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Abstract— High-definition (HD) maps of building rooftops or
footprints are important for urban application and disaster
management. Rapid creation of such HD maps through rooftop
delineation at the city scale using high-resolution satellite and
aerial images with deep-learning methods has become feasible
and has drawn much attention. However, the scale variance
issue in rooftop delineation limited the overall performance.
Existing methods exhibit considerably poor performance in the
rooftop delineation of small buildings. In this article, we pro-
pose a new method, namely the higher-resolution network with
dynamic scale training (HigherNet-DST) to overcome the scale
variance problem in rooftop delineation. Specifically, dynamic
scale training (DST) is applied in the model training phase to
reduce the negative impact of scale variance. Then, a scale-aware
backbone, namely the Higher-Resolution Network, is adopted to
enhance the feature representation. Finally, the high-resolution
supervision targets are used to further boost the delineation
performance. Our method was tested on four publicly accessible
building datasets and the results demonstrated that our method
achieved the highest performance in rooftop delineation among
the existing methods. Extensive experiments showed the superior
performance of our method with an average precision (AP) of
68.5% on the AICrowd Building Dataset and an intersection of
union (IoU) of 82.6% on the Inria Building Dataset, respectively,
which surpassed many state-of-the-art (SOTA) methods. On the
WHU Building Dataset and the Waterloo Building Dataset
(WBD), our method also achieved the highest performance among
the benchmarked methods, showing the high performance of our
method for building boundary delineation.

Index Terms— Dynamic scale training (DST), high-resolution
supervision targets, rooftop delineation, scale variance, scale-
aware higher resolution network.

I. INTRODUCTION
IGH-DEFINITION (HD) maps of building footprints
or rooftops are basic data for urban applications and
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disaster management [1], [2], [3]. High-resolution remotely
sensed images, in particular, aerial imagery, have been widely
used in citywide building extraction [4], [5], [6], [7]. However,
canopy occlusion [8], scale-variance, and intraclass varia-
tion [9] inhibit its practical use

In recent years, deep convolutional neural networks
(DCNN5s) dominated in computer vision tasks [10] and were
successfully applied to remote sensing. The DCNN-based
instance segmentation and semantic segmentation methods
were widely used in rooftop delineation from aerial images.
In addition, with a large volume of aerial images with building
annotations, solving the scale-variance and intraclass varia-
tion problems became possible. Consequently, these methods
achieved high accuracy, while occlusion issues remained under
exploration. Moreover, blurred rooftop boundaries still existed
in extraction results [9], [11].

The end-to-end DCNN-based building extraction has drawn
much attention recently. These methods were first intro-
duced to directly generate vectorized building maps from
remote-sensing images without any postprocessing [12].
In recent research, the extraction results became more accurate
with sharp and regularized rooftop boundaries by employing
advanced techniques, such as the convolutional gate recurrent
unit (ConvGRU) [7] and the graph neural network (GNN) [13],
and by supervising model training with new targets, such as
vertices [7], [12], [13], [14], frame field [15], attraction field
maps (AFMs) [14], and permutation matrices [13]. In addition,
by directly outputting vectorized rooftops, the problems caused
by occlusion and blurred rooftop boundaries have been sig-
nificantly reduced. Nonetheless, scale-variance problems still
exist.

Scale variance, in the context of object detection, recogni-
tion, and segmentation, pertains to the significant differences
in sizes among samples within a dataset. For example, in the
MicroSoft Common Objects in COntext (MS COCO) dataset,
medium-sized and large objects are detected in 71% and 83%
of the images, respectively, whereas small objects are observed
in only 52% of the dataset [16]. This imbalanced distribution
leads to biased optimization toward different scales [16].
Therefore, when datasets exhibit substantial scale variance,
the performance of models on different scales may differ
significantly. Specifically, scale variance issues often result in
notably poor model performance on small objects. Effectively
addressing scale variance problems hinges on enhancing the
detection or segmentation performance of small objects to
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improve overall model performance. In the context of rooftop
delineation, researchers have employed model architecture
refinement and data augmentation techniques to tackle these
challenges. However, the data augmentation methods they
used were static and did not benefit from training results.
Consequently, improvements in performance for one fixed
scale often led to a decrease in performance for other scales.
Refinements in model architecture have concentrated on
enhancing feature extraction and representation across multiple
scales. Feature extraction and representation are fundamental
aspects influencing the performance of deep-learning models,
as elaborated in Section II-C. The associated techniques in
this field have advanced rapidly. Improved feature extraction
and representation directly translate to enhanced deep-learning
model performance. The approach presented by Liu et al. [9]
incorporated both new model architecture and data augmenta-
tion. However, it is evident that it still struggles to effectively
address the challenges posed by scale variance. Hence, the
current state-of-the-art (SOTA) techniques in rooftop delin-
eation do not adequately prioritize the challenge of scale
variance. Moreover, the existing methods that do address this
concern are not notably effective in mitigating its impact.
Thus, further advancements are crucial to developing more
robust solutions for addressing scale variance issues in rooftop
analysis.

In this article, we present a new method to solve the
scale-variance problem in an end-to-end manner for auto-
mated delineation of rooftops in aerial imagery. Following the
approach introduced by Liu et al. [9], our method integrates
data augmentation and multiscale feature fusion. Diverging
from conventional static data augmentation techniques, our
method adopts a dynamic scale training (DST) strategy [16].
This DST strategy dynamically adjusts the data augmentation
process based on real-time feedback during the model training,
setting it apart from previously mentioned static augmentation
strategies. Regarding multiscale feature fusion, we leverage
a scale-aware higher-resolution network called HigherHRNet
[17], an extension of the high-resolution network (HRNet v2)
[18], specifically tailored to address scale variation challenges.
Furthermore, our approach incorporates high-resolution
supervision targets, enhancing the detection accuracy of
smaller objects. The contributions of this article are as
follows.

1) We introduce a new powerful end-to-end rooftop delin-
eation training model.

2) We mitigate scale-variance issues in rooftop delineation
without additional computational resource overhead by
employing the DST strategy.

The rest of this article is organized as follows. Section II
provides a brief literature review on building extraction with a
consideration of the scale variance issue. Section III details our
method. Section IV describes the datasets used and presents
experimental results obtained. Section V discusses the effec-
tiveness of each part of our method and provides a comparison
of the performance between DST and MS training and testing.
Section VI summarizes and concludes the article with our
findings.
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II. RELATED WORK

A. DCNN-Based Rooftop Delineation

To the best of our knowledge, the earliest use of DCNN in
building extraction can be traced back to the work of Shu [8]
and Mnih [19]. In their work, DCNNs were used to extract
features, with fully connected layers for feature flattening,
pixel-level image classification, and building extraction. How-
ever, this kind of method exhibited low efficiency with limited
input size.

