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A B S T R A C T   

Point cloud semantic segmentation, which contributes to scene understanding at different scales, is crucial for 
three-dimensional reconstruction and digital twin cities. However, current semantic segmentation methods 
mostly extract multi-scale features by down-sampling operations, but the feature maps only have a single 
receptive field at the same scale, resulting in the misclassification of objects with spatial similarity. To effectively 
capture the geometric features and the semantic information of different receptive fields, a multi-scale voxel- 
point adaptive fusion network (MVP-Net) is proposed for point cloud semantic segmentation in urban scenes. 
First, a multi-scale voxel fusion module with gating mechanism is designed to explore the semantic represen
tation ability of different receptive fields. Then, a geometric self-attention module is constructed to deeply fuse 
fine-grained point features with coarse-grained voxel features. Finally, a pyramid decoder is introduced to 
aggregate context information at different scales for enhancing feature representation. The proposed MVP-Net 
was evaluated on three datasets, Toronto3D, WHU-MLS, and SensatUrban, and achieved superior performance 
in comparison to the state-of-the-art (SOTA) methods. For the public Toronto3D and SensatUrban datasets, our 
MVP-Net achieved a mIoU of 84.14% and 59.40%, and an overall accuracy of 98.12% and 93.30%, respectively.   

1. Introduction 

Point cloud semantic segmentation has become the focus of many 
tasks, i.e., environmental perception (Du et al., 2021), autonomous 
driving (Guo et al., 2020; Hu et al., 2020; Xu et al., 2021a), and digital 
twins (Lehtola et al., 2022), due to the rapid development of light 
detection and ranging (LiDAR) techniques. However, because of the 
complexity of urban scenes, LiDAR point clouds obtained from such 
environments contain a large amount of noise and outliers (Liu et al., 
2019). Besides, the sparse, unordered, and class-imbalance character
istics of point clouds lead to formidable challenges for accurate and 
efficient semantic segmentation. Thus, it is necessary to propose a se
mantic segmentation method that could efficiently handle the task of 

understanding large-scale urban scenes. 
Traditional rule-guided or thresholding-guided feature extraction 

methods relying on prior knowledge, have limited the feature repre
sentation of point clouds (Jing et al., 2021). The development of deep 
learning has reduced the need for manually designing features, and re
searchers mainly focus on the optimization of network structures to 
explore in-depth feature representations of point clouds. Accordingly, 
early researchers projected three-dimensional (3D) point clouds into 
two-dimensional (2D) planes (Su et al., 2015) or spheres (Milioto et al., 
2019; Lyu et al., 2022; Aksoy et al., 2020; Wu et al., 2018), and then 
used 2D convolutional neural networks (CNNs) to process point clouds. 
Moreover, some studies converted point clouds into regular voxels 
(Riegler et al., 2017; Wang et al., 2018; Zhou et al., 2020) and used 3D 

* Corresponding authors. 
E-mail addresses: lihuchen@nuist.edu.cn (H. Li), guanhy.nj@nuist.edu.cn (H. Guan), l53ma@cufe.edu.cn (L. Ma), leixd@nuist.edu.cn (X. Lei), allennessy@hyit. 

edu.cn (Y. Yu), why.sholar@126.com (H. Wang), mdelavar@ut.ac.ir (M.R. Delavar), junli@uwaterloo.ca (J. Li).  

Contents lists available at ScienceDirect 

International Journal of Applied Earth  
Observation and Geoinformation 

journal homepage: www.elsevier.com/locate/jag 

https://doi.org/10.1016/j.jag.2023.103391 
Received 23 March 2023; Received in revised form 11 June 2023; Accepted 13 June 2023   

mailto:lihuchen@nuist.edu.cn
mailto:guanhy.nj@nuist.edu.cn
mailto:l53ma@cufe.edu.cn
mailto:leixd@nuist.edu.cn
mailto:allennessy@hyit.edu.cn
mailto:allennessy@hyit.edu.cn
mailto:why.sholar@126.com
mailto:mdelavar@ut.ac.ir
mailto:junli@uwaterloo.ca
www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2023.103391
https://doi.org/10.1016/j.jag.2023.103391
https://doi.org/10.1016/j.jag.2023.103391
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103391

2

CNNs for normalization. However, all these methods inevitably lost 
detailed geometric information in projection or voxelization, which 
affected the semantic segmentation accuracy of point clouds. PointNet, a 
pioneer in directly applying 3D points for semantic segmentation, 
maintains point cloud invariance with symmetry functions and spatial 
transform networks (Qi et al., 2017a). Although point-based methods 
retain more local geometric details during the feature extraction, the 
data format of point clouds is unordered, which makes the random 
memory access time-consuming (Liu et al., 2019). Besides, the sampling 
grouping module embedded in PointNet++ (Qi et al., 2017b) poorly 
extracts local features (Hu et al., 2020). 

To effectively capture the complex geometric features and the 
potentially relevant features of large-scale point clouds, some studies 
explored and used complementary information from multiple views of 
data. The multi-view data fusion methods, such as point-voxel fusion 
(Zhang et al., 2020; Liu et al., 2019; Tang et al., 2020), point-projection 
fusion (Liong et al., 2020), and range-point-voxel fusion (Xu et al., 
2021a), enable improve segmentation accuracies compared with single- 
view methods. Among them, the point-voxel fusion has better comple
mentarity, because they represent point cloud objects in 3D space with 
different views. Furthermore, the point-based representation is able to 
acquire better fine-grained spatial geometrical features, since a local 
feature extraction module can quickly aggregate neighborhood point 
features without dropping information. Correspondingly, the voxel- 
based representation has a regular format and ordered arrangement, 
which maintains the continuity of spatial information and is beneficial 
for acquiring coarse-grained spatial features. Besides that, using sparse 
convolution to extract voxel features can not only reduce computation 
cost but also maintain the sparsity and spatial invariance of point clouds 
(Tang et al., 2020; Graham et al., 2018). However, these point-voxel 
fusion methods only fuse single-scale features, ignoring the fact that 
different-scale features contain different physical dimension properties 
(Ye et al., 2021b), making it impossible to obtain multi-scale context 
information. Moreover, the ways of fusing multi-view features are 
relatively simple (e.g., addition and concatenation), which ineffectively 
use and represent features with different types. To tackle these prob
lems, a multi-scale voxel-point adaptive fusion network (MVP-Net) is 
proposed in this paper for semantically segmenting point clouds in 
urban scenes. 

MVP-Net fuses point features and voxel features at different scales 
via various modules and mechanisms. First, a multi-scale voxel convo
lution module is constructed to extract geometric features of different 
receptive fields. Next, to fuse multi-scale receptive field features effec
tively, a gating mechanism (Xu et al., 2021a) is used to adaptively 
aggregate voxel information according to the weights of features at 
different scales. Then, a point-voxel adaptive fusion module with a 
geometric self-attention (GSA) mechanism (Qin et al., 2022) is designed 
to effectively extract the potential features of points and voxels. Finally, 
to synthesize the fused features of each encoded layer, a pyramid 
decoder (Varney et al., 2022) is used to fuse the raw resolution feature 
maps with adaptive weighting, and a multi-scale aggregation loss 
function (Mao et al., 2022) is added to constrain the semantic features in 
the decoded layers. The main contributions of this paper are summa
rized as:  

• We construct a multi-scale voxel gating fusion (MVGF) module that 
aggregates voxel features with varying resolutions while adaptively 
selecting context information.  

• We propose a point-voxel adaptive fusion model with GSA, which 
can enhance model representation by using local geometric and se
mantic features, and then promote different-grained feature fusion.  

• We employ a pyramid decoder to fuse multi-level encoded features 
and a multi-scale aggregation loss function to increase the supervi
sion of the decoded layers and finally improve segmentation 
accuracy. 

The remainder of this paper is organized as follows. Section 2 pre
sents a systematic survey for point cloud semantic segmentation. Section 
3 details our proposed MVP-Net. Section 4 performs relevant experi
ments on three urban scene datasets to validate and analyze the per
formance of each module, as well as hyperparameter analysis. Section 5 
gives concluding remarks. 

