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Abstract—Estimation of urban surface temperature is crucial
for urban planning and emergency management. Due to the
complexity of intracity structures, it is very challenged to acquire
satisfied prediction errors of the Land Surface Temperature
(LST) at very high resolution, like 60-by-60 meters. By consider-
ing this, we propose a low-cost method for generating urban point
clouds via readily accessible city data. Then we design an efficient
descriptor, GeoFeature Distribution Matrix (GFDM) to describe
the complex intracity structure. By utilizing GFDM, we introduce
a 3D Urban structure guided temperature Prediction network
(3D-UP Net) to capture the complex relationship between urban
structure, upper atmospheric conditions, and surface temper-
ature. The proposed 3D-UP Net is generalizable, capable of
predicting future surface temperature for existing cities and even
for those that are planned. Experiments conducted in multiple
regions of China demonstrate that our method’s error is less than
1.5 Kelvin (in most cases) at a high resolution (60-by-60 meters).

Index Terms—Land surface temperature, point cloud, deep
neural network.

I. INTRODUCTION

W ITH the acceleration of global warming and urban-
ization, the variation in urban temperature has be-

come a prominent research topic in recent years. Effec-
tive urban planning and infrastructure-based growth strategies
are increasingly dependent on accurate high-resolution urban
climate predictions[1], [2]. Cities, which concentrate large
populations and infrastructures, are epicenters for significant
climate-driven impacts[3], [4]. Predicting Land Surface Tem-
perature (LST) with high resolution and precision presents
considerable challenges due to the extensive heterogeneity[5]
and the complex effects of human behaviours, such as seasonal
variations, diurnal temperature differences, urbanization, pop-
ulation density, and energy structure, etc[6], [7], [8], [9]. While
high-resolution urban LST data for historical periods can be
readily acquired via satellite, forecasting future high-resolution
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urban LST remains a difficult endeavor. Seasonal forecasts or
long-term projections from climate models are either at coarse
resolutions(>1 km) [1], [2] or integrate the urban landscape
well[10].

Previous research has approached surface temperature using
dynamic downscaling and statistical downscaling methods.
Dynamic downscaling, exemplified by models such as the
Weather Research and Forecast (WRF) model[11], calculates
the temperature field based on the urban atmospheric boundary
layer. Although it is computationally demanding, the highest
resolution typically achievable is between 1-2km[2], [12], [13].
Meanwhile, the performance of the statistical downscaling
methods are strongly rely on the selection of the temperature-
related features such as land cover, vegetation indices and
other observational data[14], [15], [16], [17]. Such a way will
make the model hard to get generalizable prediction results,
because the choice of feature maybe arbitrary and lack of
physics representation in the statistical models[18], [19], [20],
[21]. Both of these methods have limitations when it comes
to high-resolution LST prediction, making it challenging to
predict temperatures for diverse and future urban landscapes.

Actually, high precision urban temperatures is highly re-
lated to local urban structures, the unique urban struc-
ture can cause local temperature fluctuations compare to
the surroundings[22]. To address this, recent work proposed
DeepUrbanDownscale(DUD)[23], a deep learning framework
that leverages high-precision 3D point clouds. DUD captures
the structural features of urban surface by converting 3D point
clouds into the novel local spatial coefficient index (LSCI).
This combination of high-resolution 3D point clouds with
atmospheric data enables the physically meaningful prediction
of urban LST at both high-resolution and high-precision.
However, obtaining high-resolution urban 3D point clouds
data and their semantic label, particularly at the extensive
scale required for cities, presents challenges due to its limited
availability, affecting the model’s generalizability. At the same
time, with the development of remote sensing, remote sensing
images have been applied to scientific research[24], [25], [26],
[27] and have achieved considerable results. By considering
this, [28] proposed Physics Informed Hierarchical Perception
(PIHP) network, which try to utilize high resolution remote
sensing images to generate urban surface in a cheaper way.
However, due to the lost of 3D urban texture, such a method
may lead to the unsatisfied generalization of the model.

In this study, we firstly propose the generated point clouds
for urban structure description in a low cost way. Specifically,
the urban generated point cloud is built by Digital Surface
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Fig. 1. Distribution of the selected urban in China.

Mode(DSM) and 3D Building Model, meanwhile the 3D
semantic label of the point cloud is propagated from the corre-
sponding label of high resolution remote sensing images. Then
based on this, we further design a learning based framework
to predict high-resolution urban LST. Such a framework make
it possible to generate high precision point clouds for various
cities, thus supporting to get generalizable models for large
range, like the whole China. In this framework we firstly
propose GeoFeature Distribution Matrix (GFDM) to further
abstract the generatred point cloud. The GFDM is able to
capture the features of the point cloud at adjustable resolution,
we also demonstrate mathematically that the GFDM is equiv-
alent to the the original point clouds at the finest resolution.
Based on this, we further propose 3D Urban structure guided
temperature Prediction network (3D-UP Net), different from
previous works[23][28] that employed the MLP framework,
our 3D-UP Net utilizes a convolutional framework, which
allows for more effective extraction of local urban structures.
such a network comprehensively considers the affection of
the atmosphere condition, terrain, and urban structure to LST,
thus able to provide high precision results and better model
generalization.

In the experiments, we rigorously tested our model across
over 30 major or provincial capital cities in China to evaluate
the performance of the model we proposed, Compared with
previous work[23], our model is capable not only of predicting
future LST for cities involved in the training but also for
cities that were not involved in the training dataset. And
we compared our 3D-UP Net with several point cloud-based
methods, including PointNet, PointNet++, and Point Cloud
Transformer(PCT), as well as with the current state of the
art method, PIHP-net. Our results show that the prediction
error for LST was reduced to below 1.7 Kelvin, representing
a 14.2% decrease in error compared to PIHP-net.

