
A Comparative Study of Deep Learning  
Methods for Automated Road Network  

Extraction from High-Spatial-Resolution  
Remotely Sensed Imagery

Haochen Zhou, Hongjie He, Linlin Xu, Lingfei Ma, Dedong Zhang, Nan Chen, Michael A. Chapman, and Jonathan Li

Abstract
Road network data are crucial for various applications, such as road 
network planning, traffic control, map navigation, autonomous driving, 
and smart city construction. Automated road network extraction from 
high-spatial-resolution remotely sensed imagery has shown promise 
in road network data construction. In recent years, the advent of deep 
learning algorithms has pushed road network extraction towards auto-
mation, achieving very high accuracy. However, the latest deep learning 
models are often less applied in the field of road network extraction and 
lack comparative experiments for guidance. Therefore, this research se-
lected three recent deep learning algorithms, including dense prediction 
transformer (DPT), SegFormer, SEgmentation TRansformer (SETR), and 
the classic model fully convolutional network-8s (FCN-8s) for a com-
parative study. Additionally, this research paper compares three different 
decoder structures within the SETR model (SETR_naive, SETR_mla, 
SETR_pup) to investigate the effect of different decoders on the road 
network extraction task. The experiment is conducted on three commonly 
used datasets: the DeepGlobe Dataset, the Massachusetts Dataset, and 
Road Datasets in Complex Mountain Environments (RDCME). The 
DPT model outperforms other models on the Massachusetts dataset with 
superior reliability, achieving a high accuracy of 96.31% and excel-
ling with a precision of 81.78% and recall of 32.50%, leading to an F1 
score of 46.51%. While SegFormer has a slightly higher F1 score, DPT’s 
precision is particularly valuable for minimizing false positives, making 
it the most balanced and reliable choice. Similarly, for the DeepGlobe 
Dataset, DPT achieves an accuracy of 96.76%, precision of 66.12%, 
recall of 41.37%, and F1 score of 50.89%, and for RDCME, DPT 
achieves an accuracy of 98.94%, precision of 99.07%, recall of 99.84%, 
and F1 score of 99.46%, confirming its consistent performance across 
datasets. This paper provides valuable guidance for future studies on 
road network extraction techniques using deep learning algorithms.

Introduction
Road network data are crucial for various applications, such as road 
network planning, traffic control, map navigation, autonomous driving, 
and smart city construction (Senthilnath et al. 2020; Wang et al. 2021; 
Zhang et al. 2020; Zhou et al. 2020; Yang et al. 2020; Chen, Zhong, et 
al. 2021; Tan et al. 2020). Specifically, by providing detailed informa-
tion about existing road layouts, these data help urban planners design 
more efficient and connected cities. Furthermore, road network data 
are fundamental for the operation of autonomous vehicles. These data, 
combined with sensor inputs, enhance the safety and efficiency of 
autonomous driving by providing a comprehensive view of the road 
environment (Bagloee et al. 2016). For these applications, remote 
sensing offers a promising method to extract road network datasets 
(Abdollahi et al. 2020).

Regarding the methodologies used for this task, they are akin to 
those used in extracting information from remote sensing imagery: 
they can be categorized into (1) visual interpretation and manual 
editing, (2) feature engineering–based traditional machine learning 
methods, and (3) deep learning–based methods (Chen et al. 2022). 
Visual interpretation and manual editing are both time-consuming and 
labor-intensive. Governments invest significantly each year to maintain 
current road network data. The feature engineering–based traditional 
machine learning method involves manually constructing a feature set 
based on expert knowledge, such as object length and aspect ratio, and 
then classifying using traditional machine learning methods. However, 
this method requires extensive domain knowledge for the development 
of accurate and comprehensive rules for road network extraction and 
is prone to overextraction and susceptibility to occlusions and shadows 
(Chen et al. 2022; Yu et al. 2021; Wang et al. 2016). The advent of 
deep learning has enabled autonomous road network extraction. Deep 
learning–based methods learn features directly from data, achieving 
higher levels of accuracy and speed (Abdollahi et al. 2020). Despite 
their reliance on significant computational resources, advancements 
in computing technology are addressing this challenge. Consequently, 
the deep learning–based method that has dominated in computer vision 
tasks has been successfully applied in remote sensing and road network 
extraction (Abdollahi et al. 2020).

The first significant advancement in road network extraction over 
the past decade was introduced by Yuan et al. (2011). They developed a 
method using locally excitatory globally inhibitory oscillator networks 
to cluster well-aligned points representing the extracted roads, dem-
onstrating consistent performance in the road network extraction task. 
Following this, Bastani et al. (2018) unveiled RoadTracer, an innova-
tive approach that combines two convolutional neural network (CNN) 
models. One model is tasked with identifying the road classification 
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of a given pixel, while the other aids in constructing the road network 
map. This method has enabled automatic road network extraction, 
yielding faster and more accurate results than traditional methods. 
More recently, Pan et al. (2021) trained a fully convolutional network 
(FCN) model using OpenStreetMap (OSM) data. This approach is both 
generic and automatic, facilitating the extraction of road networks from 
very-high-resolution (VHR) remote sensing images. The training and 
validation of the model leverage road centerlines from OSM, signifi-
cantly reducing the cost and effort required for data labeling.