2. Related work 

2.1. Projection-based segmentation 

Projection-based methods mainly project the 3D point clouds into 2D 
images, including multi-view projection and spherical projection. 
MVCNN was one of the multi-view projection methods that first used 2D 
images generated from different views of a point cloud to extract single- 
view features and then max-pooled all views’ features into global fea
tures (Su et al., 2015). SqueezeSeg (Wu et al., 2018) was a spherical 
projection method that used SqueezeNet to extract features from the 
Spherical-Front-View (SFV) and optimized the segmentation results by 
the conditional random field (CRF). SalsaNet (Aksoy et al., 2020) 
compared the contributions of both Spherical-Front-View (SFV) and 
Bird-Eye-View (BEV) representations in the segmentation process and 
showed that this method was projection-agnostic. RangeNet++ (Milioto 
et al., 2019) transformed the semantic results of range images back to 3D 
point clouds, which avoided convolutional discretization and discarding 
point clouds. EllipsoidNet (Lyu et al., 2022) projected the point clouds 
onto an ellipsoid surface, which reduced the overlap inside the points 
and also generated dense feature maps. The projection of 3D point 
clouds inevitably loses crucial structure information and the projection 
view setting has a significant impact on segmentation results. Hence, 
projection-based methods are suitable for specific small-scale scenes, 
such as indoor scenes, but have poor accuracy in large-scale urban 
scenes. 

2.2. Voxel-based segmentation 

The early voxel-based methods transformed point clouds into uni
form voxels and applied dense 3D CNN for semantic segmentation (Wu 
et al., 2015; Çiçek et al., 2016). However, the computation complexity 
cubically grows with the increase in voxel resolution (Tang et al., 2020). 
To alleviate this problem, OctNet used octrees to construct non-uniform 
voxels for reducing spatial redundancy (Riegler et al., 2017), and MSNet 
used coarse-grained multi-scale voxels to fuse context information 
(Wang et al., 2018). Simultaneously, submanifold sparse convolution 
directly processed the voxel activation region through hash mapping, 
which greatly improved both efficiency and accuracy (Graham et al., 
2018). Accordingly, Cylinder3D (Zhou et al., 2020) used 3D cylinder 
convolution to balance varying densities of point clouds. (AF)2-S3Net 
(Cheng et al., 2021) used a multi-branch attentive feature fusion module 
to suit point clouds with different levels of sparsity. DRINet++ (Ye et al., 
2021b) regarded voxels as points and used sparse feature encoders and 
geometric feature enhancement to extract multi-scale features. Although 
sparse convolution accelerates network training and inference, lower- 
resolution voxels destroy the surface structure and lose critical geo
metric information of point clouds. 

2.3. Point-based segmentation 

PointNet opened a new chapter of direct processing on points, but it 
was lack of the local structure for extracting fine-grained features (Qi 
et al., 2017a). PointNet++, based on PointNet, added sampling and 
grouping layers to extract local context (Qi et al., 2017b). KPConv used a 
deformable convolutional processing method with strong descriptive 
power and learning ability for point clouds in dense regions (Thomas 
et al., 2019). RandLA-Net, a random sampling network that includes 
modules for local feature encoding and attention pooling, was suitable 
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for point cloud semantic segmentation in large-scale environments (Hu 
et al., 2020). MappingConvSeg, inspired by KPConv, proposed a 
continuous convolution network to learn related spatial features (Yan 
et al., 2021). More recently, many local feature aggregation methods 
have been proposed. For instance, SCF-Net introduced a z-axis rotation- 
invariant description operator (Fan et al., 2021), BAAF-Net was a 
bilateral structure, where geometric and semantic features were learned 
from each other (Qiu et al., 2021), and DGFA-Net had a dilated graph 
feature aggregation structure (Mao et al., 2022). All these methods 
enriched the neighborhood feature representations. Point-based 
methods can accurately obtain fine-grained information, but the spar
sity, disorder, and irregularity of point clouds are still common prob
lems, which limit their abilities to achieve efficient performance in 
urban scenes. 

2.4. Fusion-based segmentation 

Since single-representation methods are more or less problematic 
(Xu et al., 2021a), some researchers have recently proposed hybrid 
multiple-representation methods. PVCNN (Liu et al., 2019) established a 
point-voxel fusion network, in which the point branch extracted fine- 
grained features and the voxel branch obtained coarse-grained fea
tures. On the basis of PVCNN, SPVCNN (Tang et al., 2020) introduced 
the sparse convolution and neural architecture search to improve the 
computation efficiency of voxels. FusionNet (Zhang et al., 2020) built a 
mini-point-network structure in voxels, which can directly aggregate all 
point features in neighboring voxels to the target voxels. DRINet (Ye 
et al., 2021a) proposed a dual-representation iterative learning strategy 
that can flexibly transform representations between point and voxel 
features. RPVNet (Xu et al., 2021a) stood on the shoulders of SPVCNN 
and proposed a range-point-voxel fusion network with a gating mech
anism to select fused features. The above methods only fuse the single- 
scale features and fuse them in a single way (e.g., addition). However, 
our proposed method not only fuses geometric information and semantic 
features from different receptive fields but also adaptively selects the 
useful parts. 

3. Method 

Fig. 1 shows the overall structure of the MVP-Net. The MVP-Net is a 
dual encoder-decoder network architecture that includes point en
coders, voxel encoders, and a pyramid decoder. The original point 
clouds are first preprocessed to obtain the input points and voxels, 
respectively. For the point encoder branch, following RandLA-Net (Hu 
et al., 2020), a Local Point Feature Encoding (LPFE) structure is used to 

extract fine-grained point features. For the voxel encoder branch, a 
Multi-scale Voxel Gating Fusion (MVGF) structure is used to explore the 
coarse-grained features of different receptive fields. Next, point features 
and voxel features are feature-passed and fused by a Geometric Self- 
Attention (GSA) module. Then, each level of features in the pyramid 
decoder is supervised by a multi-scale aggregation loss function. Finally, 
the multi-scale feature maps are fused and the semantic segmentation 
results are produced. The following sections describe the detailed 
structures of the MVP-Net. 

3.1. Data pre-processing 

To efficiently process the large-scale raw point clouds, we use grid 
subsampling to reduce point density imbalance while saving on 
computational costs. Let denote the point cloud in space as P = {pi ∈

Rdp , i = 1,2, ⋅⋅⋅,Np} and point features as Fp, where Np is the number of 
points, and dp is the dimension of Fp, i.e., three coordinate values (x, y, 
z), color information, intensity. Given the voxel grid V = {vi ∈ Rdv , i =
1, 2, ⋅⋅⋅,Nv} and voxel features Fv, where Nv is the number of voxels, and 
dv is the dimension of Fv, i.e., the average of the point features Fp in per 
voxel cell. The mapping functions P→V and V→P are used to represent 
the interconversion of points and voxels. 

To reduce the differences in the spatial scales of different point 
clouds, we transform all the points into a local coordinate system orig
inating at the center of gravity and normalize them to [0,1]. Then, we 
use the P→V function to obtain the position of the points in the corre
sponding voxel and set the average of all point features in the voxel cell 
as the voxel feature, which reduces the feature bias while improving the 
network training efficiency. After voxelization, the original point fea
tures in each voxel are gathered into voxel features, expanding the 
receptive field to some extent. Based on the regular spatial structure of 
voxels, we use 3D convolution to extract features. Since the fine-grained 
features obtained from 3D points can compensate for the geometric in
formation lost by voxels (Ye et al., 2021b), we use low-resolution voxels 
to extract coarse-grained features to complement the point features 
while reducing the high memory consumption problem of high- 
resolution voxels. 

