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Local Enhanced Transformer Networks for Land
Cover Classification with Airborne Multispectral

LiDAR data
Dilong Li, Shenghong Zheng, Ziyi Chen, Jonathon Li, Lanying Wang and Jixiang Du,

Abstract—Transformer networks have demonstrated remark-
able performance in point cloud processing tasks. However,
balancing local feature aggregation with long-range dependency
modeling remains a challenging issue. In this work we present
a local enhanced Transformer network (LETNet) for land cover
classification with multispectral LiDAR data. Specifically, we first
rethink position encoding in 3D Transformers and design a novel
feature encoding module that embeds comprehensive geometric
and semantic information, serving a similar purpose. Then, the
proposed local enhanced Transformer module is used to capture
the accurate global attention weights and refine the features.
Finally, to effectively extract and integrate global features across
various scales, an attention-based pooling module is introduced.
This module extracts global features from each encoder and
decoder layer and constructs a feature pyramid to fuse these
multi-scale global features. Both quantitative assessments and
comparative analyses demonstrate the competitive capability and
advanced performance of the LETNet in land cover classification
task.

Index Terms—land cover classification, Transformer, airborne
multispectral LiDAR.

I. INTRODUCTION

IN recent years, the rapid advancements in 3D sensor tech-
nologies have significantly enhanced the attention garnered

by 3D point clouds across diverse applications, including
autonomous driving, robotics, urban scene interpretation, and
cartography [1]. Compared with the regular single-wavelength
LiDAR data, multispectral LiDAR technology provides the
more comprehensive spectral information, which is critical for
land cover classification task. Pioneering researchers such as
Wichmann et al. [2] and Gong et al. [3] initially assessed
the feasibility of employing multispectral LiDAR data for
land cover classification. Subsequent studies [4]–[8] further
validated the effectiveness and achieved decent performance.
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The significant success of deep learning techniques in image
processing has propelled the development of deep learning
methods in the field of point cloud processing. PointNet [9]
revolutionized the field of raw point cloud processing by em-
ploying point-wise MLPs for feature extraction and leveraging
the permutation invariance of symmetry functions to overcome
the inherent drawbacks of point clouds compared to regular
grid data. As the extension of PointNet, PointNet++ [10]
constructed a hierarchical network that iteratively implemented
PointNet to learn the local features, and combined the learned
features from multiple scales and different layers to achieve
better performance. The following studies [11]–[15] expanded
this branch from various aspects. Nevertheless, most of them
focus on the local feature learning and aggregation, but fail to
learn the global context from long-range dependencies [16].

Due to the remarkable long-range context learning ability,
Transformer modules have demonstrated considerable poten-
tial for point cloud processing [17]. Several studies [16],
[18]–[22] make a profound explore in point cloud processing
with Transformer architectures. These 3D Transformers can be
classified into two categories according to the operating scale.
For local 3D Transformers, which utilize the self-attention
mechanism in the local region, such as [19], most of them
are still difficult to directly capture long-range contexts since
the limited receptive field. For global 3D Transformers, they
avoid this drawback by applying the self-attention mechanism
to all input points. However, most of the existing global 3D
Transformers directly feed the input features into Transformer
blocks, but ignore the influence of local neighboring features.

In this paper, we propose a local enhanced Transformer
network for land cover classification with multispectral LiDAR
data. The main contributions are summarized as follows:

• We propose a feature encoding module, which could be
regarded as the position encoding in 3D Transformers.
The module consists of two operations, the geometric
feature encoding and semantic feature encoding, which
contributes to the module learning the latent geometric
representations and comprehensive semantic features.

• We propose a novel local enhanced Transformer module
to obtain more accurate global attention via considering
local neighbouring features.

• We propose an attention-based pooling operator that
pools global features from each layer of the encoder and
decoder, constructing a feature pyramid with these global
features to enhance the fusion of multi-scale features
effectively.
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Fig. 1: The overall architecture of LETNet.