Although deep learning methods, in conjunction with VHR 
remotely sensed imagery, have shown promise for road network ex-
traction tasks (Abdollahi et al. 2020), it is important to note that these 
algorithms were primarily designed for semantic segmentation tasks in 
computer vision (Wu et al. 2023; Wang et al. 2024). Additionally, their 
applications in the field of road network extraction are less explored, 
and there is a lack of comparative experiments to provide guidance. 
This paper thus conducts a comparative study, focusing on evaluating 
the efficacy of three state-of-the-art methods—dense prediction trans-
former (DPT) (Ranftl et al. 2021), SegFormer (Xie et al. 2021), and 
SEgmentation TRansformer (SETR) (Zheng et al. 2021)—alongside 
the classical fully convolutional network-8s (FCN-8s) model in road 
network extraction tasks. Additionally, this paper examines three dif-
ferent variants of SETR to assess the effect of varying decoder designs 
on the performance of road network extraction. This paper will provide 
certain guidance for future research on road network extraction.

The rest of the paper is constructed as follows: First, we discuss 
the related work in the field of road network extraction and compara-
tive studies. The next section introduces the methodology used in this 
paper, including model selection, and evaluation metrics. In the next 
section, we present the experimental results and analysis. The final sec-
tion draws conclusions and offers suggestions for future studies.

Related Works
This section provides an overview of publicly accessible datasets for 
road network extraction. We review state-of-the-art (SOTA) segmenta-
tion models and the segmentation method applied to remote sensing 
images, then trace the evolution of road network extraction techniques, 
ranging from manual annotations and traditional machine learning 
methods based on feature engineering to contemporary approaches 
using deep learning. We then briefly examine the related existing meth-
ods within these categories, followed by a review of several pertinent 
comparative studies.

Existing Datasets
There are five commonly used and publicly available datasets for 
road network extraction from remote sensing images. They are the 
Massachusetts road dataset (Mnih 2013), the DeepGlobe road network 
extraction dataset (Demir et al. 2018), the Large Road Segmentation 
Dataset from Optical Remote Sensing Images of New York (LRSNY) 
dataset (Chen, Wang, et al. 2021), the SpaceNet road dataset (Van Etten 
et al. 2018) and Road Datasets in Complex Mountain Environments 
(RDCME) (Zhang et al. 2022). Table 1 shows the details of each 
dataset, including the number of images, image size, and pixel size. 
The Massachusetts Roads Dataset comprises 1171 RGB images of 
Massachusetts roads, each with a resolution of 1 m/pixel and a size of 
1500 1500 pixels. This dataset is segmented into training (819 images), 
validation (175 images), and test sets (176 images), encompassing 
a diverse array of environments such as urban, suburban, and rural 
areas. The DeepGlobe Dataset, originating from the 2018 DeepGlobe 
Challenge, includes RGB satellite images from Thailand, Indonesia, 
and India. These images feature a resolution of 0.5 m/pixel and are 
1024×1024 in image size. The dataset is structured into 4358 training, 
933 validation, and 935 testing images. The LRSNY dataset, situated 
in central New York City, provides RGB images in two different image 
sizes: 1000×1000 and 256×256 pixels, each at a resolution of 0.5 m 
per pixel. It comprises 716 training images, 220 validation images, 
and 432 test images. The SpaceNet Road Dataset captures VHR RGB 
images from cities like Las Vegas, Paris, Shanghai, and Khartoum using 
WorldView-3, with each image having a spatial resolution of 0.3 m per 

pixel and a size of 3000×3000. This dataset includes 1659 training, 290 
validation, and 568 testing images. RDCME is a multispectral image 
dataset collected from the northwest region of China. The images in this 
dataset have a resolution of 0.61 m/pixel. The original RDCME dataset 
contains 12 large-size images. The dataset is cropped into 512×512 
images and images that contain no road are removed. There are 286 im-
ages for training, 61 images for validation, and 62 images for testing.

In the ensuing comparative study, the Massachusetts roads and 
DeepGlobe datasets and RDCME were selected because of their inclu-
sion of various environments and coverage across different countries, 
respectively. All datasets feature high resolution and have been exten-
sively used in prior research and studies.

Review of State-of-the-Art Segmentation Methods
Recent advancements in segmentation methodologies have introduced 
state-of-the-art models that push the boundaries of accuracy and adapt-
ability. OneFormer (Jain et al. 2023), a transformer-based framework, 
unifies semantic, instance, and panoptic segmentation within a single 
architecture, demonstrating exceptional performance across diverse 
datasets through its task-conditioned training strategy. Similarly, 
MedSegDiff-V2 (Wu et al. 2023) integrates diffusion probabilistic 
models with transformers to improve medical image segmentation, 
using novel conditioning techniques that enhance feature representa-
tion and accuracy. Complementing these is Mamba-UNet (Wang et al. 
2024), a UNet-like architecture enriched with attention mechanisms to 
capture local and global features, making it highly effective for detailed 
segmentation tasks. These innovations reflect the growing trend of 
leveraging transformer-based architectures and attention mechanisms 
to achieve precise and robust segmentation across various domains.

Image Segmentation for Remote Sensing Datasets
In parallel, segmentation efforts tailored to remote sensing datasets 
have underscored the importance of dataset quality and preprocessing 
techniques. Subedi et al. (2023) demonstrated the utility of high-
resolution National Agriculture Imagery Program (NAIP) imagery for 
large-scale land use mapping, emphasizing its relevance for road ex-
traction tasks where data resolution is critical. Marchand et al. (2023) 
explored 3D surface mesh reconstruction from remote sensing data, of-
fering insights applicable to 3D road network extraction. Additionally, 
Mezouar et al. (2023) proposed a K-Means-based orthorectification 
algorithm to correct geometric distortions in satellite images, ensuring 
spatial accuracy essential for reliable segmentation. Together, these 
studies highlight the potential of integrating preprocessing strategies 
and advanced segmentation techniques to maximize the utility of 
remote sensing datasets for tasks like road extraction.