3.2. Multi-scale coarse-grained voxel branch 

Because of the sparsity and density variations of point clouds, the 
number of points in the same resolution voxel varies greatly, and the 
specific physical dimension properties of features in different resolution 
voxels are also different. Therefore, single-scale voxel features cannot 

Fig. 1. Overall structure of MVP network.  
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satisfy accurate urban scene segmentation. Inspired by the multi-scale 
sparse projection method of DIRNet++ (Ye et al., 2021b), we propose 
a multi-scale voxel gating fusion structure to extract semantic infor
mation from different resolution voxels through different receptive 
fields. 

As shown in Fig. 2 (blue box), in the multi-scale voxel convolution 
unit, we establish three voxel branches with different resolutions for 
extracting voxel features at small, medium, and large scales, respec
tively, which contain the fine details of small objects (e.g., vehicles, 
pedestrians, and poles) and the global contexts of large objects (e.g., 
buildings, roads, and vegetation) in urban scenes. Specifically, for each 
scale, we use two 3D convolutions to expand the receptive field, then 
refine the voxel resolution by the trilinear interpolation up-sampling 
(Liu et al., 2019) to the most fine-grained scale voxel. 

Commonly used multi-scale feature fusion methods, such as addition 
and concatenation, ignore the semantic differences of features at 
different scales, resulting in reduced perception ability of small objects 
in the network. Therefore, we use a gating mechanism (Xu et al., 2021a) 
to aggregate multi-scale voxel features. This mechanism can adaptively 
select context information according to the importance of features and 
improve the reliability of the model while reducing the redundancy of 
features. Fig. 2 (green box) shows the detailed structure of the gating 
fusion mechanism. The gating map Gi is corresponded to the voxel Vi at 
each scale, which is calculated as follows (Xu et al., 2021a): 

Gi = sigmoid
(
WGi ⋅Vi

)
(1)  

where WGi is a learning weights matrix computed by the linear function, 
Gi ∈ [0, 1] is used to receive or suppress the pass-through of each scale 
voxel feature. For r scale voxels, the multi-scale voxel fusion features F̃v 
can be computed as Eq. (2) (Xu et al., 2021a). 

F̃v =
∑r

i=1
split

[

softmax

(
∑r

i=1
Gi

)]

i

⋅Vi (2) 

We sum up the corresponding feature channels of the r gated graphs 
Gi and calculate the weights by softmax normalization. Then, we 
multiply the weights of the corresponding channels with the raw fea
tures and accumulate them to obtain the fused voxel features ̃Fv. Finally, 
we use the V→P function to interpolate the fused voxel features to the 
corresponding points for feature fusion. 

3.3. Fine-grained point branch 

For fine-grained point branches, we use two units, i.e., Local Spatial 

Encoding (LocSE) and Attentive Pooling (AP) of RandLA-Net (Hu et al., 
2020), to exploit the fine-grained point features in a local space. To 
improve point feature representation ability, we use the Local Point 
Feature Encoding (LPFE) module to replace the Relative Point Position 
Encoding (RPPE) module in LocSE. The LPFE module consists of three 
parts: geometric encoding features (see Fig. 3a), matrix encoding fea
tures (see Fig. 3b), and color encoding features (see Fig. 3c). 

The geometric encoding features are aggregated from the central 
point coordinate pi, nearest K points coordinate pk

i , and relative point 
distance disk

i . Specifically, we first calculate the relative point distance as 
follows (Fan et al., 2021): 

disk
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xk
i − xi)

2
+ (yk

i − yi)
2
+ (zk

i − zi)
2

√

(3)  

where (xi, yi, zi) are the coordinates of the central point pi, and (xk
i , yk

i , zk
i )

are the coordinates of the k-th point pk
i . Then, we extract the geometric 

encoding features f g
i of points using Eq. (4) (Hu et al., 2020): 

f g
i = mlp

(
pi ⊕ pk

i ⊕ disk
i

)
(4)  

where ⊕ is the concatenation operation, mlp is Multi-Layer Perceptron. 
The matrix encoding features are obtained by Sort Gram Matrix (Xu 

et al., 2021b), which can reduce the location ambiguity of points, 
constrain the inherent relationships of neighboring points, and thus 
obtain invariant features of arbitrary point pairs. The Sort Gram Matrix 
consists of two parts: the gram matrix and the sort function. The gram 
matrix (Eq. (5)) learns distance features and angle features of the local 
coordinates through the inner-product relationship of the point pairs 
Pir ∈ R3×K and maintains the point rotation invariance, while the sort 
function (Eq. (6)) maintains the point permutation invariance by sorting 
the row vectors, which are calculated as follows (Xu et al., 2021b): 

GM(Pir) = pT
irpir =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

p1T
ir p1

ir p1T
ir p2

ir ⋅⋅⋅ p1T
ir pK

ir

p2T
ir p1

ir p2T
ir p2

ir ⋅⋅⋅ p2T
ir pK

ir

⋮ ⋮ ⋱ ⋮
pKT

ir p1
ir pKT

ir p2
ir ⋅⋅⋅ pKT

ir pK
ir

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5)  

SGM(Pir) = fsort(GM(Pir) ) =

⎡

⎢
⎢
⎣

fsort
(
P1

ir

)

⋮
fsort
(
PK

ir

)

⎤

⎥
⎥
⎦ (6)  

where GM(Pir) is a semi-positive definite matrix that contains the geo

Fig. 2. Multi-scale voxel gating fusion structure. Convs: Convolutions layers. US: Up-sampling. MLP: Multi-Layer Perceptron.  

H. Li et al.                                                                                                                                                                                                                                        



International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103391

5

metric properties of all local point pairs and forms a robust matrix 
structure, fsort( • ) is the sort-by-row function, pir = {p1

ir, p2
ir, ⋅⋅⋅, pK

ir} =

{p1
i − pi, p2

i − pi, ⋅⋅⋅, pK
i − pi} is the relative coordinates, and Pj

ir = {pjT
ir p1

ir,

pjT
ir p2

ir, ⋅⋅⋅, p
jT
ir pK

ir}(j = 1, 2, ...,K) is the correlation values for each row. 
Then, we denote fm

i = SGM(Pir) as matrix encoding features. 
Since color information and geometric features are complementary 

(Chen et al., 2022), encoding such color information can further 
enhance the semantic representation of point clouds. In this paper, the 
color encoding features are aggregated from the color feature ci of the 
central point pi, the color features ck

i of the nearest K points, and their 
variance fσ

i . Specifically, we first calculate the color feature variance as 
follows (Chen et al., 2022): 

f σ
i =

∑K
k=1

(
ck

i − ci
)2

K
(7) 

The color feature variance f σ
i helps to distinguish the boundary 

points, which have different labels of points in their neighborhood. 
Then, we concatenate ci, ck

i , and f σ
i as the color encoding features f c

i for 
each point using Eq. (8). 

f c
i = mlp

(
f σ
i ⊕

(
ck

i − ci
)
⊕ ci

)
(8) 

Finally, the geometry-encoded features, matrix-encoded features, 
and color-encoded features of point pi are concatenated together, 
denoted as the Rec,i (as shown in Eq. (9)), to encode local point features. 

Rec,i = mlp
(
f g
i ⊕ max

(
f m
i

)
⊕ f c

i

)
(9)  

3.4. Geometric self-attention module 

Although combining multi-scale coarse-grained voxel features and 
fine-grained point features can improve the robustness of the proposed 
model, direct fusion will produce false predictions of points due to 
different propagation properties of the different grained features. Geo
metric Transformer (Qin et al., 2022) adds a geometric structure 
encoding embedding layers to the Vanilla self-attention mechanism, 
which significantly captures the internal geometric structure features 
and maintains the geometric consistency of point clouds. Therefore, a 
Geometric Self-Attention (GSA) module is designed to augment the 
point-voxel features and obtain global context information (see Fig. 4). 