II. STUDY AREA AND DATA

In this study, 30 major or provincial capital cities across
China were selected as the study areas, as illustrated in Fig.1.
These cities encompass a variety of terrain types, including

Fig. 2. Visualization of remote sensing images and their segmentation. (a)
Visualized map of the labeled. Inferred semantic categories (water, buildings,
vegetation, soil, roads/pavements, and unknown) with text colored by the label
color. (b)Satellite remote sensing images of Guangzhou,China.

metropolitan areas, mountains, and bodies of water. To im-
plement our 3D-UP Net, we collected and processed a suite
of datasets from diverse sources within these regions. Each
city chosen is characterized by high levels of urbanization
and population density, making them particularly relevant
for research that aims to enhance urban planning, contribute
to carbon neutrality efforts, and improve climate prediction
accuracy. Specifically, six distinct datasets are collected and
processed for this paper, as described below:

The first dataset utilized in this research is the Landsat-
based Ready-to-use (RTU) land surface temperature product,
sourced from the CASEarth DataBank system1. This dataset is
derived from the USGS’s Landsat8 OLI/TIRS sensor, featuring
a spatial resolution of 30 meters. LST retrival for this prod-
uct employs a single channel algorithm [29]. Data spanning
from 2014 to 2019 were collected for regions specifically
encompassing urban landscapes. In line with our objective to
determine block-level urban temperatures from satellite data,
the urban areas within each region were divided into 60m-
by-60m segments for analysis in our study. Consequently, the
LST data was resampled to match a 60-meter resolution to
facilitate our experimental needs.

The second dataset comprises nationwide remote sensing
images of major and provincial capital cities in China which
is the combination of surface reflectance image in red, green,
and blue bands. Fig.2 (a) and (b) provide examples from
GuangZhou, China: (a) displays the semantic labels visually,
with different urban surface attributes distinguished by varying
colors. while (b) presents the original remote sensing image.
These multi-spectral remote sensing images, obtained from the
Google Earth website2, boast a resolution of 1 meter and cover
all major provinces and key cities across China. The dataset
not only includes spectral data, but also integrates pixel-level
labeling of the remote sensing imagery, revealing a robust
correaltion with LST and surface attributes. Each pixel has
been automatically categorized into predefined classes such as

1http://databank.casearth.cn/
2https://earth.google.com/
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Fig. 3. (a) Visualization of Urban 3D Building Model of Guangzhou. (b) Visualized map of Digital Surface Model of Guangzhou. It should be pointed out
that the blank area in (a) represents null, while the blank area in (b) represents low altitude areas

water, buildings, vegetation, soil, and roads/pavements, etc.,
employing a classification technique [30] with an accuracy of
96.5%.

The third dataset is the Digital Surface Model (DSM), an
open-access dataset provided by JAXA, which is available for
downloaded for free in3. The DSM is a three-dimensional
representation that captures the Earth’s surface, including all
natural and man-made objects like buildings and vegetation.
It is constructed using stereophotogrammetry techniques. This
DSM dataset is particularly valuable in geographic information
science, remote sensing, and urban planning for its ability to
offer precise elevation of both terrain and surface features.

The fourth dataset consists of an Urban 3D Building Model,
which is publicly accessible and can be downloaded from
Baidu Map4. This dataset captures the height information
of urban structures, such as streets and buildings, with a
resolution of 1 meter, However, it’s worth noting that the
Urban 3D Building Model is relatively sparse. It records only
building information and lacks details on other features like
river terrain, which poses challenges for direct usage. Fig. 3
shows the disparity between the original density of urban 3D
building models and the DSM.

The fifth dataset employed in our study is the atmospheric
forcing data, sourced from the NASA MERRA-2 reanalysis
data system [31]. This dataset is freely available through the
NASA MERRA-2 website5. It features a spatial resolution of
0.5o latitude × 0.625o longitude and offers daily temporal res-
olution, providing a snapshot of the general weather conditions
over the city for each day. The specific variables included in
this dataset are detailed in Table I.

The Last dataset is the temperature measured by the weather
station from the website of China’s National Greenhouse
Data System6. The dataset contains temperatures measured at
weather stations in urban centers in 30 cities for each day
from 2014-2019. And the kind of temperatures used is daily
average air temperature at 2m.

Due to national policy restrictions, the original high-
resolution multispectral satellite remote sensing imagery can-
not be openly shared. Nonetheless, we have made the com-

3https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/
4https://lbs.baidu.com
5https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
6http://data.sheshiyuanyi.com/WeatherData/

TABLE I
ATMOSPHERIC FORCING DATA. THE AIR TEMPERATURE IN THIS STUDY
MEANS THE ATMOSPHERIC TEMPERATURE AT THE REFERENCE HEIGHT

(60M ABOVE THE SURFACE CANOPY TOP) IN REANALYSIS DATA OR
CLIMATE MODELS.

Type Name

Land Surface Forcings
Surface absorbed longwave radiation

Surface income shortwave flux
Land Surface Diagnostics Total precipitation land

Single-Level Diagnostics

Atmospheric temperature max
Atmospheric temperature mean
Atmospheric temperature min

Analyzed Meteorological Fields

Surface pressure
Atmospheric temperature at the reference height

Eastward wind
Northward wind

Specific humidity

puted GeoFeature Distribution Matrix (GFDM) available, with
further details presented in the Methods section. The complete
dataset will be disseminated via an FTP server at a subsequent
stage.

III. METHODS

In this study, we utilize the Land Surface Temperature (LST)
data measured by Landsat as our training labels. Although
the LST measured by Landsat does not reflect the urban
surface temperature well compare to that measured by weather
stations, the reason we still chose Landsat-measured LST as
the training label is because not every city has the weather
station, and the locations of weather station are very sparse,
also lacking high-resolution LST data of whole city. But
meanwhile, Landsat can measure the LST of most areas with
high resolution.