Table 1. Existing dataset for road extraction.

Dataset
No. 

images
Image size  

(pixels)
Pixel size  
(m/pixel)

Massachusetts 
road dataset

Training
Validation
Test

1108
14
49

1500×1500
1500×1500
1500×1500

1.0
1.0
1.0

DeepGlobe road 
network extraction 
dataset

Training
Validation
Test

6226
1243
1001

1024×1024
1024×1024
1024×1024

0.5
0.5
0.5

LRSNY dataset Training
Validation
Test

716
220
432

1000×1000
1000×1000
1000×1000

0.5
0.5
0.5

SpaceNet road 
dataset

Training
Validation
Test

1659
290
568

3000×3000
3000×3000
3000×3000

0.3
0.3
0.3

RDCME 
dataset

Training
Validation 
Test

286
61
62

512×512
512×512
512×512

0.61
0.61
0.61

LRSNY = Large Road Segmentation Dataset from Optical Remote Sensing 
Images of New York; RDCME = Road Datasets in Complex Mountain 
Environments.
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As the road extraction task can be treated as a binary segmentation 
task, the segmentation method can be applied to road extraction tasks.

Road Network Extraction from Remotely Sensed Imagery
The initial road extraction approach involved manual annotation, 
which includes visual interpretation followed by the generation of 
polygons. As for feature engineering–based machine learning, features 
such as object length and aspect ratio are meticulously crafted through 
expert knowledge, and traditional machine learning algorithms are 
used for classification. These methods were the dominant paradigm 
before the advent of methods based on deep learning algorithms for 
road network extraction (Chen et al. 2022).

Traditional Feature Engineering–Based Machine Learning Methods
Traditional feature engineering–based machine learning methods can 
be classified into two categories: handcrafted feature–based methods 
and morphological feature–based methods (Chen et al. 2022). These 
methods use distinct techniques for feature extraction.

Morphological features are extensively used in road network 
extraction because of their uniform shape and consistent appearance, 
as noted by Alshehhi and Marpu (2017). The domain has witnessed 
significant advancements in morphological operations, with a suc-
cession of studies building upon the foundational insights of their 
predecessors to refine techniques and address emerging challenges. 
Initially, the primary methods relied on quantifiable metrics such as 
widths and shapes, using techniques including binarization, expansion, 
erosion, opening, and closing. These early techniques were prone to 
inducing shape biases, a limitation that was subsequently addressed by 
Valero et al. (2010) through the introduction of advanced directional 
morphological operators known as path openings and path closings. 
This pivotal development recognized the directional properties of road 
patterns and influenced further research, such as the work of Chaudhuri 
et al. (2012), who crafted operators specifically designed to harness 
the directional and morphological attributes of roads, enhancing the 
accuracy of the extraction process.

Subsequent innovations involved the integration of both low-
level and high-level processing techniques, as exemplified by Bae et 
al. (2015). Their approach used various attributes including widths, 
contrast, orientations, lengths, and sophisticated classifiers like graph 
cutting. Concurrently, Leninisha and Vani (2015) introduced a geomet-
ric active deformable model predicated on width and color, designed 
to adapt dynamically to fluctuating road conditions. Expanding upon 
these morphological principles, Courtrai and Lefèvre (2016) imple-
mented morphological path filters on regions rather than mere pixels, 
which augmented the granularity of processing and improved road 
detection within intricate environments. Similarly, Grinias et al. 
(2016) adopted an unsupervised approach that amalgamated geometric 
features with statistical models, notably the Markov random fields and 
random forest methods. Building on these cumulative advances, Zang 
et al. (2017) introduced a pixel value–based enhancement technique, 
further refining the precision and clarity of road imagery analysis. 
Collectively, these developments illustrate a progression toward 
increasingly sophisticated and integrated road network extraction 
methodologies, effectively combining geometry, statistical modeling, 
and advanced image processing techniques.

While morphological feature–based approaches can successfully 
extract road shape features, they are typically susceptible to light and 
contrast variations, occlusions, and other disturbances (Chen et al. 
2022; Wang et al. 2016). Handcrafted features, on the other hand, can 
meet these special constraint texture features. Following the extraction 
of features, classifiers are applied to make final classifications. Classical 
classifiers include support vector machines, decision trees, Hough for-
ests, tensor voting, and others (Chen et al. 2022; Oussama et al. 2023). 
Handcrafted features have achieved much success in past decades 
(Krylov and Nelson 2014; Poullis and You 2010; Wegner et al. 2015).

Deep Learning–Based Methods
Recently, the development of deep learning has enabled significant 
advancements in various computer vision–related fields, particularly 
in road network extraction from remote sensing images (Kestur et al. 

2018; Zhang et al. 2018). These advancements have manifested across 
four key methods: patch-based CNN models, generative adversarial 
networks (GANs), encoder-decoder networks, and feature fusion. 