With the proposal of the fully convolutional networks
(FCNs) [20] and the U-Net [21], pixel-wise image classifica-
tion, also known as semantic segmentation, has grown rapidly
with a large number of new methods invented yearly. As for
rooftop delineation from aerial images, from ConvNet [22] to
the capsule feature pyramid network (CapsFPN) [23] and the
coarse-to-fine boundary refinement network (CBR-Net) [24],
different deep-learning techniques have been introduced to
this task. These techniques include, but are not limited to,
the attention scheme [25], the capsule network [23], and the
MS feature extraction [24]. The SOTA methods can extract
accurate building masks, but postprocessing is still required to
generate vectorized rooftop polygons.

To generate vectorized rooftops from aerial images, an intu-
itive way is to regularize the polygons converted from building
masks extracted by the DCNN-based methods. The regulariza-
tion can be conducted separately. For example, Zhao et al. [26]
employed the mask region-based convolutional neural net-
works (R-CNNG) first, for instance, segmentation and instance
mask generation. Instance masks were then converted to
polygons using the Douglas-Peucker algorithm and the min-
imum description length (MDL) optimization with generated
hypothesis hypotheses. Regularization methods, such as the
active contour model (ACM) [27], also known as snake, can be
embedded into the DCNN architectures and generate polygons
in an end-to-end manner. In this direction, Marcos et al. [28]
proposed deep structured active contours (DSACs), which
combined deep learning and the ACM for image segmentation.
Gur et al. [29] proposed an end-to-end trainable ACM via
differentiable rendering. Similarly, Hatamizadeh et al. [30]
proposed the trainable deep active contour (TDAC) model
to directly delineate building polygons from aerial images.
Cheng et al. [31] combined the active ray network with deep
leaning and proposed the deep active ray network (DARNet).

Concurrently, another family of algorithms has been
developed to generate regular rooftop polygons. The most rep-
resentative method is the PolyMapper [12], which applied the
convolutional long short-term memory (ConvLSTM) to predict
the sequence of vertices of building boundaries from CNN
features. Zhao et al. [7] refined the PolyMapper by replacing
the ConvLSTM with the ConvGRU and decorating the orig-
inal backbone with the global context block (GCB) and the
boundary refinement block (BRB). Recently, Girard et al. [15]
proposed frame field learning for building delineation by
introducing the frame field targets for optimizing models.
Zorzi et al. [13] proposed the PolyWorld by employing the
GNN and a sophisticatedly designed loss function. Xu et al.
[14] proposed the hierarchical supervisions (HiSups) learning
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scheme with hierarchical building representations, includ-
ing the low-level convex and concave building vertices, the
mid-level AFMs for line segments and the high-level regional
masks of buildings. These three methods have demonstrated
high performance in building extraction and represent the
SOTA approaches. As HiSup is the most recently developed
method and demonstrates the highest performance, we took
HiSup as a starting point and refined it to solve scale-
variance issues, especially addressing low performance on
small objects.

B. Scale Variation in Computer Vision Tasks

In natural photography and remote sensing, balanced dis-
tribution with regard to object scale cannot be guaranteed.
This leads to significant performance vary in common image
processing tasks among different scales, which is named scale
variation [16]. In addition, scale variation also limits the over-
all performance. Compared to large-scale (area > 96> pixels)
and middle-scale (32% < area < 967 pixels) objects [32], small-
scale (with area < 32% pixels) objects contributed less to the
total loss [16]. This results in less supervision during training
and lower performance at smaller-scale objects. Therefore,
small-scale objects should be focused on when alleviating
scale variance problems in deep learning. In literature, data
preparation and model optimization are the focus when dealing
with scale variance.

Data preparation adjusts data distribution before model
training or optimizing. Methods such as resampling [16]
and image pyramid [9] are intuitive. However, as tested in
Chen et al. [16], resampling hurts model performance at other
scales. The image pyramid is a more robust technique, but
arbitrarily selected scales may not be suitable for overcoming
scale variance. Other image pyramid-type methods, such as
the scale normalization for image pyramids (SNIPs) [33] and
the SNIP with efficient resampling (SNIPER) [34], increase
inference burden. In contrast, the collage style data augmen-
tation, as adopted in [16], [35], and [36], has been effective
in handling scale variance and has shown high performance.

Feature pyramid and dilation-based methods are
optimization-based [16]. In feature pyramid style methods,
different scales of feature maps are learned and aggregated.
The feature pyramid network (FPN) [37] is the most
representative method in this category. The HRNet [18]
aggregates feature maps from four different scales in each
stage of each branch (or scale). HRNet has shown high
performance in feature representation. By refining the
HRNet, the HigherHRNet was proposed in Cheng et al. [17],
which showed better performance in feature representation,
especially for small objects. The dilation-based methods,
such as the deformable convolution networks (DCNs) [38]
and the trident networks (TridentNets) [39], can generate
scale-sensitive feature representations with high resolution
but suffer from storage issues.

C. Scale Variation in Rooftop Delineation

The scale variation, complex architectures, and diverse
appearances are the main obstacles that make rooftop
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delineation challenging [9], [23], [40], [41], [42] Even with
auxiliary data as input, the issue of scale variance cannot be
properly overcome [39]. Following the taxonomy of methods
for dealing with scale variance in natural images, the methods
used for rooftop delineation can also be classified into model
optimization and data preparation.