We use the LPFE structure as the geometric embedding layer in the 
GSA module, where geometric features and semantic information can 
constrain the relationship between center points and neighbor points. 
Firstly, the Q, K, and V matrices are calculated by the linear function of 
the point-voxel features Fpv = Fp ⊕ F̃v, and the R matrix is calculated by 
the embedding of the local point encoding features. The details are as 
follows (Qin et al., 2022): 

(Q,K,V) = Fpv⋅
(
WQ,WK ,WV)

R = Rec⋅WR (10)  

where Q, K, and V denote the query, key, and value matrices, respec
tively, and R denotes the local point encoding matrix. WQ, WK, WV, and 
WR are the weights of the corresponding feature matrices, respectively. 

Next, the cross-attention score E is calculated by multiplying the Q 

Fig. 3. Local point feature encoding structure, (a) geometric encoding features, (b) matrix encoding features, and (c) color encoding features.  

Fig. 4. Geometric self-attention module.  
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matrix with the K and R matrices, respectively. Ultimately, the attention 
weights are calculated using softmax and multiply with the V matrix to 
obtain the point-voxel fusion features F̃pv as follows (Qin et al., 2022): 

A = softmax
(

Q⋅RT + Q⋅KT
̅̅̅̅
dt

√

)

(11)  

F̃pv = mlp(A⋅V) (12)  

where dt is the feature dimension of the key vectors and A denotes the 
attention weight factor. 

3.5. Pyramid decoder module 

To fully utilize the point-voxel fusion features of different encoding 
layers, we introduce a pyramid decoder module (Varney et al., 2022) 
that allows different receptive field features to propagate between 
adjacent decoding layers, further promoting the reliability of the 
network. The pyramid decoder module is driven by the multi-scale 
features of fusion and multi-scale aggregation loss (see Eqs. (14) and 
(15)). 

3.5.1. Multi-scale features of fusion 
Given that the encoder and decoder feature maps at different layers 

are denoted as {S1, S2, ⋅⋅⋅,SM}, which include {N1,N2, ⋅⋅⋅,NM} points, 
respectively, where M indicates the number of network layers. After 
continuous up-sampling operations, the {S1, S2, ⋅⋅⋅,SM} layers of feature 
maps in the pyramid decoder are recovered to the raw resolution feature 
maps {Ŝ1, Ŝ2, ⋅⋅⋅, ŜM}, respectively. The lower feature maps (shallow 
layers) focus on the local details and the higher feature maps (deep 
layers) focus more on the global boundary information. In order to 
better aggregate the boundary and internal region features and reduce 
the perception bias between feature maps, we adaptively fuse the raw 
resolution feature maps. To be concrete, we learn the weights and 
multiply them with the feature maps, and then accumulate the weighted 
feature maps to obtain a fused feature map. Theoretically, it follows: 

λm = softmax(mlp(Ŝm)) (13)  

where m ∈ (1,2,⋯,M), Ŝm is the raw resolution feature map of the m-th 
layer, and λm is the weight corresponding to Ŝm feature map. The 
adaptive weighted fusion feature map Sf is formulated as follows: 

Sf =
∑M

m=1
λm⋅Ŝm (14)  

3.6. 2. Multi-scale aggregation loss 

The adaptive weighted fusion of raw resolution feature maps im
proves the segmentation accuracy by aggregating features from different 
layers, but the semantic features lack label constraints during the up- 
sampling process. Therefore, we add a multi-scale aggregation loss 
(Mao et al., 2022) for supervising the features in the decoding layer to 
reduce the perturbation and further constrain the raw resolution fea
tures. The multi-scale aggregation loss function Lma is calculated as 
follows: 

Lma = −
∑M

m=1
φm⋅

∑Nm

i=1

∑C

c=1
yic

m⋅log
(
pic

m

)
(15)  

where φm is the weight of the decoder features in the m layer, C is the 
number of classes, yic

m and pic
m denote the true label and the predicted 

label of point pi as class c in the m layer, respectively. We set the weights 
as φm = {0.1,0.1, 0.3,0.5, 0.5}. In this paper, the loss function Ltotal in
cludes the multi-scale aggregation loss function Lma and the weighted 
cross-entropy loss function Lwce. Lwce is detailed as follows (Han et al., 

2021): 

wsqrt =
1

̅̅̅̅̅
Nc

√ ∑C
i

1̅̅̅̅
Ni

√
(16)  

Lwce = −
∑N

i=1
wsqrt,i⋅

∑C

c=1
yic⋅log

(
pic) (17)  

where wsqrt is the class weight of Lwce, Nc is the point number of the class 
c, yic and pic are the ground truth label and the predicted label of point pi 
as class c, respectively. Hence, Ltotal is formulated as follows: 

Ltotal = αLwce + βLma (18)  

where α and β are the constants used to balance the two loss functions. In 
this paper, we set α = 0.5 and β = 0.5 (as detailed in Section 4.6). 

4. Experiments and analysis 

The performance of MVP-Net is evaluated on three point cloud 
datasets of urban scenes, namely Toronto3D, WHU-MLS, and Sensa
tUrban, followed by the ablation analysis of each module and the 
hyperparametric analysis. 

4.1. Experimental setup 

4.1.1. Datasets 
To fully evaluate the performance of MVP-Net in point cloud se

mantic segmentation, we used three urban scene datasets, i.e., Tor
onto3D, WHU-MLS, and SensatUrban, which were obtained from 
different platforms in different cities and contained different classes. 

Toronto3D was captured by a Mobile Laser Scanning (MLS) system 
on Avenue Road in Toronto, Canada, covering a stretch of approxi
mately 1.0 km with approximately 78.3 million points (Tan et al., 2020). 
This large-scale point cloud dataset was equally divided into 4 parts 
(named L001, L002, L003, and L004). Following Tan et al. (2020), the 
L002 was utilized for testing, while the other three parts were employed 
for training and validation. The raw point cloud was categorized into 8 
object classes, and each point contains ten attributes, i.e., (X, Y, Z) co
ordinates, (R, G, B) color information, intensity, GPS Time, scan angle, 
and label. In this dataset, the inputs used for network training and 
testing are only color information and 3D coordinates. To precisely 
analyze the effectiveness of the proposed MVP-Net, we used Overall 
Accuracy (OA), per-class Intersection-over-Unions (IoUs), and mean 
Intersection-over-Union (mIoU) as evaluation metrics. 

WHU-MLS is an MLS point cloud dataset jointly released by the 
Wuhan University and Shanghai Surveying and Mapping Institute (Yang 
et al., 2021). This dataset was divided into 40 scenes, 30 of them were 
used for training and 10 for testing. WHU-MLS includes more than 30 
kinds of objects and 5000 typical instances in urban scenes, including 
ground, dynamic targets, vegetation, poles and their appurtenant 
structures, buildings and structural facilities, and other public amenities 
(Yang et al., 2021), totaling more than 300 million points. For a fair 
comparison, the point cloud was segmented into 17 object classes in 
accordance with Han et al. (2021). The inputs to our proposed network 
included 3D coordinates, intensity, and normals. Following Yang et al. 
(2021), we used IoUs and mIoU as evaluation metrics. 

SensatUrban is a photogrammetric point cloud dataset covering 
three cities in the UK, including Birmingham, Cambridge, and York, 
with a total area of 7.6 km2. Following Hu et al. (2022), 10 of the 14 tiles 
from Birmingham were used for training, 2 for validation, and 2 for 
testing, and 20 of the 29 tiles from Cambridge were used for training, 5 
for validation, and 4 for testing. The raw point cloud was categorized 
into 13 object classes. The input to our proposed network included 3D 
coordinates and color information. We used OA, IoUs, and mIoU as 
evaluation metrics. 
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4.1.2. Training and inference details 
For Toronto3D, WHU-MLS, and SensatUrban, the subsampling grid 

sizes were set to 0.04 m (Tan et al., 2020), 0.08 m (lei et al., 2022), and 
0.02 m (Hu et al. 2022), respectively. In the proposed MVP-Net, the 
number of input points to the network was 65,536 per batch, and the 
training and testing batch sizes were 4 and 8, respectively. The whole 
network was a U-Net-like structure with 5-layer encoders and 5-layer 
decoders, where the encoder was divided into two branches: point 
branch and voxel branch. The feature dimensions of each layer in the 
network were {16, 64, 128, 256, 512}, respectively. For the point 
encoding branch, random down-sampling was performed to decrease 
the number of points, and the sampling rates of each layer were {1/4, 1/ 
16, 1/64, 1/256, 1/512} of the input points, respectively. For the voxel 
encoding branch, the resolutions of voxels were set to {0.25 m, 0.5 m, 1 
m} (detailed in Section 4.6), and each layer included two 3 × 3 × 3 
convolutions. In the decoder, the nearest neighbor up-sampling was 
used to recover the number of input points. During the training process, 
the number of epochs was set to 100, the iteration steps for each epoch 
were set to 500, the model was updated using the Adam optimizer, the 
momentum was set to 0.95, the reduction after each epoch iteration was 
set to 5%, the number of nearest neighbor points K was set to 16, and the 
last training result was used for evaluation. All the experiments were 
performed on an Intel(R) Xeon(R) Silver 4210R CPU@2.40 GHz and a 
single NVIDIA GeForce RTX3090 GPU. 