Land Surface Temperature of cities is influenced by nu-
merous factors, including urban meteorology, human activ-
ities, and the structure of the city itself. It is known from
[32] that Landsat calculates the LST by regressing the Top
of Atmosphere Reflectance against Surface Emissivity. And
Surface Emissivity is closely related to the urban surface
materials and structures[33]. Also, in [34] has proposed that
based on the current observed forcing data, MERRA-2 model
can utilize the 3DVAR algorithm on the GSI to predict short-
term future forcing data. Based on the availability of these
two sets of data and their correlation with LST, we can
predict urban surface temperature based on urban structure
and meteorological information.
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Fig. 4. Flowchart of the proposed framework for predicting the LST.

By consider of this, we have developed the 3D Urban
structure guided temperature Prediction network (3D-UP Net).
Our work is divided into four stages: 1) Generate Point
Clouds; 2) Build GeoFeature Distribution Matrix (GFDM) 3)
Prediction of rough LST; 4) Forcing Correction. The workflow
for predicting LST is shown in Fig. 4. In stage 1, we generate
three-dimensional point clouds of the city by combining the
3D Building Model, Digital Surface Model (DSM), and remote
sensing labels. In stage 2, we convert the three-dimensional
point clouds into GFDM descriptors. In stage 3, we input the
GFDM, Forcing Data, and DSM into the network to predict
rough LST. In stage 4, we input the Forcing Data and DSM
into the Forcing Correction module to obtain the correction
value for LST, which is then combined with the rough LST
to obtain the final LST prediction value.

A. Generation of Point Clouds

Initially, the satellite imagery undergoes pixel-wise semantic
labelling using an image ground target classification network
[30], segmenting the image into geophysical categories such
as water, soil, roads, buildings, vegetation, and others. The
resolution of these semantic labels is 1 meter. Subsequently,
in order to fuse the Digital Surface Model (DSM) with remote
sensing image labels, we use the bilinear interpolation method
to increase the resolution of the DSM to 1 meter. Thirdly,
after utilizing these dataset to construct the 2D urban elevation
image, we delineate the contour lines at different heights
across the cityscape, then, we subtract the average altitude
of the city to avoid unnecessary point clouds generated by
the city base. Along these contours, points are added at 1-
meter intervals in the vertical direction. This step results in
the creation of the basic generated point cloud of the city.

Fig. 5. The illustration of the generated point cloud and GFDM. (a) Original
remote sensing images. (b) Land surface semantic label image, different colors
represent different categories. (c) Generated point cloud combining labels. (d)
The background is a part of (b) and the red dashed grid represents the 60-by-
60 meter pixels. (e) A example of GFDM. For each pixel, we can calculate
the percentage and average height of each category in one pixel. There are d
categories in total, so each pixel corresponds to a vector of 1× 2d.

We then assign the corresponding semantic labels to the basic
point cloud, culminating the formation of a labeled city-
generated point cloud. The methodology for generating these
point clouds is outlined as follows, and an example of the
generated point cloud is displayed in fig. 5:

H(x, y) = DSM(x, y) +BM(x, y) (1)

h(i) = min(H)+i−DSMavg (0 ≤ i ≤ max(H)−min(H))
(2)
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F (i) = f(h(i)) = (xi, yi) (3)

P = (x, y, z, l) = (F (i), k, L(F (i))){
for k = 0 to h(i) k++ h(i) > 0,

for k = 0 to h(i) k- - h(i) < 0.

(4)

Where DSM(x, y) represents the height of DSM at coordi-
nates (x, y), BM(x, y) denotes the height of the 3D Building
Model at the same coordinates and DSMavg represents the
average height of DSM. The term h(i) signifies the height
of the ith contour line, while F (i) designates the horizontal
coordinate (x, y) of the ith contour line. L(x, y) corresponds
to the the urban remote sensing image labels at (x, y). Finally,
P symbolizes the generated point cloud.

B. GeoFeature Distribution Matrix (GFDM)

To integrate the structural information of the generated point
cloud into the neural network, one straightforward approach is
feed the entire 3D point cloud of a local area directly into the
network through point-based networks, as suggested in studies
such as [35], [36] and [37]. However, our research found
that the enormous scale of the city and complexity of urban
surface features, coupled with the high memory requirements
of processing point cloud, compromises the overall system’s
feasibility. This complexity hinders the method’s ability to
capture the general relationship between regional average
temperature and local geometric data. Moreover, the intracity
LST is closely related to the local neighborhood structure.
By considering these, we have designed a descriptor GFDM,
which aggregates potential factors influencing local urban sur-
face temperature. By utilizing GFDM, memory requirements
can be significantly reduced and local neighborhood structure
can be efficiently transmitted.

GFDM comprises two key components: the semantic pro-
portion index P and the semantic structure index S. The
semantic proportion index quantifies the proportion of each
semantic labels within a pixel, whereas the semantic structure
index calculates the average height of structures corresponding
to each semantic labels within the same pixel. This approach
facilitates an abstraction of spatial configurations, surface
roughness, and building verticality, all of which are influential
factors in local atmospheric turbulence on the urban surface.

The Land Surface Temperature (LST) images of urban
surface are sourced from land satellites and feature a spatial
resolution of 60 × 60 meters. In our method, the preliminary
semantic labeling process identifies five primary temperature-
related structural categories: water, buildings, vegetation, soil,
and road/pavement, as shown in fig. 2. Following this, as
illustrated in fig. 5 (c), we generate a point cloud of the city,
where the various colors in the point cloud represent different
urban surface categories. Subsequently, this generated point
cloud is divided into pixel that corresponding to the pixel of the
LST images. Within each pixel, we calculate the proportion of
each category present in the point cloud to obtain the semantic
proportion index. Similarly, we compute the average height

within each pixel of the point cloud to obtain the semantic
structure index.

Specifically, the GFDM is quantified by the following
equation:

a(i, j) =

{
1 if L(i) = j,

0 if L(i) ̸= j.
(5)

pj =

∑n
i=1 a(i, j)∑n

i=1

(6)

sj =

∑n
i=1 H(i) ∗ a(i, j)∑n

i=1 a(i, j)
(7)

dxy = (p1, p2, . . . , s1, s2, . . . ) (8)

GFDM =

 d11 . . . d1w
...