II. METHODOLOGY

A. Network architecture

The overall architecture of LETNet is shown in Figure
1. (N, D) represents the number of input points and their
dimension, respectively. Before the feature encoder stages, we
first apply the feature encoding module (without sampling)
to convert the feature dimension from 6 to C. C is set to
be 64 here. The feature encoder of LETNet is divided into
four stages. At the beginning of each stage, the Farthest Point
Sampling (FPS) method [23] is utilized to down-sample the
input point cloud. The ratio of downsampling is set to be
2, resulting in the numbers of points in the encoder stages
being [N/2, N/4, N/8, N/16]. With the points and features
output from previous layer and the down-sampled points and
features, the feature encoding module groups and aggregates
the local geometric and semantic features, and doubles the
dimension at the same time. Then, the local enhanced Trans-
former module is implemented to refine the features, resulting
in output feature dimensions of [2C, 4C, 8C, 16C] for the
encoder stages. For decoder (or feature upsampling) stages,
we also stack the local enhanced Transformer module after the
feature propagation operation. To better fuse the multiple scale
features, the attention-based pooling module is implemented
to obtain the global feature representations of each encoder
and decoder layer. The pooled features are concatenated as the
global feature. The global feature is repeated by the number
of points, and then concatenated with the outpute of the last
decoder layer. Finally, an MLP is applied to map the feature
to the final logits.

B. Feature encoding

Since PointNet++ [10] introduced the hierarchical structure
and set abstraction operation, numerous following studies
focus on the enhancement of local feature learning and ag-
gregation. Specifically, some studies make efforts to encode
the local geometric feature by the revamp of points’ geometric
relation, such as RSCNN [12] and DGCNN [11], and some
other studies pay attention on the enhancement of feature
encoding operation, like PointMLP [24]. Unlike the most of
previous models process the coordinate and feature together,
the proposed feature encoding module encodes the geometric

feature and semantic feature separately. As shown in Figure 2,
the input points and features are processed by the geometric
feature encoding module and semantic feature encoding mod-
ule respectively, then the outputs of are concatenated into an
MLP.

1) Geometric feature encoding : For Transformer models,
position encoding plays an important role. But, unlike the
regular position encoding in NLP or 2D computer vision,
the position encoding in 3D computer vision considers more
complicated spatial geometry relationship than the literal “po-
sition”, for example, the PT [19] introduced trainable position
encoding. Here, we propose a geometric feature encoding
module to encode geometric information efficiently, which
plays the same role as position encoding.

A given point cloud is represented as a set of points {Pi|i =
1, 2, · · · , n}, where each point Pi is given by its coordinates in
R3. Then, the point cloud is downsampled by FPS method. For
downsampled point P

′

i , we construct the local directed graph
by K-nearest neighbors (KNN) algorithm, which is formulated
as

P
′k
i = (P k

i − P
′

i ) (1)

where k represents the number of neighborhoods.
To better explore the latent geometry information, we adopt

the geometric moments representation of point clouds pro-
posed in [8] for local geometric feature encoding. The p+q+r
orders geometric moments representation of point clouds is
defined as the set of xpyqzr. Here, we use the first and second
order geometric moments of point clouds, which is represented
as

M1 =

 x
y
z

 ,M2 =


xy
xz
yz
x2

y2

z2

 . (2)

Similarly, the geometric moments representation of directed
edges can be calculated. Given the geometric moments rep-
resentation of the downsampled points and corresponding
directed edges, two MLPs are implemented to learn the
high level geometric features respectively. Then, the learned
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Fig. 2: Feature encoding module. M indicates the geometric moments representation, + indicates the addition operation, and
C indicates concatenation operation.

features are fused by the channel-wise addition operation,
which is defined as

Fg = add
(
MLP

(
M

(
P

′k
i

))
,MLP

(
M

(
k · P

′
i

)))
(3)

where M represents the geometric moments representation,
Fg is the fused geometric feature. Finally, the max pooling
operation is applied to aggregate the local geometric features.

2) Semantic feature encoding : With the point cloud
downsampling results, the given semantic features {Fi|i =
1, 2, · · · , n} are also downsampled as F

′

i . To better represent
the local semantic features, we not only group the k nearest
neighbors in spatial space but also group in the feature space.
Then, the grouped features and the downsampled features are
concatenated to feed into an MLP, which is formulated as

Fs = MLP
(
concat

(
F

′k
i , F̃

′k
i , k · F

′

i

))
(4)

where F
′k
i and F̃

′k
i represent the features grouped in spatial

space and feature space respectively, Fs is the learned semantic
feature. Finally, we also utilize the max pooling operation to
aggregate the local semantic features.