4.2. Evaluation on Toronto3D 

Table 1 shows the quantitative results of the MVP-Net and other 
SOTA networks on the L002 section of the Toronto3D dataset. To ensure 
a fair comparison and verify the semantic feature extraction ability of 
the model, we divided the experiments into two groups: one group 
experiment used RGB information and the other did not. Experimental 
results showed that when not using RGB information, MVP-Net achieved 
a 3.15% improvement over the RandLA-Net in terms of the OA 
(96.10%), but a 2.54% reduction over the RandLA-Net in terms of the 
mIoU (75.17%), and MVP-Net achieved higher performance on roads, 
utility lines, and poles. Due to the stronger spatial geometric similarity 
of roads and road markings and the lack of color encoding information, 
it is difficult for MVP-Net to distinguish between roads and road mark
ings, therefore, the IoU of MVP-Net on road markings (22.02%) was 
lower than that of RandLA-Net (42.62%). When using RGB information 
as extra inputs, MVP-Net was superior over other networks in terms of 
the OA (98.12%) and mIoU (84.14%), improving over the RandLA-Net 
by 3.75% and 2.37%, respectively. Overall, our proposed MVP-Net 
achieved excellent performance in five out of eight classes. They are 

road, road marking, natural, building, and car. 
To intuitively compare the segmentation qualities of the comparative 

methods, we showed the visualization results obtained by MVP-Net and 
RandLA-Net using RGB color information as the network input features 
(see Fig. 5). Moreover, we presented four of the close-view regions (see 
Fig. 6), where the differences between MVP-Net and RandLA-Net were 
shown in the red boxes. From the visualization results, the segmentation 
effects of MPV-Net on roads, natural, poles, and cars were better than 
those of RandLA-Net, especially on pedestrian crossings and lane arrows 
(see Fig. 6c). These two classes were clearer and more complete, mainly 
because the LPFE module (Eq. (9)) deeply explored the geometric fea
tures and color information in the local space, which facilitated the 
model to distinguish scene objects with similar spatial structures. The 
lower resolution voxel units in MVP-Net obscured the semantic features 
of the fences and the surrounding buildings, resulting in the misclassi
fication of fences in some regions, but the results (see Fig. 6d) showed 
that MVP-Net maintained the integrity of the overall structure of the 
building, which was mainly attributed to the fact that the MVGF module 
obtained coarse-grained features from different receptive fields and 
selectively aggregated the semantic features through the gating mech
anism (see Fig. 2). 

In addition, we compared the effects of using or not using color in
formation on the segmentation results of road markings (see Fig. 7). 
From the visualization results, we can observe that the road markings 
without color information have scattered structures and ambiguous 
segmentation boundaries, which cannot be distinguished from the 
roads. The use of encoded color information can enhance the local 
spectral differences and thus facilitate the model to effectively distin
guish roads and road markings. 

4.3. Evaluation on WHU-MLS 

The quantitative results of MVP-Net and other comparative networks 
on the WHU-MLS dataset are presented in Table 2. Our MVP-Net 
improved by 5.94% in mIoU (67.36%) over the baseline’s mIoU 
(61.42%), which was tested under the same experimental settings. MVP- 
Net achieved the best performance in 14 out of 17 classes in the WHU- 
MLS dataset, indicating an across-the-board improvement of instances in 
the urban scenes. Fig. 8 shows the four scenes in the WHU-MLS test set 
and their close-view areas, with the red boxes indicating the model 
performance differences between MVP-Net and RandLA-Net. The 
municipal poles, telegraph poles, traffic lights, and detectors all belong 
to poles and their appurtenant structures, which have similar geometric 
structures and spatial locations (see Fig. 8a). The baseline method only 
used the local geometric features, which can easily cause confusion in 

Table 1 
Qualitative results for various methods on the L002 section of the Toronto3D dataset. The result scores of other SOTA networks came from Du et al. (2021) and Zeng 
et al. (2022). The scores in underlines indicate the best results for each category with or without the RGB color features, respectively, while the scores in bold are the 
best in all methods.  

RGB Method OA (%) mIoU (%) IoUs (%) 

road road m. natural build. util. l. pole car fence 

No PointNet++ 84.88  41.81  89.27  0.00  69.06  54.16  43.78  23.30  52.00  2.95 
PointNet++ (MSG)  92.56  59.47  92.90  0.00  86.13  82.15  60.96  62.81  76.41  14.43 
DGCNN  94.24  61.79  93.88  0.00  91.25  80.39  62.40  62.32  88.26  15.81 
KFCNN  95.39  69.11  94.62  0.06  96.07  91.51  87.68  81.56  85.66  15.72 
MS-PCNN  90.03  65.89  93.84  3.83  93.46  82.59  67.80  71.95  91.12  22.50 
TGNet  94.08  61.34  93.54  0.0  90.83  81.57  65.26  62.98  88.73  7.85 
MS-TGNet  95.71  70.50  94.41  17.19  95.72  88.83  76.01  73.97  94.24  23.64 
RandLA-Net  92.95  77.71  94.61  42.62  96.89  93.01  86.51  78.07  92.85  37.12 
MVP-Net (Ours)  96.10  75.17  95.15  22.02  96.55  92.80  88.37  85.00  91.89  29.58 

Yes RandLA-Net  94.37  81.77  96.69  64.21  96.92  94.24  88.06  77.84  93.37  42.86 
ResDLPS-Net  96.49  80.27  95.82  59.80  96.10  90.96  86.82  79.95  89.41  43.31 
BAAF-Net  94.20  81.20  96.80  67.30  96.80  92.20  86.80  82.30  93.10  34.00 
BAF-LAC  95.20  82.20  96.60  64.70  96.40  92.80  86.10  83.90  93.70  43.50 
LACV-Net  97.40  82.70  97.10  66.90  97.30  93.00  87.30  83.40  93.40  43.10 
MVP-Net (Ours)  98.12  84.14  98.00  76.36  97.34  94.77  87.69  84.61  94.63  39.74  
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Fig. 5. Comparison of visualization results on the Toronto3D dataset, (a) raw point cloud with RGB, (b) ground truth labels, (c) semantic segmentation results 
obtained by our method, (d) semantic segmentation results obtained by RandLA-Net. 

Fig. 6. Comparison of visualization results on the Toronto3D dataset, where a to d represent detailed views of the four semantic segmentation areas.  
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the pole class (see Fig. 8c). However, the multi-scale voxel unit in MVP- 
Net can perceive the pole features and their appendages as a whole, 
which maintained the integrity of the semantic segmentation classes and 
also increased the discrimination between different features (see 
Fig. 8b). In addition, for dynamic targets (e.g., pedestrians and vehicles) 
with relatively independent spatial structures, MVP-Net rapidly aggre
gated fine-grained point features and coarse-grained voxel features, 
improving the segmentation accuracy of these classes. 