. . .
...

dh1 . . . dhw

 (9)

where i denotes the point number i, and n represents the
total number of points. The term pj refers to the semantic pro-
portion index of label j within the pixel, while sj corresponds
to the semantic structure index of label j within the pixel.
The variable dxy defines the descriptor of GFDM for row x
and column y. Lastly, w and h indicate the width and height
dimensions of the GFDM. Fig. 5 demonstrates examples of
the constructed GFDM.

One may question how the GFDM can effectively substitute
point clouds as descriptors to capture the essence of local
geometric information. This can be understood through the
following equation:

lim
M→M0

pj =

{
1 if L(x, y) = j,

0 if L(x, y) ̸= j.
(10)

lim
M→M0

sj =

{
1/2H(x, y) if L(x, y) = j,

0 if L(x, y) ̸= j.
(11)

dxy =

(
L(x,y)−1︷ ︸︸ ︷
0 · · · 0 1 . . . 1

2H(x, y)

n−L(x,y)︷ ︸︸ ︷
0 · · · 0

)
(12)

GFDM [x, y] = dxy ≡ P = (x, y,H(x, y), L(x, y)) (13)

Let M denotes the resolution of GFDM, and M0 represents
the resolution of point cloud which is 1 meter. As the resolu-
tion of GFDM approaches that of the point cloud, we observe,
according to equation 4, that each pixel has points only in
vertical direction. Consequently, in such a configuration, there
can only be a singular category of points within any given
coordinate(x, y), which renders the value of pj in this pixel to
be either 1 or 0, as depicted in equation 10. Concurrently, the
average height of the point cloud within the pixel approximates
to either half of the height of the coordinate(x, y) or 0, as
demonstrated in equation 11. Utilizing the values of pj and sj
at (x, y), we can construct dxy via Equation 12. Further, as
shown in Equation 13, by applying GFDM(x, y), we can

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3439608

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on August 08,2024 at 15:21:41 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 6

Fig. 6. An overview of 3D Urban structure guided temperature Prediction network(3D-UP Net)

deduce both H(x, y) and L(x, y) to generate point P by
GFDM(x, y). Thus, GFDM effectively replicates the impact
that the generated point cloud would have.

C. 3D Urban structure guided temperature Prediction network
(3D-UP Net)

The architecture of our proposed 3D-UP Net is depicted
in Fig. 6. Diverging from previous approaches[23][28] that
employed Multi-Layer Perceptron (MLP) to extract feature
in a single pixel(60-by-60 meters), our study harnesses con-
volutional framework to extract feature from pixel and its
surrounding pixels. This methodology shift is inspired by the
strong relationship between LST and the local neighborhood
structure[38]. Compare to MLP, convolutional framework can
better extract spatial relationships between a pixel and its
surrounding.

The input of 3D-UP Net including GFDM, DSM, Forcing
Data, which is mentioned in Section II and Section III-B.
And the finalLST is the output of the net. And the 3D-
UP Net is structured into three components: Local Surface
Feature Extraction, Local Surface Feature Fusion and Forcing
Correction.

1) Local Surface Feature Extraction: The initial phase in
the Local Surface Feature Extraction involves fusing the urban
remote sensing image labels, DSM, and 3D Building Model

to form a point cloud. Using previous discussed equations, we
then construct the GFDM. Features from the GFDM, DSM,
and atmospheric forcing data are extracted concurrently via
their respective Feature Extractors operating in parallel.

To delve into the structural details of the urban surface, we
employ the structre of ResNet [39], designed to extract features
that reveal local surface characteristics and spatial structure
from the three types of data. The Feature Extractor is crucial
for the neural network to detect high-resolution variations in
urban surface temperature. It comprises a 5-stage network,
where each stage contains a convolution block which is shown
in Fig. 6.

2) Local Surface Feature Fusion: Upon completing the
Local Surface Feature Extraction phase, the extracted features
from the GFDM, DSM, and Foricng Data are concatenated,
resulting a composite local surface feature. This composite
feature is then input into the Local Surface Feature Fusion
module to obtain the rough LST. The fusion module comprises
four convolutional blocks which is shown in Fig. 6 .

3) Forcing correction: As is well known, urban LST is
closely related to forcing data. However, the Forcing Data
we obtain can only reflect the atmospheric environment over
the city, and the surface temperature predicted based on such
Forcing Data can only reflect the temperature over the city,
which has a significant difference from the actual surface tem-
perature. To quantify this difference, we collected data from
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Fig. 7. Comparing the temperature from weather stations, forcing and average
LST. The ordinate represents the temperature in Celsius (°C). The abscissa
represents the city number.

weather stations across 30 well-known cities in various climate
zones of China, covering around 40 different seasons. We then
calculated the average temperatures near the surface from the
weather station and the higher atmospheric temperatures from
the forcing. These averages were plotted on a scatter plot, as
shown in Fig. 7. Despite the differences between the LST from
forcing and those measured by weather stations exist, a strong
correlation exists overall (with a relatively fixed difference for
unique city). However, weather station data is not available for
every city or region, based on this fact, we designed a forcing
correction module to simulate the correction value between the
actual LST and the satellite-measured LST, to more accurately
reflect near-surface conditions.

Since the Digital Surface Model (DSM) reflects the terrain
structure of an area, and the forcing data which is mentioned
in Table.I reflects the meteorological information of the area,
using the forcing correction module is akin to solving the
physical equations in a process-based model through deep
learning, essentially acting as a dynamic simulator. We input
the forcing data and DSM, convert the DSM’s channels to
match those of the forcing data using a 1x1 convolution, then
add them together. After a series of convolutions, we obtain
the correction value, as specifically calculated in figure 6.