Patch-based CNN models train on small image patches and use a 
sliding patch mechanism to predict road networks. This method has 
been refined by integrating CNN features with low-level road charac-
teristics to enhance mapping accuracy (Alshehhi et al. 2017). Further 
optimizations in CNN architecture have been specifically tailored 
for road mapping, enhancing precision and detailed road structure 
representation (Chen, Wang et al. 2021; Saito and Aoki 2015; Li et 
al. 2016). GANs, conceptualized by Ian Goodfellow et al. in 2014, 
include a generator that creates realistic samples and a discriminator 
that evaluates their authenticity. This approach has been adapted to 
identify challenging road segments hidden by shadows or occlusions 
(Zhang et al. 2019). Integrating GANs with other architectures like 
U-Net and FCN has improved road segmentation accuracy, despite 
challenges like gradient instability and complex training processes 
(Shamsolmoali et al. 2021; Senthilnath et al. 2020). Encoder-decoder 
networks use an encoder to distill essential features from images and a 
decoder to reconstruct spatial dimensions, maintaining high-resolution 
and detailed image reconstruction. This structure has led to innovations 
such as direction-aware and context-sensitive models that improve the 
understanding of linear road features (Xu et al. 2021). Feature fusion 
techniques merge multiple feature maps to enrich semantic informa-
tion, enhancing the accuracy of image segmentation. This approach 
leverages features at various scales and combines them to capture a 
comprehensive representation of the scene. Innovations in this area 
include integrating Atrous Spatial Pyramid Pooling with residual 
networks to achieve nuanced multi-scale feature representation, which 
enhances detail preservation and context sensitivity in segmentations 
(Tan et al. 2021; Zhang et al. 2022; Ma et al. 2020; Wu et al. 2021).

Although deep learning–based methods, especially those using 
patch-based CNNs and GANs, have grown rapidly and shown promising 
results in the field of road extraction, comparative studies specifically 
focusing on encoder-decoder design networks remain limited. Therefore, 
in this research, we selected DPT, SegFormer, and SETR, as they are all 
based on encoder-decoder designs, for the comparative study.

Existing Comparative Studies
There are many comparative studies focused on the application of 
deep learning approaches in remote sensing, and the methodology and 
evaluation metrics could be used in this paper to evaluate the experi-
mental results.

Ye et al. (2020) analyzed the accuracy of area-based dense image-
matching techniques at subpixel levels for remote sensing applica-
tions. They evaluated 12 algorithms using correlation-based similarity 
measures and subpixel estimation techniques across simulated and 
real-world datasets. The findings highlighted performance differences 
among these algorithms and suggested aligning algorithm selection 
with specific application requirements and challenges posed by aliasing 
effects. Cai et al. (2021) compared the effectiveness of deep learn-
ing models—FCN, U-Net, and DeepLabv3+—for detecting rooftops 
in aerial photographs using a high-quality dataset from Kitchener-
Waterloo, Ontario. The research examined these models with different 
dataset volumes and evaluated them based on metrics like Intersection 
over Union (IoU) and F1 score. The study found that DeepLabv3+ 
showed the highest accuracy, emphasizing the importance of choosing 
appropriate deep-learning algorithms and loss functions for urban plan-
ning. Xu et al. (2023) compared 12 different loss functions for road 
segmentation in remote sensing images using the D-LinkNet architec-
ture. They used the Massachusetts roads dataset and the DeepGlobe 
road extraction dataset, evaluating each loss function’s effectiveness 
with metrics like precision, recall, and IoU. The findings suggested that 
region-based and compound loss functions, particularly Focal Tversky 
loss and Lovasz-Softmax loss, outperformed distribution-based coun-
terparts, recommending further exploration into loss function combina-
tions for improved road segmentation accuracy. Kumbasar et al. (2023) 
compared 12 CNN models, including U-Net, Feature Pyramid Network 
(FPN), LinkNet, SegNet, FCN, and six residual U-Net variants, for 
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building segmentation using satellite and UAV imagery. Models were 
trained on the Inria Aerial Image Labeling dataset and evaluated 
on three datasets with diverse characteristics: Inria, Massachusetts 
Buildings, and Syedra Archaeological Site. Residual U-Net models 
outperformed others, demonstrating the effectiveness of residual con-
nections in preserving spatial details. LinkNet with EfficientNet-B5 
excelled on archaeological site data, showcasing strong generalization 
to unique features. The analysis highlights the significance of architec-
tural design and residual blocks for accurate and versatile segmentation 
across varying datasets.

The most closely related research is the work completed by Xu et 
al (2023); however, existing studies often lack analysis of the latest 
deep learning algorithms. Thus, this research aims to address this gap 
by conducting experiments that include recent advancements in deep 
learning, thereby contributing valuable findings to the field.

Methodology
The goal of this study is to discover and compare the effectiveness 
of different segmentation models in extracting road networks from 
remote sensing images. The first part of the study examines FCN-8s, a 
renowned model in semantic segmentation that serves as a foundational 
benchmark in this field. Since its inception, FCN-8s has laid the ground-
work for future advancements in segmentation techniques. However, as 
the field has evolved, newer models have been developed that address 
some of the challenges and limitations associated with FCN-8s.

The original FCN algorithm has been studied and referred to a lot, 
which has given us a lot of information about what it can and cannot 
accomplish in road network extraction tasks. To examine the evolution 
of the field and address historical challenges, we will review models 
from various years that demonstrate the growth and transformation of 
segmentation technology. Besides the FCN-8s model, this paper also 
focuses on other state-of-the-art models such as DPT, SegFormer, and 
SETR. All of them are the new models introduced in recent years, and 
they perform well on semantic segmentation. Therefore, they were 
selected for the comparative study to explore their performance on 
road network extraction. Table 2 shows the comparative matrix of 
these models. Additionally, all three variants of SETR—SETR_naive, 
SETR_mla, and SETR_pup—are tested to assess the effect of varying 
decoder designs on the performance of road network extraction. 