In literature, model optimization methods are more com-
monly used. For example, Liu et al. [9] proposed an MS
U-shaped CNN building instance extraction framework with
edge constraint (EMU-CNN). The EMU-CNN consists of an
MS fusion U-shaped network (MFUN), a region proposal
network (RPN), and an edge-constrained multitask network
(ECMN). The MFUN module collects feature information
from input images with three different spatial resolutions and
fuses the features for a U-shaped deconvolution network. The
method showed good rooftop delineation performance on both
large-scale and small-scale buildings. A similar method with
sole input was proposed by Zhu et al. [40]. In their work,
a multiple attending path neural network (MAP-Net) was
proposed, in which the spatial location-preserved MS features
were learned by a multiparallel path taking a sole image as
input. The learned MS features enabled the method to be able
to extract exact building edges and recognize small buildings.
In addition, Guo et al. [41] proposed the deep-supervision
convolutional neural network (DS-Net) for rooftop delineation
also with MS feature learning. Three stages including encoder,
decoder, and deep supervision, make up the DS-Net. The
experiments showed the high performance of the DS-Net
in depicting the boundary of a small building. Furthermore,
in recent research, Liu et al. [42] proposed an end-to-end
MS geoscience network (MS-GeoNet). Various embedding
modules and loss functions were explored and applied in the
network for better performance in rooftop delineation. Specif-
ically, with the CoordConv module, the method performed
well on small building extraction. In addition, Wu et al. [43]
proposed a topography-aware loss (TAL) for better perfor-
mance on rooftop delineation in semantic segmentation-based
methods. Combining MS feature learning by the HRNet, TAL
not only showed better performance on regular-size buildings,
but also on small-size buildings reporting its high performance
in dealing with scale variation issues. Overall, MS feature
learning is the basis of methods in the model optimization
category.

As for data preparation-based methods, we can only find
one research [9]. As we mentioned earlier, images with
three different spatial resolutions were taken as input in
the EMU-CNN bringing MS features and resulting in bet-
ter performance in rooftop delineation especially for small
buildings.

In summary, inspired by Liu et al. [9], we employed
both data preparation and model optimization methods in
our method to deal with scale variation issues. Specifi-
cally, we employed the DST and a scale-aware backbone-
HigherHRNet. To further improve the performance of our
method, instead of using downsampled targets for model
supervision [14], we calculated loss using upsampled final
outputs and targets with original resolution.
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Fig. 1. Overview of the HigherNet-DST.

III. METHODOLOGY
A. Overview

In this article, we introduced a novel approach that aimed
at addressing scale-variance challenges in rooftop delineation.
Our method is built upon the SOTA method, HiSup [14]
(Section III-B), ensuring the robustness and efficiency of
our approach. Furthermore, we integrated the DST for data
preparation in model training (Section III-C) and leveraged the
scale-aware HigherNet for feature extraction (Section III-D).
Notably, to enhance the delineation of small objects, we uti-
lized high-resolution supervision targets instead of smaller
ones, as employed in HiSup [14], for model optimization
(Section III-E). The overview of our method is illustrated in
Fig. 1.

B. HiSup Learning for Rooftop Delineation

To mitigate the performance gap between mask prediction
and polygon extraction caused by mask reversibility, hierar-
chical supervision learning was proposed in Xu et al. [14].
Specifically, after feature extraction by the backbone, four
branches were attached for mask prediction, AFM prediction
(used for line segmentation) [44], vertex location predic-
tion, and offset prediction [14]. For detailed information
regarding the HiSup, we direct readers to Xu et al. [14].
In their experiments, HiSup showed the highest performance
on the AICrowd Building Dataset [45] and a competitive
performance on the Inria Building Dataset [46] against other
methods, achieving the SOTA performance in learning-based
rooftop delineation. Therefore, we took it as the basis of our
method.

As previously outlined, our proposed method incorpo-
rates hierarchical supervision learning for the prediction of
vertices, attractive field maps, masks, refined masks, and
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vertex offsets [14]. As depicted in Fig. 1, the proposed
higher-resolution network with DST (HigherNet-DST) model
integrates a composite loss function comprising Loggset, Lverticess
L arM, Lrefined masks and Ly,g. The cross-entropy loss function
is applied to both mask prediction and vertex location pre-
diction. Additionally, the L1 loss function is utilized for the
line segment prediction and the refinement of vertex locations
with offsets. The specific loss functions employed for model
training are detailed as follows:

Loss = wiLoftser + WoLliyertices + W3Larm

+ W4Lmask + WSLreﬁned mask (1)
t
— |sigmoid(logits) — 0.5 — targets]|,
w
Lottset = . . if V 7 None (2)
|sigmoid(logits) — 0.5 — targets|,
if v = None
1N
Lyertices = — Z v; log (softmax (pv;))) 3)
i=1
1 .
Lamm = Z |AFM; — AFM,| )

i=1
1 N
Lmask :_N;(mi lOg(pmi)+(1 - mi)IOg(l - pmz))

o)
N
Liefined mask = — Z m; 10g prm; )

+(1 = m;)log(l —prm;))  (6)

where the variables wi, wy, w3, w4, and ws correspond to
the weights assigned to Logfsets Lverticess LAFM> Lmask, and
Liefined mask» respectively. The terms “sigmoid” and “softmax”
denote the sigmoid and softmax functions, respectively. The
“t/w” value represents a weighting factor obtained by dividing
the tensor “¢,” derived from specific vertices in the ground-
truth mask, by the tensor “w,” which computes the mean of
these vertices. This computation aims to modulate the influ-
ence of different vertex elements on Lyeyces, allowing targeted
emphasis on different parts of the mask. This adjustment
facilitates enhanced model learning by focusing on specific
mask features. “logits” and “targets” denote the predicted
offsets and ground-truth offsets, respectively. Similarly, “v,”
“pv,” “m,” “pm,” and “prm” represent ground-truth vertices,
predicted vertices, ground-truth masks, predicted masks, and
predicted refined masks, respectively. “N” symbolizes the
number of samples within each batch.

C. DST in Rooftop Delineation

The DST (Stitcher) overcomes scale-variance by collaging
images and supervision targets which is guided by dynamic
feedback [16]. Specifically, the feedback is the proportion of
loss contribution of small objects against that of all objects.
For instance, if L_small/L<= 7, in the next iteration, k images
are randomly selected from the next batch of data to create
a new image. In the inequality, “small” and “L” represent
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Fig. 2. Principle of DST in HigherNet-DST.

losses calculated on small objects and all objects in each batch.
In addition, t and k are two hyperparameters representing the
threshold for “Stitcher” and the number of images used for
creating the collage, respectively. The collected images and
supervision targets are downsampled and stitched together,
as shown in Fig. 2. If the ratio is larger than t, the model
is trained with the usual pipeline in the next iteration.