4) Loss function: In contrast to previous studies[23][28]
that adopted root mean square error (RMSE) as their loss
function, our approach utilizes Weighted Mean Square Error
(WMSE) to account for the loss. The rationale for this choice
is based on the unique feature of urban LST prediction, where
certain areas such as rivers, industrial zones, and roads exhibit
significant deviations from the average LST. Unlike RMSE,
Mean Square Error (MSE) omits the square root operation,
rendering it highly sensitive to these areas with marked biases.
Consequently, MSE is more effective in training the model
recognize the distinctive features of such regions. Furthermore,
we incorporate weights to MSE to emphasize these outliers,
ensuring that data with larger prediction errors have a pro-
portionally greater influence on the total loss. Nonetheless, to
maintain consistency with prior work and ensure fairness in
comparison, we employ RMSE as the performance metric for
evaluation. The loss function is formulated as follows:

W = |Y − Ŷ | (14)

Li(Yi, Ŷi) = W × (Yi − Ŷi)
2 (15)

Loss =
1

n

n∑
i=1

(Li(Yi, Ŷi))
2 (16)

where Y represents the ground truth matrix of LST, and Ŷ
denotes the predicted LST matrix. The term W signifies the
residuals between the ground truth and predictions. By taking
the absolute value of W , we ensure it is always a positive
quantity, which concurrently serve as the weight in our WMSE
calculation. Thus, larger prediction errors are weighted more
heavily, contributing more significantly to the overall loss.

IV. RESULTS AND DISCUSSION

A. Implementation details and baselines

1) Implementation details: In alignment with the method-
ologies from previous studies [40], we have quantified the
performance of our models on the test datasets using the
RMSE, defined as:

RMSE =

√√√√ n∑
i=1

(ŷi − yi)
2
/n (17)

Our implementation of the 3D-UP Net leverages PyTorch
[41] as the underlying framework. The training of our network
is conducted end-to-end, utilizing the Adam optimizer [42]
with an initial learning rate of 0.001, and we apply a decay
rate of 0.51/500 after each epoch to improve convergence.

2) Baselines: Considering the computational demands of
dynamic equation based methods at this resolution, we’ve
focused our comparative analysis on a selection of statistical
models. This include linear regression [43], K-Nearest Neigh-
bors (KNN) regression [44], and random forest regression
[45], all implemented using Scikit-learn [46]. Additionally, we
compare our approach to deep learning methods, specifically
those based on point cloud like PointNet[36], PointNet++[47],
Point Cloud Transformer(PCT)[37] and the state-of-the-art
in the field, PIHP-net [28]. The specific parameter settings
detailed as follows:

• Linear Reg means linear regression. This model uses
linear regression for simulation, where the input is a con-
catenation of GFDM, Forcing Data, and DSM, reshaped
into 1 × d vectors for regression analysis. In essence,
linear models are structured in the following manner:

y =
∑
i

βixi + ε (18)

where y is LST, and xi is GFDM, Forcing Data, and
DSM, which are reshaped to a 1× d vector. βi indicates
how LST changes linearly with each xi, while ε is the
normally distributed error.

• KNN Reg means KNN regression. The KNN regression
model is configured with a fixed number of neighbors at
4, with the tree’s maximum depth at 30, using the same
input features as the Linear Regression model.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3439608

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on August 08,2024 at 15:21:41 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 8

• RF Reg is the random forest regression, which is set up
with a predefined number of 150 trees and used to predict
urban temperatures.

• PointNet We first employ the Farthest Point Sam-
pling(FPS) method to sample the generated point clouds
in each LST pixel into 1024 points. Then we extract
features from the generated point cloud by PointNet.
Due to computational constraints, this model predicts
temperatures for individual LST pixel, which may result
in a loss of local neighborhood structure.

• PointNet++ Due to the generated point cloud being
uniform with each point spaced 1m apart, we employ
PointNet++ as the backbone to extract features from the
generated point clouds within each LST pixel. We have
set up three layers of SSG(Single-Scale Grouping), with
the first layer having a neighborhood radius of 5m and
a point sampling number of 32; the second layer with a
neighborhood radius of 10m and a point sampling number
of 64; and the final layer samples all points.

• PCT means Point Cloud Transformer. In this experiment,
we employ PCT to extract features from the generated
point cloud, wherein we employed four layers of Trans-
formerBlock, with the number of neighbors set to 16.

• PIHP-net This approach utilizes a bidimensional empri-
cial model decomposition (BEMD) to dissect raw data
into multi-scale components, building upon established
signal processing techniques [48], [49], [50]. The method
primarily relies on MLP for prediction, rather than con-
volutional operations, which may limit its ability to
effectively capture spatial features from the surrounding
neighborhood. And in this part of the experiment, we
used the original hyperparameters.

B. Parameter Discussion and Ablation Study

In this section, we design a series of experiments to evaluate
the effects of the various components in the proposed 3D-UP
Net.

1) Discussion of GFDM Resolution: We have previously
shown in Equation 13, that as the resolution of GFDM
approaches that of the generated point cloud, GFDM can
replicate the effect on the generated point clouds. In this
experiment of parameter discussion, we evaluate how GFDM
resolution influences LST prediction.

This parameter discussion experiment involved five cities:
Guangzhou, Zhengzhou, Chongqing, Shenyang, and Xiamen,
which correspond to the south, central, west, north, and east
regions of China, respectively. We used data from 2014 to
2018 for training and data from 2019 for testing. All the
data were processed to be cloud-free, mitigating potential
anomalies in satellite temperature readings. Each city was
divided into 120 × 120 slices for training. One-third of the
dates were allocated for testing, with the remaining dates split
into 70% for training and 30% for validation .

When the resolution of GFDM set 60m, GFDM and LST
have the same resolution. When the resolution of GFDM
set 60m, 30m, 15m, 10m, and 1m corresponding to 1, 1/2,
1/4, 1/6, 1/60 the resolution of LST, respectively. In these

situation, interpolation methods were employed to adjust the
LST resolution. And when the resolution of GFDM set 120m,
we performed downsampling processing for network training.
The errors for 3D-UP Net at these resolutions are detailed
in Table II. The result shows that the resolution of GFDM
approch the resolution of LST (like 120m, 60m and 30m) has
the minimum error (1.41K, 1.35K and 1.31K).