Fully Convolutional Network-8s
It was Long et al. (2015) who made significant advances in the field of 
semantic segmentation by introducing FCN-8s. Traditional CNNs per-
form well at classifying objects, but they are not particularly adept at 
making predictions pixel by pixel. FCN-8s addressed this by convert-
ing every fully connected layer to a convolutional layer. This adapta-
tion allowed the network to handle inputs of any size and produce 
outputs that correspond spatially to the inputs. This design enabled 
continuous training and inference, which enhanced its flexibility and 
utility for a wide range of image sizes.

Upsampling layers and skip connections allow FCN-8s to com-
bine detailed data from shallow layers with more general features. 
This was one of its most significant innovations. This method greatly 
enhanced the segmentation quality, enabling the model to display both 
the general structure and fine details of roads. When tested on standard 
datasets such as PASCAL Visual Object Classes, FCN-8s performed 
exceptionally well, demonstrating substantial improvements over 
previous segmentation methods. For instance, the FCN-8s variant 

improved border delineation and interior area accuracy considerably, 
leading to more precise road maps.

FCN-8s, through a strategy of layer-by-layer refinement, first 
upsamples the deepest feature map by a factor of 2, then merges it with 
the feature map from the previous layer. After another 2× upsampling, 
it continues by merging with an even earlier layer’s feature map, 
ultimately achieving an 8× upsampling to match the size of the input 
image. This strategy helps to refine boundaries and enhance the seg-
mentation performance for small objects (Figure 1, see next page).

Dense Prediction Transformer
A big step forward has been made with the DPT in dense prediction 
tasks like semantic segmentation and monocular depth predictions. 
DPT uses an encoder-decoder structure and is built on a vision trans-
former framework. This makes it better at handling complex image 
analysis jobs. Its main innovation is that it keeps the spatial resolution 
the same throughout all its steps of processing, making sure that there 
is always a global receptive field. This approach enables DPT to gener-
ate predictions that not only are more detailed but also exhibit superior 
global consistency compared with traditional FCNs (Ranftl et al. 2021).

The architecture of DPT excels when trained on extensive data-
bases. It establishes new benchmarks in tasks such as semantic seg-
mentation and depth estimation. It also demonstrates adaptability and 
performs effectively on smaller datasets. Because the model captures 
fine details while also comprehending the broader context, it is well 
suited for tasks like urban planning and navigation, which require 
precise and comprehensive image analysis. Overall, the introduction 
of DPT represents a milestone in the field, enabling enhanced accuracy 
and understanding in image-based predictions (Ranftl et al. 2021).

Figures 2 and 3 show the structure of DPT. Figure 2 shows the 
overview of architecture. The input image is transformed into tokens 
by extracting nonoverlapping patches followed by a linear projection 
of their flattened representation. The image embedding is augmented 
with a positional embedding and a patch-independent readout token is 
added. The tokens are passed through multiple transformer stages. We 
reassemble tokens from different stages into an image-like representa-
tion at multiple resolutions. Fusion modules progressively fuse and 
upsample the representations to generate a fine-grained prediction. 
Figure 3 shows the details of DPT’s components. Figure 3a shows the 

Table 2. Comparison matrix of selected models.
Model Architecture Key Features Parameters

FCN Fully convolutional network Skip connections for combining coarse and fine features ~23.52M

DPT Vision Transformer + Convolutional Decoder Global receptive field in all layers, convolutional decoder ~86M

SETR Pure Transformer Encoder + Custom Decoder Sequence-to-sequence transformer; maintains full resolution ~318M

SegFormer Hierarchical Transformer + MLP Decoder Positional encoding–free, multi-scale feature generation ~64M

DPT = dense prediction transformer; FCN = fully convolutional network; SETR = SEgmentation Transformer; MLP = multilayer perceptron.

Figure 2. Dense prediction transformer main structure that includes 
convolutional layers (modified from Ranftl et al. 2021).
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Reassembles operation, in which tokens are assembled into feature 
maps with 1/s the spatial resolution of the input image, where s denotes 
the output size ratio of the recovered representation with respect to the 
input image and Figure 3b shows Fusion blocks combining features 
using residual convolutional units and upsampling the feature maps 
(Ranftl et al. 2021).

SegFormer
SegFormer came about because of the need for semantic segmentation 
models that work well and can be scaled up, especially for high-
resolution satellite images (Xie et al. 2021). It is a combination of a 
transformer-based encoder and a simple multilayer perceptron (MLP) 
decoder that strikes a good balance between accuracy and speed. Its 
hierarchical transformer encoder picks up features at more than one 
scale, which makes it good at dealing with the different sizes and 
shapes of roads in satellite images.

One aspect that distinguishes SegFormer is its design for rapid 
operation. Traditional transformer models often require substantial 
computing power when processing high-resolution inputs. SegFormer 
addresses this issue with a hierarchical structure that manages fea-
tures of varying sizes, making the computations more efficient while 
maintaining high accuracy. SegFormer’s design renders it an excellent 
choice for large-scale satellite data analysis, where both accuracy and 
speed are critical.

In terms of performance, SegFormer has demonstrated its proficien-
cy in various segmentation tasks by establishing new benchmarks for 
speed and accuracy. Its ability to produce detailed segmentation maps 
while remaining computationally efficient makes it highly effective 
for road network extraction, which requires a precise understanding of 
how roads interconnect. SegFormer’s innovative approach represents 
a significant advancement in the field and provides academics and 
practitioners with a powerful tool.