4.4. Evaluation on SensatUrban 

The quantitative results of MVP-Net and other comparative networks 
on the SensatUrban dataset are presented in Table 3. Our MVP-Net was 
superior over other networks in terms of the OA (93.30%) and mIoU 
(59.40%), improving over RandLA-Net by 3.52% and 6.71%, respec
tively. Furthermore, MVP-Net achieved the best performance in 5 out of 
13 classes, including building, bridge, parking, traffic road, and foot
path. Fig. 9 shows the results of the online evaluation on the test set of 
the SensatUrban dataset, with the red boxes indicating the differences 
between MVP-Net and RandLA-Net. From the visualization results, 
MVP-Net not only maintains the integrity of buildings and parking, but 
also better separates cars and street furniture in comparison to RandLA- 

Net. For tiny bridges and water, MVP-Net can also be extracted. The 
quantitative and visualization results show that MVP-Net can effectively 
improve the semantic segmentation accuracy of the point clouds in 
urban scenes. 

4.5. Ablation studies 

The experimental results on the Toronto3D, WHU-MLS, and Sensa
tUrban datasets demonstrated the superior performance of MPV-Net. As 
the number of times the SensatUrban dataset could be validated online 
was limited, we further conducted ablation studies on the other two 
datasets to evaluate the effectiveness of our designed modules. 

4.5.1. Effect of MVGF 
The MVGF module is composed of a multi-scale voxel convolution 

unit and a gating fusion (GF) unit. We added the MVGF module to 
RandLA-Net (i.e., the baseline), and named the resultant network as 
Model A1. As illustrated in Table 4, in comparison to the baseline, Model 
A1 gained an improvement of 1.01% OA and 1.97% mIoU on the Tor
onto3D dataset, respectively, and obtained an increase of 0.76% OA and 
2.98% mIoU on the WHU-MLS dataset, respectively. Through the 
experiment results, we concluded that the multi-scale voxel structure 

Fig. 7. Comparison of visualization results with or without RGB information as initial input on the Toronto3D dataset.  

Table 2 
Quantitative results of the comparative methods on the WHU-MLS dataset. The scores of other comparative methods came from Han et al. (2021). Baseline scores were 
acquired from RandLA-Net trained with the parameters mentioned in Section 4.1.2. Bolded scores indicate the best results in all methods, while the scores in underline 
are second only to the best.  

Methods mIoU (%) IoUs (%) 

tree nd. way building box light tel. pole mun. pole low veg. board 
roadway rd. mark. vehicle pedestrian trff. light detector fence wire  

PointNet++ 41.10  83.30  42.00  72.70  6.60  59.10  30.80  7.80  33.10  13.90  
80.00  29.50  76.70  38.90  25.00  11.00  56.30  32.70  

PointConv 46.40  85.60  48.90  73.50  28.20  59.70  35.70  20.00  32.40  16.00  
82.00  30.60  76.20  53.80  28.70  27.60  52.60  36.50  

Han’s method 52.80  84.50  58.40  77.10  45.40  71.80  49.90  26.50  34.10  20.20  
83.60  38.10  79.10  60.80  31.00  31.30  57.90  47.20  

Baseline 61.42  89.92  52.97  84.17  54.21  70.42  45.89  25.52  32.01  36.95  
91.84  54.24  94.79  83.40  49.85  40.90  69.84  67.27  

MVP-Net (Ours) 67.36  91.35  54.25  89.69  63.42  86.03  73.15  34.52  37.68  40.16  
92.95  61.43  95.19  82.09  53.69  44.90  66.02  78.66   
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can learn features from different granularity spaces and enhance the 
generalization capability of the network. 

Additionally, we qualitatively analyzed the differences between the 
addition fusion strategy and the gating fusion strategy. As shown in 
Fig. 10, the red boxes show the differences between the two fusion 
strategies. From the feature maps, both feature maps are smooth and 
clear for large objects (e.g., roads and buildings). But for small objects, e. 
g., cars, poles, lights, and benches, the feature maps of the addition 
fusion strategy have ambiguous boundaries, while the feature maps of 
the gating fusion strategy have clearer boundaries and are more 
distinguishable from the surrounding features. Because of the different 
receptive fields of voxel features at different scales, the addition fusion 
strategy causes feature semantic confusion. The gating fusion strategy 
can reduce useless information, adaptively aggregate features at 
different scales, and maintain the integrity of spatial structure features. 

4.5.2. Effect of GSA 
The GSA module was then added to Model A1 and named the 

resultant network as Model A2. As can be seen in Table 4, in comparison 
to Model A1, on the Toronto3D dataset, Model A2 improved the OA and 
mIoU by 0.54% and 1.28%, respectively, while 0.26% OA and 1.14% 
improvement on the WHU-MLS dataset, respectively. The accuracy 
improvement demonstrated that the GSA module can effectively 
aggregate point-voxel features, and the local point encoding features 
contribute to a consistent geometric structure during the feature fusion 
process. 

Further, we validated the performance of the LPFE module on the 
Toronto3D dataset, by providing the network only with coordinate in
formation as the first input features (see Table 5). We conducted the 
following ablation experiments: (1) encoding coordinate information 
only, and named this network as Model B0; (2) encoding color infor
mation only, and named this network as Model B1; (3) encoding 

Fig. 8. Comparison of visualization results on the WHU-MLS dataset, (a) Ground truths, (b) semantic segmentation results obtained by our method, (c) semantic 
segmentation results obtained by RandLA-Net. 

Table 3 
Quantitative results of comparative methods on the SensatUrban dataset. The scores of other comparative methods came from Hu et al. (2022). Bolded scores indicate 
the best results in all methods, while the scores in underline are second only to the best.  

Methods OA (%) mIoU(%) IoUs (%) 

ground veg. build. wall bridge park. rail traffic. street. car foot. bike water 

PointNet  80.78  23.71  67.96  89.52  80.05  0.00  0.00  3.95  0.00  31.55  0.00  35.14  0.00  0.00  0.00 
PointNet++ 84.30  32.92  72.46  94.24  84.77  2.72  2.09  25.79  0.00  31.54  11.42  38.84  7.12  0.00  56.93 
TagentConv  76.97  33.30  71.54  91.38  75.90  35.22  0.00  45.34  0.00  26.69  19.24  67.58  0.01  0.00  0.00 
SPGraph  85.27  37.29  69.93  94.55  88.87  32.83  12.58  15.77  15.48  30.63  22.96  56.42  0.54  0.00  44.24 
SparseConv  88.66  42.66  74.10  97.90  94.20  63.30  7.50  24.20  0.00  30.10  34.00  74.40  0.00  0.00  54.80 
KPConv  93.20  57.58  87.10  98.91  95.33  74.40  28.69  41.38  0.00  55.99  54.43  85.67  40.39  0.00  86.30 
RandLA-Net  89.78  52.69  80.11  98.07  91.58  48.88  40.75  51.62  0.00  56.67  33.23  80.14  32.63  0.00  71.31 
MVP-Net (Ours)  93.30  59.40  85.10  98.50  95.90  66.60  57.50  52.70  0.00  61.90  49.70  81.80  43.90  0.00  78.20  
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Fig. 9. Comparison of visualization results on the SensatUrban dataset, (a) raw point cloud with RGB, (b) semantic segmentation results obtained by our method, (c) 
semantic segmentation results obtained by RandLA-Net. 

Table 4 
Comparison of the experimental results of different models on the Toronto3D and WHU-MLS datasets. The bolded scores are the best in all models.  

Model MVGF GSA PD MALoss Toronto3D WHU-MLS 

OA (%) mIoU (%) OA (%) mIoU (%) 

Baseline      95.91  77.88  89.35  61.42 
A1 √     96.92  79.85  90.11  64.40 
A2 √ √    97.46  81.13  90.37  65.54 
A3 √ √ √   97.89  83.17  91.26  66.92 
MPV-Net √ √ √ √  98.12  84.14  91.32  67.36  

Fig. 10. Comparison of visualization results of feature maps on the Toronto3D dataset. GF: Gating Fusion. AF: Addition Fusion.  
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coordinate information and color information, and named this network 
as Model B2; (4) encoding coordinate information and matrix informa
tion, and named this network as Model B3; (5) encoding color infor
mation and matrix information, and named this network as Model B4; 
and (6) encoding all coordinate, color, and matrix information, and 
named this network as Model B5. We could draw the following three 
conclusions from Table 5. (1) Spatial coordinate features have the 
greatest influence on the model performance, and geometric features in 
the neighborhood space are beneficial for capturing context informa
tion. (2) Color information and geometric features are complementary, 
and color variance helps to improve the segmentation accuracy of 
boundary points. (3) Encoding geometric features between any point 
pairs in local space can improve model performance even further. 