D. Scale-Aware HigherHRNet (HigherNet)

HRNet has shown excellent performance in feature extrac-
tion and representation using multilevel features with repeated
information exchange in each stage [18]. However, in the
final stage of the HRNet, the highest resolution of features
is 1/4 of the input. Information loss and scale variance
suppress the performance of the HRNet. Cheng et al. [17]
proposed the HigherHRNet by adding a scale-aware module
on top of the HRNet. The scale-aware module is mainly com-
posed of a deconvolutional module and four Residual blocks
(or “Basic Blocks”) [47]. To save computational resources,
we downsampled and concatenated features with different
spatial resolutions to 128 x 128 pixels, which is similar to the
output size of HRNet in the HiSup. The architecture of our
scale-aware HigherHRNet is provided in Fig. 3. The “feature”
in Fig. 3 is used in the extraction branch as shown in Fig. 4.
The “output” is the predicted vertex offset which will be used
in the final polygon generation process as described in [14].

E. High-Resolution Supervision Targets

As discussed in Section II-B, using higher-resolution
input [17] can, to some extent, overcome scale-variance issues.
However, this brings an overwhelming computational burden.
In the HiSup [14], the models were trained with lower res-
olution targets (1/4 of input resolution), which significantly
reduced the memory cost in model training and deployment.
However, lower-resolution supervision targets also cause infor-
mation loss and poor performance, especially for small objects.
To balance the memory cost and performance, we applied
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high-resolution supervision targets that maintain the same res-
olution as the input. There are two reasons why we adopted the
high-resolution supervision targets instead of low-resolution
ones as in Xu et al. [14].

1) High-resolution supervision targets have more detailed
information compared to low-resolution ones [48].
Such detailed information is helpful for small object
detection [17].

2) When supervised with upsampled targets, the model is
trained to consider the upsampling process including
both advantages and potential errors and can learn to
take advantage or deal with these accordingly. Fig. 4
shows the rooftop delineation part of our method.

In our method, we applied the mask-and-vertices attrac-
tion [14] which was used in HiSup. Predicted vertices and
masks were taken as input to initialize polygons. The local
nonmaximum suppression (NMS) was applied to sparse ver-
tices. Refined vertices with the aid of predicted offset vectors
were used to simplify initialized polygons by removing
redundant vertices and low-confidence vertices from initial-
ized polygons. Adjacent edges in each polygon were further
merged if they were almost paralleled. We direct readers to
Xu et al. [14] for more information.

F. Implementation Details

In the training phase, the weights assigned to Logser, Lverticess
LarMm, Limask, and Liefined mask, denoted as wy, wa, w3, wy, and
ws, respectively, are set to 0.25, 8.0, 0.1, 1.0, and 1.0. For the
hyperparameters setting, the initial learning rate, the weight
decay, the max epoch, and the batch size were set as le-4,
le-4, 100, and 16, respectively. After the first 25 epochs, the
learning rate was divided by 10. In all experiments including
DST, we set T and k to 0.1 and 4 following Chen et al. [16].
For the ablation study and the comparative study with different
backbones, we set the batch size as 7 due to memory limitation
with a large backbone. To ease the computational burden,
we applied automatic mixed precision in this work. It is
denoted as “*” in the rest of this article. We used PyTorch
1.7 and trained our network on a Nvidia! RTX 3090 GPU.
To test our method on the AICrowd Building Dataset, we used
two Nvidia! RTX 3090 GPUs with the same parameters set.

IV. RESULTS AND ANALYSIS
A. Datasets and Evaluation Metrics

1) Building Datasets Preparation: To extensively evaluate
the performance of our network, and test its robustness,
we selected four widely used public building datasets for
rooftop delineation. These datasets are the AICrowd Building
Dataset [45], the Inria Building Dataset [46], the WHU Build-
ing Dataset [49], and the Waterloo Building Dataset (WBD)
[1]. Each dataset comprises red, green, and blue bands but
differs in spatial resolution and covers distinct geographic
locations.

The AICrowd Building Dataset was first used in the
AlICrowd (previously CrowdAl) mapping challenge [45]. The

IRegistered trademark.
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satellite images have a spatial resolution of 0.30 m/pixel.
Annotation files were provided in MS COCO format [32].
All images were cropped to 300 x 300 pixels. Because of the
missing testing dataset, we followed previous work [12], [13],
[14], [15] and used the training dataset and validation dataset
for model training and testing, respectively. The training
dataset is composed of 280741 images, and the validation
dataset contains 60317 images [45].

The Inria Building Dataset was also widely used in rooftop
delineation [14], [15], [50]. This building dataset was proposed
in 2017 to alleviate the generalization problems in building
outline delineation by splitting ten cities from the USA and
Austria into training and testing datasets [46]. A total of
360 orthorectified aerial images were evenly separated into
training and testing datasets, but the testing datasets were not
publicly released. The dataset was composed of 180 images
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with an image size of 5000 x 5000 pixels and a pixel size of
0.30 m (405 km? in total). Only semantic labeling in binary
mask for each image was provided in the original dataset.
A simple polygonization was necessary to convert binary
masks to the MS COCO format annotations and to enable
model training for end-to-end manner rooftop delineation.
Following previous work, we collected the first five images
of each location for model evaluation.

The WHU Building Dataset [49]) has been widely used in
semantic segmentation for building outline delineation. The
aerial images in the dataset covered 450 km? of Christchurch,
New Zealand, with 220 000 independent buildings. The orig-
inal images were collected with a spatial resolution of
0.075 m/pixel and then downsampled to 0.30 m/pixel. Finally,
the cropped small patches, with an image size of 512 x
512 pixels, were split into 4736, 1036, and 2416 tiles for
training, validation, and test subsets, respectively. Similar
to processing the Inria Building Dataset, a polygonization
process was also necessary to generate the MS COCO format
annotation files for end-to-end rooftop delineation. Due to the
WHU Building Dataset having a relatively small data volume
compared to other datasets used in this work, we selected it
for the ablation study.

The WBD was released in 2022, which covers 205.83 km?
area of Kitchener-Waterloo area in Ontario, Canada [1]. The
building dataset was developed for semantic segmentation
methods for rooftop delineation. This dataset consists of
242 aerial images of a size of 8350 x 8350 pixels and a
spatial resolution of 0.12 m/pixel. Manually labeled binary
masks for building rooftops were provided for all images. Both
images and binary masks were cropped to small patches of size
512 x 512 pixels. Then patches with geometric distortion were
removed. Finally, 42 147, 6887, and 18 945 pairs of images and
masks were assigned into training, validation, and test subsets,
respectively. The polygonization process was also required
here to convert binary masks to MS COCO annotation files.