Figure 4 shows structure of the SegFormer including two main 
modules: (1) a hierarchical Transformer encoder to extract coarse and 

fine features, where “FFN” indicates a feed-forward network which 
are also shown by Figure 5; and (2) a lightweight All-MLP decoder 
to directly fuse these multi-level features and predict the semantic 
segmentation mask. 

Figure 1. Fully convolutional network-8s main structure that includes convolutional layers (modified from Long et al. 2015). 

Figure 3. Details of dense prediction transformer components 
(modified from Ranftl et al. 2021). 

Figure 4. SegFormer main structure that includes convolutional 
layers (modified from Xie et al. 2021). MLP  = multilayer perceptron.
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SEgmentation TRansformer
Zheng et al. (2021) introduced the SETR model, using a transformer-
based design instead of the more commonly used CNNs. Conventional 
methods predominantly use CNNs to extract features and process 
local context. SETR reconsiders this approach by treating image 

segmentation as a sequence-to-sequence prediction challenge, offering 
a novel perspective. It achieves this by encoding images as groups of 
patches and then processing these groups with a transformer, ensuring 
that each layer comprehends the broader context. Unlike CNN-based 
models, which generally have hierarchical structures and local recep-
tive fields, this method diverges significantly from those characteristics. 
Based on different kinds of decoders, there are three variants of SETR. 
A straightforward upsampling method is used with the SETR_naive 
variant. Subsequently, bilinear upsampling is used to restore the resolu-
tion to that of the original image. This is achieved by directly project-
ing the features obtained from the transformer onto the various image 
categories. Progressive upsampling is implemented by the SETR_pup 
encoder, also known as the progressive upsampling encoder, which 
uses a more intricate method. This is achieved by alternating between 
upsampling and convolution layers. In each iteration, upsampling is 
restricted up to 2×. The MLA encoder in SETR_mla, also referred to as 
multi-level feature aggregation, integrates features from different stages 
of the generator. SETR_mla ensures uniform quality across all layers, 
which facilitates the consistent representation of features. Conversely, 
standard feature pyramid networks possess varying feature sizes. 

Figures 6 and 7 show the structure of SETR. Figure 6 shows 
the main structure of SETR, where the image is split into fixed-size 
patches, and each of the patches is linearly embedded, then position 
embeddings are added and the resulting sequence of vectors is fed to a 
standard transformer encoder, and then one of the three decoders men-
tioned above is applied. Figure 6 illustrates two specialized designs 
of decoders: Figure 7a shows progressive upsampling, which is the 
key part of SETR_pup, and Figure 7b shows multi-level aggregation, 
which contributes to SETR_mla (Zheng et al. 2021).

Evaluation Metrics
The commonly used evaluation metrics for road segmentation are 
precision, recall, F1 score, (pixel) accuracy, mean accuracy (mAcc) and 
mean IoU (mIoU), which can be calculated as follows:

	 	
(1)

Figure 5 Structure of Transformer Block (Modified from Xie et al., 2021).

Figure 6. SETR main structure that includes convolutional layers 
(modified from Zheng et al. 2021). MLP = multilayer perceptron; 
SETR = SEgmentation TRansformer.

Figure 7. SETR decoder designs (modified from Zheng et al. 2021). SETR = SEgmentation TRansformer.
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True positive (TP) and false negative (FN) are outcomes in which 
the model correctly and incorrectly predicts the positive class, respec-
tively. Similarly, FP and FN are outcomes where the model correctly 
and incorrectly predicts the negative class, respectively. Precision is 
the number of correctly identified road pixels out of all the pixels that 
were predicted to be roads. Recall, on the other hand, is the number of 
correctly identified road pixels out of all the road pixels in the initial 
image. The F1 score is the harmonic mean of accuracy and recall (Taha 
and Hanbury 2015). While accuracy is the number of right predictions 
out of all the predictions, mIoU is a common way to measure semantic 
segmentation, which evaluates the areas where the predicted segmenta-
tion and the ground truth meet. To find it, the average of the IoU scores 
for all classes in the dataset is used. This gives a single performance 
number that can be used to compare models directly (Everingham 
et al. 2009). We also monitor the training loss of the models, which 
measures the discrepancy between the predicted outputs and the true 
labels. A decreasing trend in training loss over time indicates effective 
learning and improved model performance during the training process. 
It gives a direct measure of the model’s error and information about 
how it learns and how it converges (Goodfellow et al. 2016).

Experiment and Results
Data Selection
Three road datasets are used in this work: the Massachusetts roads da-
taset, the DeepGlobe road extraction dataset, and the RDCME 
dataset. All three datasets are widely used remote-sensing road 
datasets (Xu et al. 2023; Buslaev et al. 2018; He et al. 2019). 
The Massachusetts roads dataset contains aerial RGB images 
having a resolution of 1 m/pixel and a size of 1500×1500 
pixels, separated into three sets, which are 819 images for the 
training set, 176 images for the validation set, and 176 images 
for the test set. The DeepGlobe road extraction dataset contains 
satellite RGB images. There are 4368, 928, and 930 images 
for the training, validation, and test sets respectively. The im-
ages are 0.5 m/pixel and the size of the images is 1024×1024. 
The RDCME dataset is specifically for mountainous areas, 
which are slightly different from the previous two: this dataset 
is cropped to 512×512 size and only the images that contain 
roads are used; there are 286 images for training, 61 images for 
validation, and 62 images for testing. Table 3 shows example 
images and labels of three datasets.