However, increasing GFDM resolution does not necessarily
enhance 3D-UP Net’s accuracy possibility. From the Table
II, we can observe that as the resolution of GFDM is set
to 15m, 10m, and 1m, the prediction errors reach 1.45k,
1.61k, and 1.81k, respectively. This is because that employing
simple interpolation on LST to improve resolution does not
increase the effective information of LST, while in the same
convolutional framework with an identical receptive field, the
higher the resolution of GFDM, the less local neighborhood
information there is about urban structures, just like the state-
of-the-art method, PIHP-net, employs an MLP framework to
regress urban structures within individual pixel, neglecting a
substantial amount of local neighborhood structure. This also
explains why our method is able to achieve improvements.

2) Ablation of Original DSM: In 3D-UP Net, as shown
in Fig. 6, the original DSM data is a significant branch. Our
experiments indicate that incorporating original DSM imagery
influences prediction results. To validate this, we conducted an
ablation study comparing results with and without the DSM
branch, as depicted in Table III. The average RMSE for various
cities improved by approximately 7% when incorporating
DSM data. This improvement may be due to subtracting the
average altitude of the city from the construction process of the
point cloud generated by the city, and adding DSM information
can enable the network to relearn the altitude information
of the city. At the same time, adding DSM information to
the forcing correction module can enable the network to
understand the relationship between forcing data and DSM,
making it perform better in correction.

3) Ablation of Forcing Correction: In 3D-UP-Net, as
shown in Figure 6, Forcing Correction is an important compo-
nent of the network. To verify this, we conducted an ablation
study comparing the results with and without this module,
as shown in Table. IV. The errors for various cities were
significantly reduced(2.55K) after applying forcing correction.
This is because the forcing data we obtain is measured from
above the city, and the LST predicted based on this can only
reflect the temperature above the city. By incorporating this
module, we can correct the temperature above the city to the
surface temperature, as described in in Section III-C3..

Visualization of the experiments concerning GFDM resolu-
tion, DSM branches, and point based methods is provided in
Fig. 8.

C. Comparisons
To thoroughly evaluate the proposed methodology against

previous statistical and deep learning-based methods, we de-
signed two sets of experiments. The first set focuses on single
city temperature prediction to assess the model performance in
specific urban settings. The second set focuses on cities which
is ”unseen” in the training samples.
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TABLE II
THE AVERAGE TEMPERATURE ERROR OF DIFFERENT GFDM RESOLUTION SCHEMES

Resolution of GFDM Guangzhou Zhengzhou Chongqing Shenyang Xiamen Avg. Error (Kelvin)
120m 1.31 1.27 1.34 1.57 1.55 1.41
60m 1.23 1.18 1.42 1.46 1.47 1.35
30m 1.06 1.22 1.27 1.52 1.42 1.31
15m 1.37 1.27 1.37 1.73 1.51 1.45
10m 1.54 1.46 1.58 1.82 1.63 1.61
1m 1.62 1.74 1.93 1.97 1.77 1.81

TABLE III
THE ABLATION OF HOW THE DSM BRANCH AFFECT THE RESULTS

Guangzhou Zhengzhou Chongqing Shenyang Xiamen Avg. Error(Kelvin)
GFDM-30M without

DSM branch 1.13 1.39 1.32 1.52 1.67 1.41
GFDM-30M with

DSM branch 1.06 1.22 1.27 1.52 1.42 1.31

TABLE IV
THE ABLATION OF HOW THE FORCING CORRECTION AFFECT THE RESULTS

Guangzhou Zhengzhou Chongqing Shenyang Xiamen Avg. Error(Kelvin)
GFDM-30M without
Forcing Correction 3.47 4.13 3.72 4.34 3.61 3.86
GFDM-30M with
Forcing Correction 1.06 1.22 1.27 1.52 1.42 1.31

Fig. 8. Visualization of our method’s ablation experiments on the Guangzhou dataset.(a) Part of Guangzhou groundtruth visualization. (b) Groundtruth
visualization of Guangzhou. (c) GFDM-30M without forcing correction. (d) GFDM-30M without DSM branch. (e) GFDM-120M. (f) GFDM-60M. (g)
GFDM-15M. (h) GFDM-10M. (i) PIHP-net. (j) GFDM-30M.

This experiment involved 30 major or provincial capital
cities in China. However, despite using LST data measured by
Landsat, there are still some cities with insufficient LST data
to support prediction for single city. Therefore, we included

the data from these cities as training samples in the second
experiment of ”unseen” city for training .

Our study encompasses several major cities across China,
each representing a typical city from different regions of the
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TABLE V
OVERALL PERFORMANCE COMPARISON OF DIFFERENT APPROACHES ON THE EXPERIMENT OF SINGLE CITY TEMPERATURE PREDICTION. A SMALLER

VALUE INDICATES A BETTER PERFORMANCE. THE AVERAGE ERRORS OVER ALL THE CITIES OF EACH METHOD ARE SHOWN IN THE LAST COLUMN

Model
RMSE (Kelvin)

Chengdu Nanchang Zhengzhou Shenyang Guangzhou Chongqing Hefei Xiamen Yinchan Lhasa Avg. Error
Linear Reg 4.61 5.82 5.63 3.37 5.05 4.13 4.50 5.36 6.29 6.23 5.10
KNN Reg 4.88 5.73 4.14 4.50 3.33 3.98 3.41 4.22 5.41 5.37 4.51
RF Reg 3.95 5.02 4.07 3.79 3.37 3.54 3.48 4.74 5.97 4.93 4.29
PointNet 2.28 2.05 1.79 2.13 1.63 1.76 2.31 2.05 2.64 4.24 2.28

