
noticeable enhancements in object recognition and shape control in the 
extraction results, further confirming the effectiveness of our proposed 
multiple sampling, global branch, and deep supervision. 

5. Conclusion 

This paper presents a dual-path extraction network based on CNN 
and Transformer for extracting building and road objects from optical 
remote sensing images. To enhance the utilization of image features, we 
construct a CNN-based local spatial information branch and a 
Transformer-based global information branch from the perspectives of 
global dependencies and local spatial information. This effectively in-
tegrates global and local information to enhance the network’s extrac-
tion capability. In addition to the dual-path extraction structure, we 
propose a multi-view multi-sampling mechanism for the reconstruction 
part of the network, increasing the complexity of the reconstruction and 
promoting the reconstruction of image features. To improve the accurate 
reconstruction of objects at different resolutions, we employ a deep 
supervision strategy combined with a multi-level upsampling 
mechanism. 

During the testing phase, we utilize four publicly available building 

and road datasets: Massachusetts Building Dataset, Massachusetts Roads 
Dataset, LRSNY Roads Segmentation Dataset, and CHN6-CUG Roads 
Dataset. Additionally, we compare our network with several advanced 
extraction methods through quantitative and qualitative comparisons. 
The results on all four datasets demonstrate highly satisfactory perfor-
mance. On the Massachusetts Building and Roads Dataset, we achieve an 
IoU of 76.69% and 66.41% and an F1-score of 86.81% and 79.81% 
respectively. On the LRSNY and CHN6-CUG Roads Dataset, we achieve 
an IoU of 88.96% and 61.99% and an F1-score of 94.16% and 76.54% 
respectively. To further validate the effectiveness of the proposed 
components, we conduct ablation experiments and perform quantitative 
and qualitative analyses of the results. The experimental results show 
significant improvements brought by each component on the building 
and road datasets. The qualitative analysis of the extraction result ex-
amples further confirms the constraining roles of different components 
in the recognition and extraction of building and road objects. 
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