Model Training
The training for this project component was primarily con-
ducted on a Windows-based system equipped with an Nvidia 

GeForce RTX 3090 GPU and an Intel Core i7 CPU with 32 GB of 
RAM. The hyperparameters remained consistent across all models 
during training to facilitate fair comparison. The initial setup involved 
adjusting model clarity, with all models set to a crop size of 512×512, 
which is both a default and an optimal performance setting. However, 
because of memory constraints encountered by some models at this 
resolution, batch sizes were uniformly reduced to 1 from 4 to maintain 
consistency across experiments. Stochastic gradient descent served 
as the optimizer for all models, featuring a learning rate of 0.001, 
momentum of 0.9, and a weight decay of 0.0005. A polynomial decay 
schedule was applied where the learning rate began at 0.001 and de-
creased to a minimum of 1 × 10−4 over 400 000 iterations, with a decay 
power of 0.9. The training loop of the model was structured around 
iterations, capped at a maximum of 400 000, with validation intervals 
every 20 000 iterations.

Results
The FCN-8s, DPT, and SegFormer exhibited similar characteristics 
across three experimental datasets, with their training loss decreasing 
gradually in a relatively smooth manner. Conversely, the training loss 
for SETR_naive was relatively unstable, lacking a clear downward 
progression. Figure 8-11 show the training loss on the DeepGlobe 
as an example. In fact, Figure 12-14 illustrate that all SETR variants 
exhibit relatively subtle decreases in loss compared with other models.

The changes in mIoU and mAcc during the validation pro-
cess were also recorded. FCN-8s shows an overall upward trend, 
while SegFormer’s showed a more noticeable upward trend in the 
Massachusetts dataset. DPT’s mAcc demonstrated a significant up-
ward trend in training across both datasets. Conversely, SETR_naive 
showed mediocre performance in both datasets, with not very apparent 
increases in mIoU. Of its two other variants, SETR_mla had a decent 
upward trend in mIoU in the DeepGlobe dataset, while SETR_pup per-
formed well in all datasets, with mIoU showing significant increases. 
Figure 15 illustrates how the four models performed on DeepGlobe as 
an example, while Figure 16 shows the performance of SETR variants.

In the comprehensive analysis of road network extraction capabili-
ties across the three datasets, an evaluative approach was used to assess 
the performance of four distinct models: FCN-8s, DPT, SegFormer, 
and SETR_naive, representing the SETR variants, followed by a 
detailed comparison among the SETR variants themselves—SETR_na-
ive, SETR_mla, and SETR_pup.

Table 4 shows the performance analysis on three datasets, il-
lustrating that DPT excels, demonstrating robust adaptability across 
various tasks. The FCN-8s model, while generally showing decent 
performance, reveals its limitations in scenarios characterized by 
sparse road pixels, indicating a challenge in processing less-defined 
road networks. SegFormer registers moderate performance, reflecting 

Table 3. Examples of three datasets.
DeepGlobe Massachusetts RDCME

Image 

Label

RDCME = Road Datasets in Complex Mountain Environments.
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Figure 8. Loss of FCN. Figure 10. Loss of DPT.

Figure 9. Loss of Segformer. Figure 11. Loss of SETR_naive.

DPT = dense prediction transformer; FCN = fully convolutional network; SETR = SEgmentation TRansformer.

Figure 12. Loss of SETR_naive. Figure 13. Loss of SETR_mla. Figure 14. Loss of SETR_pup.

average capabilities that do not particularly excel in any specific as-
pect. SETR_naive, selected to represent the SETR family in this initial 
analysis, exhibits the least satisfactory outcomes, indicating it struggles 
significantly under complex scenarios.

 Further exploration of the SETR variants reveals significant dif-
ferences in their performance. As shown in Table 5, in the DeepGlobe 

dataset, SETR_mla exhibits only moderate capabilities, better than 
SETR_naive but not achieving high performance, while SETR_pup 
stands out with its relative superiority, suggesting that it includes 
optimizations that ameliorate some of the common deficiencies found 
in the other variants.
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The performance analysis of four models (FCN-
8s, DPT, SegFormer, and SETR_naive) across the 
DeepGlobe, Massachusetts, and RDCME datasets reveals 
significant variations in effectiveness. 

As shown in Table 6, FCN-8s and DPT consistently 
exhibit strong performance, particularly on the RDCME 
dataset, where they achieve near-perfect accuracy, 
precision, recall, and F1 scores. However, both models 
struggle with recall and F1 scores on the more challeng-
ing DeepGlobe and Massachusetts datasets, highlight-
ing a potential limitation in identifying true positives. 
SegFormer, while achieving high accuracy, underperforms 
on DeepGlobe and Massachusetts because of its low recall 
and F1 scores, suggesting poor sensitivity to positive class 
predictions. SETR_naive demonstrates the weakest over-
all performance, particularly on the Massachusetts dataset, 
where its recall and F1 scores are negligible, though it 
performs moderately well on RDCME.

Table 7 shows the evaluation of SETR variants. 
SETR_pup emerges as the most balanced variant, with 
noticeable improvements in recall and F1 scores across 
datasets, particularly outperforming the SETR_naive and 
SETR_mla variants on DeepGlobe and Massachusetts. 
SETR_mla, while achieving high precision, fails to ad-
dress the recall deficiencies that hinder its F1 score. All SETR variants 
perform exceptionally well on RDCME, achieving near-perfect met-
rics, indicating strong dataset-specific generalization. However, their 
limited success on DeepGlobe and Massachusetts highlights challenges 
in adapting to complex or diverse data, emphasizing the need for fur-
ther optimization in transformer-based segmentation models.