PointNet++ 1.97 1.92 1.63 1.94 1.46 1.52 1.75 2.05 2.53 4.35 2.10
PCT 1.95 2.06 1.81 1.77 1.44 1.49 2.10 1.68 2.35 4.17 2.03

PIHP-Net 1.82 1.67 2.13 1.66 1.32 1.87 1.41 1.58 2.19 4.12 1.97
3D-UP Net 1.39 1.64 1.22 1.46 1.06 1.27 1.57 1.42 2.17 3.93 1.69

Fig. 9. Visualization of temperature predicted by 3D-UP Net for single city: (a) ChengDu, (b) NanChang, (c) Zhengzhou, (d) Shenyang, (e) Guangzhou, (f)
Chongqing, (g) HeFei, (h) XiaMen, (i) Lhasa. Each colorbar’s number represents the temperature in Celsius (◦C). All visualization plots are averaged results
from the corresponding multiple data.

country. Since the urban surface structure is minimally affected
by time, the generated three-dimensional structures of cities
can be used for long-term urban LST prediction. And we also
selected urban forcing data from 2014 to 2017 as the input
training input data, with urban LST serving as the training
labels. Subsequently, we used forcing data and LST from 2018
and 2019 as the test data. We attempt to simulate and predict
the future urban LST in this manner.

1) Single City Temperature Prediction: Although statistical
methods may not be well-suited for predicting high-resolution
urban LST, there are few existing methods for high-resolution
urban LST prediction. And Statistical methods are still being
used in some cases. In addition to traditional statistical meth-
ods(linear regression, K-Nearest Neighbors (KNN) regression,
and random forest regression), we also compare our 3D-UP
net with deep learning methods based on 3D point clouds

(PointNet, PointNet++, and Point Cloud Transformer), as
well as the state-of-the-art method (PIHP-Net). The parameter
settings for each model are detailed in Section IV-A2.

The average error for each city is presented in Table V.
Additionally, the column at the end displays the average
errors for all cities combined, as derived from each analytical
method. It’s observed that traditional statistical model-based
methods yield an average error exceeding 3.33K across all
cities. Notably, the linear model exhibits the poorest per-
formance with an error of 5.10K. This is attributed to the
intricate and nonlinear nature of the interaction between Land
Surface Temperature (LST), the terrestrial surface, and the
upper atmosphere. KNN and Random Forest show variable
performance, with errors ranging from 3.33K to 5.41K.

Conversely, 3D-UP Net achieves a much lower average
error of 1.69K, closely matching the typical observational
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TABLE VI
SPLIT OF TESTING AND TRAINING CITIES FOR EACH REGION

Region City for training City for testing
South China Nanchang,Guangzhou,Haikou HongKong,Nanning
west China Guiyang,Chengdu Changsha

NorthWest China YinChuan,Xining XiAn,LanZhou
Central China Wuhan,HeFei ZhengZhou
North China ShenYang,JiNan,ZhengZhou, ShiJiaZhuang
East China Nanchang,JiNan,XiaMen Hangzhou,Nanjing

TABLE VII
COMPARISON OF RMSE ON SIX REGIONS FOR TEMPERATURE PREDICTION OF TESTING CITIES USING 3D-UP NET AND OTHER BASELINE METHODS.

THE AVERAGE ERRORS OVER ALL TESTING CITIES OF EACH METHOD ARE SHOWN IN THE LAST COLUMN

Model South China West China NorthWest China Central China North China East China Avg. ErrorNanning HongKong Changsha XiAn Lanzhou Zhengzhou ShiJiaZhuang HangZhou Nanjing
Linear Reg 4.67 4.76 5.68 6.30 4.94 5.77 3.49 5.84 5.74 5.24
KNN Reg 4.25 3.57 4.94 5.93 4.69 4.67 2.82 5.19 5.21 4.59
RF Reg 3.98 3.44 4.82 5.77 4.55 4.26 3.72 4.72 4.77 4.44
PointNet 2.91 2.47 3.52 5.24 3.26 2.86 3.54 3.71 3.43 3.42

PointNet++ 3.52 2.52 3.31 4.97 2.84 2.78 2.83 3.58 3.19 3.18
PCT 2.77 2.29 3.34 4.96 2.74 2.57 3.13 3.55 2.68 3.04

PIHP-Net 2.58 2.24 3.08 3.72 2.40 2.25 2.75 2.92 3.14 2.79
3D-UP Net 2.29 1.93 2.47 3.77 2.45 2.04 2.38 2.67 2.39 2.48

Fig. 10. Visualization of temperature predicted by 3D-UP Net for ”Unseen” city:(a) Xian, (b) Changsha, (c) Hangzhou, (d) NanNing, (e) Shijiazhuang, (f)
Hongkong. Each colorbar’s number represents the temperature in Celsius (◦C). All visualization plots are averaged results from the corresponding multiple
data.

error of satellites in some cities like Zhengzhou, Guangzhou
and Chongqing. While the point based method like Point-
Net records a average error of 2.28K, PointNet++ records
a average error of 2.10K, PCT records a average error of
2.03K, and the state-of-the-art method PIHP-Net’s error stands
at 1.97K. We found that deep learning methods based on
point clouds have made significant improvements compared to
statistical methods. This means that urban three-dimensional
point clouds can effectively reflect the urban surface structure,
thereby predicting urban land surface temperatures. Visualiza-
tions of prediction are shown in Fig. 9.

2) ”Unseen” City Temperature Prediction: There is a situa-
tion we must concerned:when there are changes in the internal
structure of the city such as urbanization. And this is precisely
the reason we designed the experiments in this section. We
conducted a series of experiments to evaluate the capability
of the 3D-UP network to predict the temperature of cities not

included in the training dataset. This study covers a range of
important cities across China, divided into southern, western,
northwestern, central, northern, and eastern regions. For each
region, 2 − 4 cities are selected for training, with 4 different
seasons per city was covered (Table VI). The remaining city
with 3− 6 season’s data serve as the test set.

