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Abstract: The convolutional neural networks (CNNs) functioning on geometric learning for the
urban large-scale 3D meshes are indispensable because of their substantial, complex, and deformed
shape constitutions. To address this issue, we proposed a novel Geometry-Aware Multi-Source
Sparse-Attention CNN (GeoSparseNet) for the urban large-scale triangular mesh classification task.
GeoSparseNet leverages the non-uniformity of 3D meshes to depict both broad flat areas and finely
detailed features by adopting the multi-scale convolutional kernels. By operating on the mesh edges
to prepare for subsequent convolutions, our method exploits the inherent geodesic connections
by utilizing the Large Kernel Attention (LKA) based Pooling and Unpooling layers to maintain
the shape topology for accurate classification predictions. Learning which edges in a mesh face
to collapse, GeoSparseNet establishes a task-oriented process where the network highlights and
enhances crucial features while eliminating unnecessary ones. Compared to previous methods, our
innovative approach outperforms them significantly by directly processing extensive 3D mesh data,
resulting in more discerning feature maps. We achieved an accuracy rate of 87.5% when testing on an
urban large-scale model dataset of the Australian city of Adelaide.
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1. Introduction

The 3D scene or shape analysis of a concoction of dense, complex, curved surfaces,
or irregular geometries of meshes in large urban environments including buildings, trees,
cars, and other elements has been made possible by recent developments in 3D computer vi-
sion and photogrammetry [1]. To enable the use of these meshes in a variety of applications,
such as smart urban planning, navigation systems, virtual reality, radiation estimation,
noise modeling, and photovoltaic perspective, it is essential to extract semantic information
from the mesh models [2,3].

For semantic classification of 3D mesh data, a trivial number of machine learning-
based algorithms are available; and their primary focus is to process 3D point clouds [4,5].
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