We conducted a generalizability performance experiment by 
training the model on the DeepGlobe dataset and applying it to the 

Massachusetts dataset and RDCME. The model achieved a mIoU of 
58.60% and a mAcc of 70.35% on the Massachusetts dataset. In con-
trast, its performance on RDCME was lower, with a mIoU of 49.95% 
and a mAcc of 52.42%. This discrepancy may be attributed to the 
similarities in road features between the DeepGlobe and Massachusetts 
datasets, as both primarily contain urban areas, whereas RDCME 
predominantly features mountain roads.

Figure 15. mIoU and mAcc of four models on 
DeepGlobe. mAcc = mean Accuracy; mIoU = mean 
Intersection over Union; 

Figure 16. mIoU and mAcc of SETR variants on 
DeepGlobe. mAcc = mean Accuracy; mIoU = mean 
Intersection over Union; SETR = SEgmentation 
TRansformer.

Table 4. Examples of road network extraction results for three datasets using four 
different models.

DeepGlobe Massachusetts RDCME

Image

Label

DPT

FCN-8s

SegFormer

SETR_naive

DPT = dense prediction transformer; FCN = fully convolutional network; RDCME = Road 
Datasets in Complex Mountain Environments; SETR = SEgmentation TRansformer.
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Conclusion and Future Recommendations
Based on the analysis of training processes and comparisons 
among all models, it is evident that the DPT model emerges 
as the most suitable choice for road network extraction tasks 
because of its commendable accuracy and consistent perfor-
mance across different datasets. It achieved 96.76% accuracy, 
66.12% precision, 41.37% recall, and a 50.89% F1 score on 
the DeepGlobe Dataset. While the FCN-8s is noteworthy 
for its precision, its recall sometimes falls short of accuracy, 
indicating that although it is effective, it may not always be 
reliable under varying circumstances.

Additionally, there are intriguing findings related to the 
variants of the SETR. Specifically, the performance of SETR_
pup closely mirrors that of the best-performing DPT model. 
However, the experiments reveal that the loss associated with 
SETR models exhibits instability, which could be linked to 
the dataset size. This issue becomes more pronounced when 
transitioning to the Massachusetts dataset, which is smaller in 
size. Despite these challenges, the SETR variants, particularly 
SETR_pup, show promise for road network extraction tasks, 
suggesting that their effectiveness might be further enhanced 
with larger datasets.

Regarding future research recommendations, the significant 
influence of dataset size and complexity on model performance 
necessitates a focus on customizing models for specific types 
of datasets. A deeper understanding of how different models 
respond to varying dataset characteristics could facilitate the 
development of more tailored and effective model designs. For 
example, using synthetic datasets to train models could enhance 
understanding of the limits and capabilities of each model in 
controlled environments. Furthermore, cross-model learnings 
and hybrid approaches could prove beneficial. Insights drawn 
from the strengths and weaknesses of each model may inform 
the development of hybrid models that integrate the high preci-
sion of FCN-8s with the balanced performance of DPT and the 
promising attributes of SETR variants. Such hybrid strategies 
could potentially leverage the unique features of each model to 
enhance overall extraction accuracy and robustness.
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Table 5. Examples of road network extraction results for three datasets using 
different SETR variants.

DeepGlobe Massachusetts RDCME

Image

Label

SETR_naive

SETR_mla

SETR_pup

SETR = SEgmentation TRansformer.

Table 7. Evaluation metric values of SETR variants for three 
datasets (%). Bolded data cells indicate the highest value for each 
evaluation metric within each dataset across all models 

Accuracy Precision Recall F1 score 

SETR_naive
DeepGlobe 95.78 35.33 4.69 8.28
Massachusetts 95.05 40.51 0.20 0.41
RDCME 93.75 98.35 95.13 96.71

SETR_mla
DeepGlobe 96.44 83.13 15.32 25.87
Massachusetts 95.08 65.83 1.03 2.02
RDCME 97.26 97.29 99.96 98.60

SETR_pup
DeepGlobe 96.55 69.54 26.65 38.53
Massachusetts 95.65 80.63 15.68 26.26
RDCME 98.23 98.52 99.67 99.09

RDCME = Road Datasets in Complex Mountain Environments; SETR = 
SEgmentation TRansformer.

Table 6. Evaluation metric values of four models for  
three datasets (%). Bolded data cells indicate the highest  
value for each evaluation metric within each dataset  
across all models 

Accuracy Precision Recall F1 score 

FCN-8s
DeepGlobe 97.11 87.14 33.79 48.70
Massachusetts 95.76 83.26 17.67 29.15
RDCME 98.43 98.61 99.78 99.19

DPT
DeepGlobe 96.76 66.12 41.37 50.89
Massachusetts 96.31 81.78 32.50 46.51
RDCME 98.94 99.07 99.84 99.46

SegFormer
DeepGlobe 96.05 57.39 10.37 17.59
Massachusetts 96.08 70.23 35.79 47.42
RDCME 96.57 96.57 99.93 98.25

SETR_naive
DeepGlobe 95.78 35.33 4.69 8.28
Massachusetts 95.05 40.51 0.20 0.41
RDCME 93.75 98.35 95.13 96.71

DPT = dense prediction transformer; FCN = fully convolutional 
network; RDCME = Road Datasets in Complex Mountain 
Environments; SETR = SEgmentation TRansformer.
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