2) Evaluation Metrics: The object-level evaluation metrics
proposed in Lin et al. [32] are widely used in instance
segmentation and object detection in computer vision and
remote-sensing applications. In literature, average precision
(AP), average recall (AR), APsy, and AP;s were used to evalu-
ate different methods on the AICrowd Building Dataset. As we
also focused on scale variance in this work, in addition to these
metrics, we also used AP-Small (AP,), AP-Medium (AP,,),
AP-Large (AP.), AR-Small (AR;), AR-Medium (AR,,), and
AR-Large (ARy). Small, medium, and large sizes denote 32 x
32 pixels, between 32 x 32 pixels and 96 x 96 pixels,
and larger than 96 x 96 pixels, respectively. In our work,
we empirically adopted the MS COCO criterion to define
small, medium, and large sizes. Small buildings under this
criterion exhibited poorer performance compared to medium
and large building objects in existing rooftop delineation
research. These methods include the Mask R-CNN-based
method [45], the path aggregation network (PANet) [51], the
PolyMapper [12], the PolyWorld [13], and the HiSup [14].
Additionally, considering the proportion of small buildings
over the total number of buildings is indispensable, improving
the accuracy of delineating small building objects is expected
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to enhance the overall accuracy. Therefore, we employed the
MS COCO criterion to define small objects in our work.
Because MS COCO metrics are widely used, we omitted the
detailed introduction here and direct readers to Lin et al. [32]
and He et al. [52] for more information.

Following Xu et al. [14], we also adopted the restricted
metric A pboundary [53] A pboundary ;o AP calculated based on
boundary intersection of union (IoU) [14] instead of mask IoU
in Lin et al. [32]. The boundary IoU can be calculated as

BoundaronU(C é) = (€aNON (Cj N C:‘d)|
’ (CanC)N(CNCy)l

)

where C and C are ground-truth building masks and predicted
building masks, respectively. C,; and Cu represent pixels
within distance d from building boundaries. In this work,
we set d to 0.02. For the comparative study on the Inria
Building Dataset, we also calculated IoU and overall accuracy.

In addition to COCO metrics and A PPUndary (4 evaluate
the predicted building structures, we also employed PoLiS and
C-IoU metrics [14]. The PoLiS and the C-IoU metrics offer
distinct approaches to assess performance. The former one is
defined to describe the difference between two polygons. The
average distance between each vertex in one polygon and its
closet vertex in another polygon defines the PoLiS metric.
C-IoU takes both segmentation accuracy and polygonization
complexity into account, which is the normal IoU weighted
by a coefficient defined using the number of vertices in two
different polygons. PoLiS and C-IoU are defined as

PoLiS(P, P) Z mm||a, bll+ - Z min b —al|
bkeP
(8)
RD(Relative Difference)(Np, Np)
_ INp = Np| ©)
Np+ Np
C-IoU(P, P) =1oU(P,, P,,) - (1 —RD(Np, Np)) (10)

where P and P denote the predicted polygon and the ground-
truth polygon, respectively, with a and b as vertices in two
polygons. d P and P represent the boundaries of P and P,
respectively. The variables ¢ and r correspond to the respective
numbers of vertices in P and P, respectively. Specifically,
1 <i<gand1 <k <r.For C-IoU, the IoU(.) calculates the
IoU between two polygon masks. The RD(.) is short for the
relative difference between the total number of vertices from
two polygons.

B. Results on the AICrowd Building Dataset

As introduced previously, the AICrowd Building Dataset
was released in 2018 and widely used in recent years for
rooftop delineation. In this work, for comparison, we visu-
alized extraction results generated by the PolyWorld [13], the
HiSup [14], and our method ordered from top to bottom in
Fig. 5. As shown, the performance on extracting medium
and large building objects has limited differences. However,
on small objects, such as objects in the top right of the
first column and objects in the bottom middle of the second
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Fig. 5. Rooftop delineation results on the AICrowd Building Dataset obtained using PolyWorld, HiSup, and *HigherNet-DST.
TABLE I
EVALUATION RESULTS ON THE AICROWD BUILDING DATASET (IN % EXCEPT FOR POLIS AND TIME)
Methods AP |AP50| AP75 | APy | AP |APL| AR |AR, | ARy, | ARy, | APPoundary Pol S| ToU | C-lIoU| Time(s)
Mask RCNNJ45, 54] 419| 67.5 | 48.8 | 12.4| 58.1 | 51.9 |47.6]| 18.1 | 65.2 | 63.3 15.4 3.454161.3] 50.1 -
Path Aggregation Network (PANet)[51](50.7| 73.9 | 62.6 | 19.8 | 68.5 | 65.8 |54.4| 21.8 | 73.5 | 75.0 - - - - -
PolyMapper[12] 55.7| 86.0 | 65.1 |30.7 | 68.5 | 58.4 |62.1/39.4| 75.6 | 75.4 22.6 2.215|77.6| 67.5 -
Frame Field Learning (FFL)[15] 67.01 92.1 | 75.6 | - - - 732 - - - 34.4 1.945 (84.3| 73.8 -
Li et al[55] 73.8192.0 | 81.9 | - - - |72.6| - - - - - - - -
PolyWorld[13] 63.3| 88.6 | 70.5 |37.2| 83.6 | 87.7 |75.4|52.5| 88.7 | 95.2 50.0 0.962191.2| 88.4 -
HiSup[14] 79.4| 92.7 | 85.3 |55.4| 92.0 | 96.5 |81.5| 60.1 | 94.1 | 97.8 66.5 0.726 |94.3| 89.6 | 4660
*HigherNet-DST 68.5| 88.4 | 77.5 |41.9| 82.6 | 88.8 |71.3|46.6 | 85.6 | 91.7 48.0 1.293 (89.9| 84.5 | 4741

column, our method surpassed the PolyWorld and the HiSup.
In the last column, concerning the performance of objects
located on the left side, our method outperformed the HiSup
but was inferior to the PolyWorld.

Table 1> provides quantitative evaluation results of our
method and other SOTA methods on the AICrowd Build-
ing Dataset. Our method showed a competitive performance
compared to other SOTA methods but was inferior to that
of Li et al. [55] and the HiSup. Specifically, our method
achieved 68.5% of AP, which was competitive compared to

2Missing metrics from the original publications are denoted with “-” in
Table 1. Evaluation results with references are collected from Li et al. [12],
Zorzi et al. [13], and Xu et al. [14].

other methods but lower than 73.8% and 79.4% of AP reported
by Li et al. [55] and the HiSup, respectively. We believe
that this result was caused by dataset interpolation which
may have resulted in uncertainty and was harmful to the
performance. Regarding inference time, our method requires
more time for rooftop delineation in the AICrowd Building
Dataset, approximately 81 s for processing 60317 images.