The local geometric feature Fg and local semantic feature
Fs are fused by the concatenation operation. After the feature
fusion, an MLP is applied to increase the robustness of the
module.

C. Attention based pooling

Global feature pooling is an imperative operation for point
cloud analysis, especially for the classification task. Most of
the existing studies simply use the max or average pooling
to obtain the global features. However, this will inevitably
lead to the massive information loss. Inspired by the current
Transformer based pooling methods, we propose the attention
based pooling module to relieve this issue. As we mentioned
before, the attention weights in Transformer module represent
the similarity of input tokens, the summation of the weights
of point can naturally reflect the weight of the point in the
whole point cloud. Therefore, we directly reuse the attention
weights calculated by local enhanced Transformer module, and
calculate the summation of the weights of each point. Since
the normalization of summation equals the normalization of

Query Key Value

KNN KNN

AVG AVG

Attention

⸻

Linear

+

AVG

Linear

softmax

×

Linear Linear Linear

×
Linear Linear

×

Fig. 3: Local enhanced Transformer module (left) and
attention-based pooling module (right). AVG indicates the
average pooling operation, - and + indicate the channel-wise
minus and addition operation respectively.

averaging, we apply the average pooling operation for the input
attention weights matrix. Then, we utilize a linear layer to
learn the more accurate weight of each point. The point-wise
weights is normalized by the softmax operation. Finally, the
output features Fout are weighted by the point-wise weights
along the dimension of the number of points. The whole
attention based pooling module can be formulated as

Fp = softmax (Linearp (avg (A)))× Fout (5)

where Fp is the pooled global features.

III. RESULTS AND ANALYSIS

A. Dataset

The dataset selected for this study is situated within the
town of Whitchurch Stouffville in Ontario, Canada, precisely
positioned at 43◦58′00′′ latitude and 79◦15′00′′ longitude.
Following the method of [25], we identify 13 representative
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areas, selecting area 6 and area 7 for testing purposes and
allocating the remainder for training. To fulfill the objectives of
land cover classification, we relabel the chosen areas into four
classes: tree, building, grass, and road. In order to thoroughly
assess the performance of the proposed LETNet, we employed
four common quantitative evaluation metrics typically utilized
in land cover classification tasks. These metrics encompass
overall accuracy (OA), the Kappa index, producer accuracy
(PA), and user accuracy (UA) [26], [27].

B. Implementation details

We utilize the PyTorch library [28] to implement LETNet
on RTX 4090 GPUs. We use the SGD optimizer with a cosine
annealing scheduler [29] without the warm restart. The initial
learning rate is set to 0.01 and the minimum learning rate to
0.0001. We conduct training for a maximum of 400 epochs
with a batch size of 8.

C. Performance

The experimental results are presented in Table I, LETNet
achieves impressive OA and Kappa index of 97.53% and
0.960, surpassing all comparative methods. In comparison to
PT and PCT, LETNet surpasses PCT by 2.23 percentage points
on OA and PT by 0.23 percentage points. Regarding the Kappa
metric, LETNet outperforms PCT by 0.037 and PT by 0.004.
Additionally, on the PA and UA metrics, LETNet demonstrates
superior performance across most categories. Figure 4 shows
the visualizations of classification results. The visualization
results of LETNet closely match the Ground truth. By mag-
nifying local areas for comparison, we also arrive at the same
phenomenon. These experimental results further demonstrate
LETNet’s robust geometric extraction capabilities.

TABLE I: Results of comparison methods.

Model Road Grass Tree Building OA(%) Kappa

PointNet [9] PA 74.2 79.4 90.7 63.8 84.3 0.741UA 58.0 89.3 92.1 39.6

PointNet++ [10] PA 74.4 86.9 94.2 66.7 88.3 0.811UA 77.0 91.1 93.5 51.1

DGCNN [11] PA 88.3 89.1 94.5 83.8 91.6 0.862UA 74.2 94.0 97.2 62.9

RS-CNN [12] PA 91.5 91.4 97.6 93.0 94.7 0.914UA 81.0 96.7 97.9 81.5

RandLA-Net [15] PA 86.0 90.5 96.1 82.7 92.5 0.878UA 80.9 94.0 96.2 75.0

PCT [18] PA 94.7 93.0 97.0 93.3 95.3 0.923UA 80.2 97.1 98.9 82.3

PT [19] PA 96.2 95.0 99.1 96.3 97.3 0.956UA 86.0 98.1 99.4 94.9

LETNet PA 96.4 95.4 99.0 97.9 97.53 0.960UA 87.0 98.0 99.7 94.9

D. Ablation study

We perform ablation experiments on the dataset to assess
the effectiveness of model components and the influence of
parameter settings.