Various methodologies, including Linear Regression, K-
Nearest Neighbors Regression, Random Forest Regression,
PointNet, PointNet++, PCT, PIHP-Net, and 3D-UP Net were
compared. The average errors for each method across all test
cities are compiled in Table VII. Notably, the increase in the
scale of testing leads to higher errors, particularly for statistical
models where errors in some cities exceed 7.03K. The average
error for all cities is above 4K for these models.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3439608

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on August 08,2024 at 15:21:41 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 12

Fig. 11. Analysis of prediction accuracy of experimental results in GuangZhou. (a) The LST measure by satellite. (b) The prediction of LST by 3D-UP Net.
(c) The error between (a) and (b). (d) Part of Guangzhou remote sensing, and the blue box indicates an exhibition center.

Fig. 12. blueVisualization of the LST prediction for Xi’an and Lhasa.

TABLE VIII
THE AVERAGE ALTITUDE AND ERROR OF LHASA XIAN AND XINING

Lhasa XiAn XiNing
Altitude(M) 3650 1027 2275

Error(k) 3.93 3.38 3.71

D. Discussion

The section delves into the error analysis of our experimen-
tal results, highlighting not only the discrepancies between
surface and atmospheric conditions but also identifying key
factors influencing urban LST. Our main is to shed light
on these aspects to inform and enhance future urban LST
estimation systems.

1) Errors from building materials: While deep learning
models show average errors of 3.42K (PointNet), 3.18K
(PointNet++), 3.04K (PCT), 2.79K (PIHP-Net) and 2.48K
(3D-UP Net). Visualizations for some of these cities are
available in Fig. 10. In this section of comparative experi-
ments, the point cloud based method yielded poorer results.

This is attributed to the high complexity of large-scale urban
point clouds, which makes it challenging for the network to
learn urban structural features. Despite the challenges posed
by urban complexity and various weather conditions, 3D-
UP Net demonstrates commendable effectiveness. However,
its superiority is less pronounced in broader-scale predictions
compared to single-city forecasts.

One notable experiment was conducted in Guangzhou,
where we found that the material of building roofs can signif-
icantly affect satellites measurements of surface temperatures.

A typical example of this phenomenon is shown in the
fig. 11. During our single-city temperature prediction experi-
ment in Guangzhou, we encountered a substantial error in (c).
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By examining the corresponding remote sensing image (d)
and focusing on the area within the blue box, we identified
this location as a convention and exhiition center. The center’s
roof, constructed from high reflectivity materials, tends to
reflect most of the solar radiation. This reflection leads to
anomalously low surface temperature readings in that area,
as detected by satellites, thereby complicating the model’s
ability to accurately capture the impact of such structures.
But through our model, by learning a large amount of local
neighborhood structure, we can provide a reliable LST data
for reference which can be seen in (b).

2) Errors from Altitude: The average elevation of a city
is another critical factor affecting the performance of the
3D-UP Net model. This is because the climate conditions
in high-altitude regions is unpredictable. At the same time,
monitoring data in high-altitude regions are relatively scarce,
which hinders model training in these areas. Furthermore,
high-altitude regions exhibit diverse terrain, with numerous
mountains, canyons, and plateaus, making it challenging for
the simple structure index in GFDM to capture these terrains.
Additionally, high-altitude regions have varied land surface
cover types, including snow, glaciers, alpine meadows, and
rocks, among others. Different land surface cover types pos-
sess distinct thermal properties, rendering the simple portion
index in GFDM inadequate for capturing these surface charac-
teristics. The experiment gave examples of three cities, Lhasa,
Xi’an, and Xining, with average elevations of 3650M, 1027M,
and 2275M, respectively. The LST predictions for Xi’an and
Lhasa are shown in the in the fig. 12.

V. CONCLUSION

In this research, we introduced a cost-effective approach
to generate urban 3D point clouds and applied this method
to create 3D point cloud dataset for major cities across
China. Utilizing these, we developed the point cloud descriptor
GFDM and the neural network 3D-UP Net. The 3D-UP Net
leverages these descriptors for precise and high-resolution ur-
ban surface temperature prediction, integrating generated point
clouds with upper atmospheric forcing data. This network is
particularly valuable for forecasting future urban LST, easily
incorporating data from regional climate models.

Comprehensive experiments across 30 major or provincial
capital cities in China validate the superior performance of
the proposed 3D-UP Net. It consistently surpasses previous
methodologies, with an error generally below 1.7 Kelvin,
Compared to the state-of-the-art PIHP, the error in LST
prediction for a single city has been reduced by 15%, while the
error in LST prediction for ”unseen” cities has been reduced
by 11%.

The primary contributions of this study include:
1) Propose a low-cost technique to generate urban 3D point

clouds, applied to major Chinese cities.
2) Propose GeoFeature Distribution Matrix (GFDM) de-

scriptor, derived from urban 3D point cloud, which
effectively extracts urban surface structural features to
support LST prediction.

3) Design the 3D-Urban structure guided temperature Pre-
diction network(3D-UP Net), a novel learning based

system which is able to provide high resolution LST
prediction results under the guiding of 3D urban struc-
tures.

4) Design the 3D-Urban structure guided temperature Pre-
diction network(3D-UP Net), a novel learning based
system which is able to provide high resolution LST
prediction results under the guiding of 3D urban struc-
tures.

Our research results also indicate that building materials
can affect the measurement of LST in remote sensing images,
and high altitude can have a certain impact on the model’s
extraction of urban surface structure features, but we can
provide a referable LST data in this two situation by our
model.

However, there are still some issues that we have not
resolved: For example, since Landsat collects LST data from
high altitudes, although it considers Surface Emissivity in
calculating LST, which allows it to reflect LST to a certain
extent, the LST obtained in this manner still cannot accurately
represent the surface LST. In future work, we will collect more
ground station-measured LST data for model training.
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