C. Results on the Inria Building Dataset

In recent work [14], [15], [50], the Inria Building Dataset
was also used to test the performance of new methods in
rooftop delineation and specifically to test generalizability.
We presented qualitative results in Fig. 6. In the first row,
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Fig. 6. Rooftop delineation results on the Inria Building Dataset obtained using the *HiSup and *HigherNet-DST.
TABLE II
EVALUATION RESULTS ON THE INRIA BUILDING DATASET—OBIJECT LEVEL (IN % EXCEPT FOR POLIS AND TIME)
Methods AP | APso | APys | APs | AP, | AP, | AR | ARs | ARy, | ARy, | APboundary [ poliS | ToU | C-IoU | Time(s)
*HiSup[14] 29.0 | 50.0 29.8 17.8 | 41.6 498 | 340 | 215 45.7 59.2 24.2 3.057 | 69.6 | 52.5 329
*HigherNet-DST | 38.4 | 64.2 40.8 | 26.8 | 52.2 40.2 | 46.1 | 34.0 58.1 59.6 34.0 2.888 | 67.4 | 499 382
we tabulated extraction results generated by the HiSup model TABLE III

released by Xu et al. [14]. In the second row, we supplied
extraction results generated by our HigherNet-DST. As shown
in the first two columns, our model detected more building
objects with accurate boundaries than the HiSup. As shown,
our method excelled in extracting small building objects,
outperforming the other benchmarked methods. In the last
column, we showed the extraction performance on large
objects. As shown, both methods showed high performance,
but unexpected lines appeared, which may be caused by the
wrong order of junctions in generating final polygons. We can
claim the better performance in the qualitative results in Fig. 6
by checking the yard detection. The yard of the middle bottom
building was detected by our method but missed by the HiSup,
which further proved the superior performance of our method
when extracting small objects.

To quantitatively evaluate two models, we applied IoU and
Accuracy (pixel/overall accuracy) following Xu et al. [14] and
object-level metrics as used in Section IV-A. As shown in
Tables II and III°, our model achieved the highest values
on both pixel-level metrics and object-level metrics except
for AP;. In addition, our method also possessed a lower
PoLiS value. This demonstrated the high performance of
our models in image segmentation and boundary delineation.
Specifically, our model obtained an AP of 38.4%, which is
9.4% higher than HiSup. The value of AR, was increased

3We collected evaluation results of the FFL from Xu et al. [14] and assessed
the HiSup using the released model.

EVALUATION RESULTS ON THE INRIA BUILDING
DATASET—PIXEL LEVEL (IN %)

Methods ToU Accuracy
FFL[15] 74.8 96.0
*HiSup[14] 80.7 97.0
*HigherNet-DST[14] 82.6 97.4

by more than 20% with our model. And the values of APsy,
AP;s, AP,,, AR, AR,, and AR,, were also increased more
than 10% with our model. Similarly, concerning inference
time, our method requires more time for rooftop delineation
on the Inria Building Dataset. Specifically, an additional 53 s
are needed for processing 25 large images sized at 5000 x
5000 pixels each. The experiment confirmed the success of our
proposal.

D. Results on the WHU Building Dataset

The WHU Building dataset was released with binary build-
ing masks [49]. To the best of our knowledge, the dataset has
never been used in polygon delineation in literature. Therefore,
in this work, we first converted binary building masks to
polygon annotations in the MS COCO format. We conducted
experiments on the WHU Building Dataset primarily to assess
the transferability of our method. Therefore, we exclusively
tested HiSup [14] alongside our proposed method on this
dataset.
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Fig. 7. Rooftop delineation results on the WHU Building Dataset obtained using the *HiSup and *HigherNet-DST.
TABLE IV
EVALUATION RESULTS ON THE WHU BUILDING DATASET—OBJECT LEVEL (IN % EXCEPT FOR POLIS AND TIME)
Methods AP | APso | APrs | APs | AP, | APy, | AR | ARs | AR, | ARy, | APboundary [ poliS | ToU | C-ToU | Time(s)
*HiSup[14] 583 | 804 65.8 | 43.7 | 760 | 753 | 63.2 | 47.8 | 81.0 84.0 56.7 1.302 | 829 | 615 314
*HigherNet-DST | 60.1 | 82.8 69.0 | 46.2 | 77.1 | 749 | 63.6 | 493 | 80.2 80.7 58.5 1.463 | 82.1 | 71.9 446

Fig. 7 provides the extraction results from this experiment.
As shown, our improvement can be found in small objects.
Small objects in the output of the HiSup, especially in the
first and the last columns, had incomplete polygons, which
were fixed when using our method.

As shown in Table IV, our method achieved the best
performance when compared to the HiSup. Specifically, our
method obtained an AP of 60.1% compared to the 58.3% of
the HiSup. Our method obtained an AR of 63.6% compared
to the 63.2% of the HiSup. In addition, our method delivered
a higher value of C-IoU and decent values of PoLiS and IoU.
For small objects, our method obtained an AP; of 46.2%
surpassing the performance of the PolyMapper (41.6%) and
the HiSup (43.7%). Although the AR value of our method is
lower than the PolyMapper, it is higher than that of the HiSup.
We have also documented the total time taken for rooftop
delineation on the WHU Building Dataset’s test dataset. For
2416 tiles, our method requires 132 s. The performance on
large objects dropped, but AP and AR increased. Therefore,
with this experiment, we proved the success of our proposal
in terms of dealing with poor performance caused by small
objects.

E. Results on the WBD

To test the robustness of our method with regard to
different spatial resolutions, we downsampled the WBD to
0.30 m/pixel and tested the performance of our method. In this
experiment, aiming at evaluating the transferability of our
method, we solely tested HiSup and our proposed method on
the WBD.

We first showed the visualization results in Fig. 8. In
Fig. 8 (a), we provided results predicted by the *HiSup on the
0.12 m/pixel WBD, followed by extraction results generated
by our method on the same dataset. In Fig. 8(b), we tab-
ulated results predicted by the HiSup and our method on
the 0.30 m/pixel WBD. As shown in Fig. 8(a), two methods
can delineate building polygons with similar performance, but
our method had high sensitivity when distinguishing building
rooftops from building walls. In addition, our method can
extract small objects with higher performance as shown in
the third example. As shown in Fig. 8(b), building polygons
become completer and more accurate going from top to
bottom. In addition, as shown in the second and last columns,
compared to the HiSup, the advantage of our method is
apparent when segmenting buildings that are very close. It can
also be attributed to the high performance when delineating
small objects.