Road

Building

Grass

Tree

Ground truth Ours

A
re

a
 6

A
re

a
 7

Fig. 4: Visualization of land cover classification results on
Area 6 and Area 7.

1) Key components of LETNet : LETNet is comprised of
four main components: geometric feature embedding (GFE),
semantic feature embedding (SFE), global transformers (GT),
and global aggregator (GA). As shown in Table II, the baseline
model A only achieves an OA of 95.60% and a Kappa
index of 0.928. With the GFE, model B exhibits significant
improvement, achieving higher accuracies with an OA of
96.60% and a Kappa index of 0.945. By introducing the SFE,
model C accomplishes an OA of 97.03% and a Kappa index
of 0.952. Subsequently, model D attains an OA of 97.47% and
a Kappa index of 0.959 by adding the GT. Finally, with the
GA module, model E, which is also LETNet, achieves the best
OA and Kappa index of 97.53% and 0.960.

TABLE II: Ablation study of the key components.

Model GFE SFE GT GA OA(%) Kappa

A 95.60 0.928
B ! 96.60 0.945
C ! ! 97.03 0.952
D ! ! ! 97.47 0.959
E ! ! ! ! 97.53 0.960

TABLE III: Ablation study of geometric feature encoding.

Geometric feature encoding Road Grass Tree Building OA(%) Kappa

Coordinates PA 96.6 95.4 98.9 96.8 97.44 0.959UA 87.4 98.1 99.5 94.1

EdgeConv PA 95.6 95.8 98.9 96.2 97.38 0.958UA 89.1 97.7 99.3 93.4

Geometric Moments PA 96.4 95.4 99.0 97.9 97.53 0.960UA 87.0 98.0 99.7 94.9

2) Geometric feature encoding : We then investigate the
influence of various geometric feature encoding strategies and
the results are presented in Table III. LETNet reaches an
OA of 97.44% when only using point cloud coordinates for
geometric feature encoding. The utilization of EdgeConv [11]
leads to an decrease of 0.09% compared to the coordinates.
The integration of our proposed geometric feature encoding
module elevates the accuracy to 97.53%. The improvement
demonstrates the superior of the proposed geometric feature
encoding module. Meanwhile, our proposed module achieves
the highest score on the Kappa index and also obtains the
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highest sub-index scores within the Tree and Building subcat-
egories.

3) Number of neighbors : We also explore the parameter
setting of neighbors k. Based on the results presented in Table
IV. Our observations indicate that LETNet attains optimal
performance when k is set to 32. This value potentially strikes
a superior balance between noise and receptive field compared
to alternative settings.

TABLE IV: Ablation study of local neighborhood number k.

k Road Grass Tree Building OA(%) Kappa

8 PA 96.4 95.6 98.8 96.6 97.41 0.958UA 88.0 97.3 99.6 95.7

16 PA 97.5 94.8 99.0 98.2 97.46 0.959UA 85.3 98.3 99.7 95.6

24 PA 96.7 95.0 99.1 97.7 97.46 0.959UA 86.0 98.1 99.6 95.8

32 PA 96.4 95.4 99.0 97.9 97.53 0.960UA 87.0 98.0 99.7 94.9

IV. CONCLUSION

In this paper, we propose local enhanced Transformer
network for land cover classification with multispectral LiDAR
data. The proposed method mainly contains three key modules:
feature encoding module, local enhanced Transformer module
and attention based pooling module. The feature encoding
module efficiently embeds the geometric and semantic infor-
mation at the beginning of each feature encoder layer. Then,
the local enhanced Transformer module is applied to learn the
long-range contexts and refine the feature. With the attention
based pooling module and feature pyramid construction, the
proposed model can further fuse the global features extracted
from each encoder and decoder layers. The extensive ex-
perimental results show that the proposed LETNet achieves
promising performance on land cover classification task, and
validate the effectiveness and superiority of the proposed
moduels.
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