4.5.3. Effect of pyramid decoder 
We added a pyramid decoder (PD) to Model A2 and named the 

resultant network as Model A3. Compared to Model A2, Model A3 
gained an improvement of 0.43% and 2.04% on OA and mIoU, respec
tively, on the Toronto3D dataset, as well as an increase of 0.89% and 
1.38% on OA and mIoU, respectively, on the WHU-MLS dataset (see 
Table 4). The statistical results indicated that the pyramid decoder can 
effectively enhance the robustness of the network by fusing multi-layer 
feature maps. Then, we visualized the fused feature maps of using or not 
using the adaptive weighted fusion module (as detailed in Eq. (14)). It 
can be seen that the adaptive weighted fusion of multi-layer feature 
maps is beneficial to reduce the conflict of different level features and 
improve the effectiveness of the pyramid decoder (see Fig. 11). 

4.5.4. Effect of multi-scale loss function 
We incorporated the weighted cross-entropy loss function with the 

multi-scale aggregation loss (MALoss) function. As shown in Table 4, 
MVP-Net outperformed Model A3 with an OA of 0.23% and a mIoU of 
0.97%, respectively, on the Toronto3D dataset, as well as with an OA of 
0.06% and a mIoU of 0.44%, respectively, on the WHU-MLS dataset. The 
experimental results demonstrated that the multi-scale aggregation loss 
function constrains the semantic features after the nearest neighbor up- 
sampling operation, which substantially lowers the uncertainty of the 

pyramidal feature map fusion and improves the accuracy of Model A3. 

4.6. Hyperparameter analysis 

On the Toronto3D dataset, we verified the effect of the multiscale 
voxel resolution r = {r1, r2, r3} and the weight parameters α and β in Eq. 
(18). 

As shown in Fig. 12, r represents different combinations of multi- 
scale voxel resolutions, α and β are constants used to balance the 
magnitude of the loss function. When r = {0.25,0.5,1}, regardless of the 
values of α and β, the OA and mIoU were close to or exceeded the other 
values of r. The span of these three voxel resolutions was wide enough to 
cover the target objects in urban scenes, which makes the MVGF module 
extract and fuse different grained features efficiently. Therefore, we 
used the set of resolutions r = {0.25,0.5, 1} to extract coarse-grained 
voxel features. 

When (α,β) = (0.5,0.5), the OA and mIoU were comparable with or 
outperformed the other values of α and β at r = {0.25,0.5,0.75}, and r =

{0.25,0.5,1}. However, when (α, β) = (0.6,0.4), under r = {0.35,0.5,
0.65}, and r = {0.35, 0.5, 1}, both the OA and mIoU were close to or 
outperformed the other values of α and β. To efficiently extract the urban 
scene features, we used the optimum results obtained under r = {0.25,
0.5, 1}, i.e., (α, β) = (0.5,0.5) to balance the loss functions and extract 
features. 

5. Conclusion 

In this paper, we proposed a multi-scale voxel-point adaptive fusion 
network, MVP-Net, for semantically segmenting large-scale LiDAR point 
clouds in urban scenes. MVP-Net first used the multi-scale voxel gating 
fusion module to acquire multi-scale semantic features, which facilitated 
the diverse representation of model features. Then, based on the geo
metric self-attention mechanism, the point-voxel adaptive fusion mod
ule aggregated both the fine-grained and coarse-grained features to fully 
extract contextual semantic information. Finally, the pyramid decoder 
extracted feature maps at different scales and fused the full-sized feature 
maps to obtain semantic segmentation results. MVP-Net has been 
extensively evaluated on three urban scene datasets. On the Toronto3D, 
WHU-MLS, and SensatUrban datasets, MVP-Net improved by 2.37%, 
5.94%, and 6.71% of mIoU compared to the baseline, i.e., RandLA-Net, 
respectively. Quantitative results and visual inspection demonstrated 
that the proposed MVP-Net achieved a promising point cloud semantic 
segmentation performance in large-scale and complex urban scenes with 
variedly-scaled road objects. 
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Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O., 2016. 3D U-Net: 
learning dense volumetric segmentation from sparse annotation. In Proc. MICCAI 
424–432. https://doi.org/10.48550/arXiv.1606.06650. 

Du, J., Cai, G.R., Wang, Z.Y., Huang, S.F., Su, J.H., Junior, J.M., Smit, J., Li, J., 2021. 
ResDLPS-Net: Joint residual-dense optimization for large-scale point cloud semantic 
segmentation. ISPRS J. Photogramm. Remote Sens. 182, 37–51. 

Fan, S., Dong, Q., Zhu, F., Lv, Y., Ye, P., Wang, F. Y., 2021. SCF-Net: Learning spatial 
contextual features for large-scale point cloud segmentation. In: Proc. CVPR, pp. 
14504-14513. 

Graham, B., Engelcke, M., Van Der Maaten, L., 2018. 3D semantic segmentation with 
submanifold sparse convolutional networks. In: Proc. CVPR, pp. 9224-9232. https:// 
doi.org/10.48550/arXiv.1711.10275. 

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M., 2020. Deep learning for 3d 
point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 43 (12), 4338–4364. 

Han, X., Dong, Z., Yang, B., 2021. A point-based deep learning network for semantic 
segmentation of MLS point clouds. ISPRS J. Photogramm. Remote Sens. 175, 
199–214. 

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. 
RandLA-Net: Efficient semantic segmentation of large-scale point clouds. In: Proc. 
CVPR, pp. 11105-11114. https://doi.org/10.1109/CVPR42600.2020.01112. 

Hu, Q., Yang, B., Khalid, S., Xiao, W., Trigoni, N., Markham, A., 2022. Sensaturban: 
Learning semantics from urban-scale photogrammetric point clouds. Int. J. Comput. 
Vis. 130 (2), 316–343. https://doi.org/10.1007/s11263-021-01554-9. 

Jing, Z., Guan, H., Zang, Y., Ni, H., Li, D., Yu, Y., 2021. Survey of Point Cloud Semantic 
Segmentation Based on Deep Learning. J. Front. Comp. Sci. Tech. 15 (1), 1–26. 
https://doi.org/10.3778/j.issn.1673- 9418.2006025. 

Lehtola, V.V., Koeva, M., Elberink, S.O., Raposo, P., Virtanen, J.-P., Vahdatikhaki, F., 
Borsci, S., 2022. Digital twin of a city: Review of technology serving city needs. Int. 
J. Appl. Earth Obs. Geoinf. 114, 102915. 

Lei, X., Guan, H., Ma, L., Yu, Y., Dong, Z., Gao, K., Delavar, M., Li, J., 2022. WSPointNet: 
A multi- branch weakly supervised learning network for semantic segmentation of 
large-scale mobile laser scanning point clouds. Int. J. Appl. Earth Obs. Geoinf. 115, 
103129 https://doi.org/10.1016/j.jag.2022.103129. 

Liong, V. E., Nguyen, T. N. T., Widjaja, S., Sharma, D., Chong, Z. J., 2020. AMVNet: 
Assertion-based multi-view fusion network for lidar semantic segmentation. arXiv 
preprint arXiv:2012.04934. 

Liu, Z., Tang, H., Lin, Y., Han, S., 2019. Point-voxel CNN for efficient 3D deep learning. 
Adv. NeurIPS 32. 