Table V provides the quantitative evaluation results.
As shown in Table V, our method has a similar perfor-
mance with HiSup on the 0.12 m/pixel dataset, and higher
performance when delineating small and medium objects.
On the 0.30 m/pixel dataset, our method achieved an AP
of 51.5% and an AR of 55.4%. The values of APs, and
AP75 increased more than 10%. In both spatial resolutions,
our method achieved higher C-IoU values but lower values of
PoLiS and IoU. By outperforming the previous SOTA, these
results demonstrated the effectiveness of our proposed method.
Taking into account the extended inference time alongside
the achieved performance improvements, as demonstrated in
Table V, the experiment reaffirmed the success of the proposed
approach.
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(b)

Fig. 8. Rooftop delineation results on the WBD obtained using the *HiSup and *HigherNet-DST. (a) Rooftop delineation results on the 0.12 m/pixel WBD.

(b) Rooftop delineation results on the 0.30 m/pixel WBD.

TABLE V
EVALUATION RESULTS ON THE WBD—OBJECT LEVEL (IN % EXCEPT FOR POLIS AND TIME)
Pixel Size Methods AP | APso | AP7s | APs | APy, | APL | AR | ARs | ARm | ARy, | APPoundary I poliS | ToU | C-IoU | Time(s)
0.12 mipixel *HiSup 669 | 82.7 | 74.1 | 30.5| 75.5 | 84.0 |70.8 | 36.5 | 78.3 | 88.9 52.5 2.409 |85.6 | 66.5 1522
*HigherNet-DST | 66.5 | 82.5 | 74.0 | 31.5| 76.2 | 82.8 |70.8| 374 | 78.7 | 87.4 51.0 2.556 | 85.4| 70.6 1584
0.30 m/pixel *HiSup 4281 62.3 | 47.7 | 30.7| 56.1 | 70.7 |48.0| 33.3 | 61.0 | 78.2 40.2 1.890 | 77.6 | 60.3 455
*HigherNet-DST | 51.5 | 73.2 | 59.6 | 37.3 | 66.8 | 64.4 554|395 | 70.2 | 70.3 49.0 2.098 | 74.9| 65.0 543

V. DISCUSSION
A. Ablation Study

In this section, we explored the effectiveness of each
part of our method with respect to the baseline. Specifi-
cally, on the WHU Building Dataset, we took the HiSup
as the baseline and tested the performance of the automatic
mixed precision, the DST, the higher-resolution network, and

the high-spatial-resolution supervision targets. In addition,
we showed the performance of our method trained with full
precision. In Table VI, we showed their performance on
the WHU Building Dataset and denoted them as “+amp,’
“+DST,” “+HigherNet,” “*HigherNet-DST,” and “HigherNet-
DST,” respectively. ~ As shown in Table VI, by applying
the DST, replacing high-resolution network (HRNet v2) with
Higher Resolution Network, using higher-spatial-resolution
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TABLE VI
ABLATION STUDY CONDUCTED ON THE WHU BUILDING DATASET (IN % EXCEPT FOR POLIS AND TIME)

Methods AP | APso | APrs | APs | AP, | APy, | AR | ARs | ARy, | ARy, | APboundary [ poliS | ToU | C-ToU | Time(s)
HiSup 59.1 | 80.6 | 672 | 43.8 | 77.0 | 775 | 634 | 477 | 81.5 | 832 575 1.282 | 83.6 | 61.9 315
+amp 58.3 | 80.4 | 658 | 437 | 76.0 | 753 | 632 | 478 | 81.0 | 84.0 56.7 1.302 | 829 | 61.5 317
+DST 594 | 806 | 67.1 | 444 | 774 | 776 | 63.7 | 483 | 816 | 833 57.6 1.251 | 826 | 61.5 437
+HigherNet 59.6 | 80.7 | 674 | 449 | 774 | 76.1 | 640 | 487 | 818 | 828 58.0 1253 | 832 | 604 446
*HigherNet-DST | 60.1 | 82.8 | 69.0 | 462 | 77.1 | 749 | 63.6 | 49.3 | 802 | 80.7 58.5 1463 | 82.1 | 71.9 446
HigherNet-DST | 61.4 | 83.8 | 709 | 47.3 | 78.1 | 752 | 64.8 | 50.6 | 813 | 8l.1 59.6 1404 | 819 | 708 469
TABLE VII
PERFORMANCE OF MS TRAINING AND TESTING ON THE WHU BUILDING DATASET (IN % EXCEPT FOR POLIS AND TIME)

Methods AP | APso | APrs | APs | APy, | APr, | AR | AR | ARy, | ARy, | APYeundary | poliS | ToU | C-ToU | Time(s)

HiSup 59.1| 80.6 | 67.2 | 438 | 77.0 | 77.5 |63.4| 47.7 | 81.5 | 83.2 575 1.282 [83.6| 619 | 315

+amp 58.3| 80.4 | 658 |43.7| 76.0 | 753 |63.2| 47.8 | 81.0 | 84.0 56.7 1.302 [ 829 615 | 317

1024 41.0| 63.9 | 462 |29.8 | 554 | 56.5 |46.3| 33.5 | 61.0 | 64.4 38.9 1.831 [68.8| 48.7 | 501

4MS training 512 58.8| 80.7 | 67.1 |43.6| 76.7 | 77.7 | 63.1| 47.5 | 81.0 | 83.7 57.0 1.277 | 82.8| 61.6 | 399

256 28.6| 56.5 | 26.0 | 9.9 | 489 | 66.9 |32.2| 123 | 545 | 74.7 26.3 2.603 |69.7| 487 | 324

Combination | 35.3 | 45.6 | 40.6 |31.0 | 57.0 | 43.3 | 61.3| 42.1 | 83.4 | 88.1 34.1 1.253 [77.3] 56.8 | 1224

1024 38.8| 60.9 | 432 |29.4 | 52.1 | 46.7 |44.1| 32.7 | 574 | 54.5 37.0 1.858 [66.6| 47.1 | 410

\DST 512 59.4| 80.6 | 67.1 |44.4| 774 | 77.6 | 63.7| 48.3 | 81.6 | 83.3 57.6 1.251 [82.6] 615 | 437

256 30.0| 584 | 284 |10.6| 51.1 | 67.3 [33.2] 129 | 56.1 | 73.3 27.9 2570 |70.7| 505 | 362

Combination | 37.2 | 47.8 | 42.5 | 31.8 | 60.0 | 46.7 | 61.8| 42.8 | 83.6 | 87.4 36.0 1.231 |77.8| 56.7 | 1209

supervision targets and adding extra semantic segmentation
branch on the backbone, the delineation performance increased
gradually. In addition, by applying the DST, the PoLiS value
decreased; by employing the higher-resolution network, the
IoU value increased; by applying the high-resolution super-
vision targets, the C-IoU value increased; by adding the
extra branch, all metrics became better; and the full precision
training of our method achieved a lower value of PoLiS. Each
modification brought an increase in at least one of three met-
rics. The increased performance confirmed the effectiveness
of each modification.