Lyu, Y., Huang, X., Zhang, Z., 2022. EllipsoidNet: Ellipsoid representation for point cloud 
classification and segmentation. In Proc. WACV 854–864. https://doi.org/10.4855 
0/arXiv.2103.02517. 

Mao, Y., Sun, X., Diao, W., Chen, K., Guo, Z., Lu, X., Fu, K., 2022. Semantic Segmentation 
for Point Cloud Scenes via Dilated Graph Feature Aggregation and Pyramid 
Decoders. In: arXiv preprint arXiv:2204.04944. 

Milioto, A., Vizzo, I., Behley, J., Stachniss, C., 2019. RangeNet++: Fast and accurate 
lidar semantic segmentation. In: Proc. IROS, pp. 4213-4220. https://doi.org/ 
10.1109/IROS40897.2019.8967762. 

Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. PointNet: deep learning on point sets for 3D 
classification and segmentation. In: Proc. CVPR, pp. 77-85. https://doi.org/10.1109/ 
CVPR.2017.16. 

Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017b. PointnNet++: Deep hierarchical feature 
learning on point sets in a metric space. In: Proc. NeurIPS, pp. 5099-5108. htt 
p://arxiv.org/abs/1706.02413. 

Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y., Xu, K., 2022. Geometric transformer for fast 
and robust point cloud registration. In: Proc. CVPR, pp. 11143-11152. https://doi. 
org/10.48550/arXiv.2202.06688. 

Qiu, S., Anwar, S., Barnes, N., 2021. Semantic segmentation for real point cloud scenes 
via bilateral augmentation and adaptive fusion. In: Proc. CVPR, pp. 1757-1767. 
https://doi.org/10.48550/arXiv.2103.07074. 

Riegler, G., Osman Ulusoy, A., Geiger, A., 2017. OctNet: Learning deep 3d 
representations at high resolutions. In Proc. CVPR 3577–3586. https://doi.org/10. 
48550/arXiv.1611.05009. 

Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015. Multi-view convolutional 
neural networks for 3D shape recognition. In Proc. ICCV 945–953. https://doi.org/ 
10.1109/ICCV.2015.114. 

Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang, K., Li, J., 2020. Toronto-3D: A large- 
scale mobile lidar dataset for semantic segmentation of urban roadways, in. In: Proc. 
CVPR Workshops, pp. 797- 806. https://doi.org/10.1109/ 
CVPRW50498.2020.00109. 

Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S., 2020. Searching efficient 3d 
architectures with sparse point-voxel convolution. In: Proc. ECCV, pp. 685-702. 
https://doi.org/10.1007/978-3- 030-58604-1_41. 

Fig. 12. The OA and mIoU obtained with different values of r.  

H. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.48550/arXiv.2102.04530
https://doi.org/10.48550/arXiv.1606.06650
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0025
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0025
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0025
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0040
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0040
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0045
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0045
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0045
https://doi.org/10.1007/s11263-021-01554-9
https://doi.org/10.3778/j.issn.1673- 9418.2006025
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0065
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0065
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0065
https://doi.org/10.1016/j.jag.2022.103129
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0080
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0080
https://doi.org/10.48550/arXiv.2103.02517
https://doi.org/10.48550/arXiv.2103.02517
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://doi.org/10.48550/arXiv.1611.05009
https://doi.org/10.48550/arXiv.1611.05009
https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1109/ICCV.2015.114


International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103391

14

Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., et al., 2019. KPConv: Flexible and 
deformable convolution for point clouds. In: Proc. ICCV, pp. 6411–6420. https://doi. 
org/10.1109/ICCV.2019.00651. 

Varney, N., Asari, V. K. 2022. Pyramid point: A multi-level focusing network for 
revisiting feature layers. IEEE Geosci. Remote Sens. Lett., https://doi.org/10.48550/ 
arXiv.2011.08692. 

Wang, L., Huang, Y., Shan, J., He, L., 2018. MSNet: multi-scale convolutional network for 
point cloud classification. Remote Sens. 10 (4), 612. 

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J., 2015. 3D ShapeNets: A 
deep representation for volumetric shapes. In: Proc CVPR, pp. 1912-1920. 

Wu, B., Wan, A., Yue, X., Keutzer, K., 2018. SqueezeSeg: Convolutional neural nets with 
recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud. In 
Proc. ICRA, pp. 1887-1893. https://doi.org/10.1109/ICRA.2018.8462926. 

Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S., 2021a. RPVNet: A deep and efficient 
range-point-voxel fusion network for lidar point cloud segmentation. In: Proc. ICCV, 
pp. 16024-16033. https://doi.org/10.48550/arXiv.2103.12978. 

Xu, J., Tang, X., Zhu, Y., Sun, J., Pu, S., 2021b. SGMNet: Learning rotation-invariant 
point cloud representations via sorted Gram matrix. In: Proc. ICCV, pp. 10448- 
10457. 

Yan, K., Hu, Q., Wang, H., Huang, X., Li, L., Ji, S., 2021. Continuous mapping 
convolution for large- scale point clouds semantic segmentation. IEEE Geosci. 
Remote Sens. Lett. 19, 1–5. 

Yang, B., Han, X., Dong, Z., 2021. Point cloud benchmark dataset WHU-TLS and WHU- 
MLS for deep learning. J. Remote Sens. 25 (1), 231–240. 

Ye, M., Xu, S., Cao, T., Chen, Q., 2021a. DRINet: A dual-representation iterative learning 
network for point cloud segmentation. In: Proc. ICCV, pp. 7447-7456. https://doi. 
org/10.48550/arXiv.2108.04023. 

Ye, M., Wan, R., Xu, S., Cao, T., Chen, Q., 2021b. DRINet++: Efficient Voxel-as-point 
Point Cloud Segmentation. In: arXiv preprint. https://doi.org/10.48550/ 
arXiv.2111.08318. 

Zeng, Z., Xu, Y., Xie, Z., Tang, W., Wan, J., Wu, W., 2022. LACV-Net: Semantic 
Segmentation of Large- Scale Point Cloud Scene via Local Adaptive and 
Comprehensive VLAD. arXiv preprint arXiv:2210.05870. 

Zhang, F., Fang, J., Wah, B., Torr, P., 2020. Deep fusionnet for point cloud semantic 
segmentation. In Proc. ECCV 644–663. https://doi.org/10.1007/978-3-030-58586- 
0_38. 

Zhou, H., Zhu, X., Song, X., Ma, Y., Wang, Z., Li, H., Lin, D., 2020. Cylinder3D: An 
effective 3D framework for driving-scene lidar semantic segmentation. In: arXiv 
preprint. https://doi.org/10.48550/arXiv.2008.01550. 

H. Li et al.                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S1569-8432(23)00215-7/h0150
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0150
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0175
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0175
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0175
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0180
http://refhub.elsevier.com/S1569-8432(23)00215-7/h0180
https://doi.org/10.1007/978-3-030-58586-0_38
https://doi.org/10.1007/978-3-030-58586-0_38

	MVPNet: A multi-scale voxel-point adaptive fusion network for point cloud semantic segmentation in urban scenes
	1 Introduction
	2 Related work
	2.1 Projection-based segmentation
	2.2 Voxel-based segmentation
	2.3 Point-based segmentation
	2.4 Fusion-based segmentation

	3 Method
	3.1 Data pre-processing
	3.2 Multi-scale coarse-grained voxel branch
	3.3 Fine-grained point branch
	3.4 Geometric self-attention module
	3.5 Pyramid decoder module
	3.5.1 Multi-scale features of fusion

	3.6 2. Multi-scale aggregation loss

	4 Experiments and analysis
	4.1 Experimental setup
	4.1.1 Datasets
	4.1.2 Training and inference details

	4.2 Evaluation on Toronto3D
	4.3 Evaluation on WHU-MLS
	4.4 Evaluation on SensatUrban
	4.5 Ablation studies
	4.5.1 Effect of MVGF
	4.5.2 Effect of GSA
	4.5.3 Effect of pyramid decoder
	4.5.4 Effect of multi-scale loss function

	4.6 Hyperparameter analysis

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References