To further explore the performance increase, we added
an extra semantic segmentation branch taking the output
feature from the backbone (as shown in Fig. 4). With the
extra semantic segmentation branch, our method can be
improved further. However, the increase is marginal com-
pared to the increase in computational burden. Specifically,
by adding the branch to “*ours,” the AP value increased from
60.1% to 60.2%, and the AR value increased from 63.6%
to 63.8%. Therefore, we did not include the branch in our
method.

Regarding the inference time, as indicated in Table VI, the
increased inference time primarily stems from the adoption
of the DST. This potentially arises from the redesignation
of the data preparation pipeline, which may require further
refinement.

B. MS Training/Testing

To further show the superior performance of the DST in
rooftop delineation, we compared it with MS training and
testing, which were commonly used to deal with scale-variance
issues. The baseline architecture in this section is the HiSup

with auto-mixed precision. Following Liu et al. [9], three
scales, including 256 x 256 pixels, 512 x 512 pixels, and
1024 x 1024 pixels, were used in MS training and testing.
Specifically, in the training phase, input images were resized
to three scales followed by the combination of convolution
layers and batch normalization layers. The features generated
by three scales were concatenated as the input of the first
stage in the backbone (as shown in Fig. 9). For MS testing,
input images were resized to three scales (2x, 1x, and 0.5x%)
before flowing into the deep network. In Table VII, we denoted
the HiSup, the HiSup with auto mixed precision, the HiSup
with auto mixed precision and MS training, and the HiSup
with auto mixed precision and the DST as “HiSup,” “+amp,”
“+multiscale training,” and “+DST.” MS testing with different
spatial resolution input were noted by the side length of
the input. We also evaluated the performance of the output
combination from different scales input and noted it as a
“combination.”

As shown in Table VII, MS training with the 512 x
512 pixels size input indeed improved the whole performance
while the improvement is less than that brought by employing
DST. For example, by applying MS training with the 512 x
512 pixels size input, the AP value was increased from
58.3% to 58.8%. However, by applying the DST with the
512 x 512 pixels size input, the AP value was increased
from 58.3% to 59.4%. In addition, employing MS training
consumes more computational resources than applying DST.
Therefore, MS training is not effective compared to DST in
rooftop delineation, evidenced by the difference in inference
time consumed, as shown in Table VII. As for MS testing,
Table VII shows using both models with 512 x 512 pixels
size input gives the best performance, which means it has a
negative impact on rooftop delineation.
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Fig. 9. Feature extraction part of MS training.

C. Robustness Analysis

Our method exhibits the highest performance on the
AlCrowd Building Dataset, followed by strong performance
on the 0.12 m/pixel WBD, the WHU Building Dataset, and
the 0.30 m/pixel WBD, except the Inria Building Dataset.

Regarding transferability, our method demonstrates notable
adaptability with an AP value exceeding 50% on all datasets,
except for the Inria Building Dataset. The exceptional perfor-
mance on the AICrowd Building Dataset can be attributed to
its homogenous nature. Conversely, the lower performance on
the Inria Building Dataset could be linked to its high diversity,
covering images from five cities across Austria and the USA.

The consistent and satisfactory performance observed on
both the WHU Building Dataset and the WBD further confirms
the transferability and effectiveness of our method. Notably,
our findings highlight that higher spatial resolutions yield
enhanced performance, as evidenced by the results on the
WBD.

VI. CONCLUSION

In this article, we proposed a new deep-learning network,
namely the HigherNet-DST for rooftop delineation. By apply-
ing the DST, adopting the scale-aware Higher-Resolution
Network, and using higher-resolution supervision targets based
on the HiSup, our method can relieve the scale-variance
issue and improve the performance of building boundaries
delineation. By conducting an extensive comparative study,
our method showed competitive performance on the AICrowd
Building Dataset and better performance on the Inria Building
Dataset, the WHU University Building Dataset, and the WBD
compared to other SOTA methods. The ablation study further
showed the effectiveness of each module of our method.
Precisely, experiments on the AICrowd Building Dataset
showed the competitive performance of our method with an
AP of 68.5%. On the Inria Building Dataset, with an IoU of
82.6% and an accuracy of 97.4%, our method achieved the
best pixel classification performance among all benchmarked
methods. In terms of building boundaries delineation, our
method has 9.4%-27.2% higher values on all object level
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metrics, except for AR, compared to the HiSup, the previous
SOTA method. On the WHU Building Dataset, our method
achieved 60.1% of AP, 82.8% of APsy, 69.0% of AP7s,
46.2% of AP, 77.1% of AP,, 63.6% of AR, and 58.5% of
APPoundary - which were higher than the HiSup, while other
metrics were also competitive. On the 0.30 m/pixel WBD, our
methods surpassed the HiSup by 6.2%—-11.9% on all metrics
except for AP, and AR. On the original WBD, our method
showed competitive performance compared to the HiSup
while better performance on small- and medium-size objects.
Our experiments showed the effectiveness of our new network
in dealing with scale-variance issues, especially excelling at
the small building’s regime, which is a long-standing problem
in building boundary delineation.

For future research, two directions are promising in
building boundary delineation. They are: 1) adapting new
backbones to building boundaries delineation for better
feature representation and better performance and 2) relieving
the labeling cost to reduce the total cost for building
boundaries delineation. Newly developed networks, such as
vision transformer networks, have shown high performance
in computer vision tasks in recent research. How to adapt
these advanced networks to building boundary delineation is
promising to be explored. The performance of DCNN models
heavily lies in training samples. For building boundaries
delineation, building polygons are costly to label. How
to relieve the labeling process while keeping the high
performance is also important to make more efforts.
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