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Abstract—In the domain of remote sensing image interpre-
tation, road extraction from high-resolution aerial imagery has
already been a hot research topic. Although deep CNNs have
presented excellent results for semantic segmentation, the ef-
ficiency and capabilities of vision transformers are yet to be
fully researched. As such, for accurate road extraction, a deep
semantic segmentation neural network that utilizes the abilities
of residual learning, HetConvs, UNet, and vision transformers,
which is called ResUNetFormer, is proposed in this letter. The
developed ResUNetFormer is evaluated on various cutting-
edge deep learning-based road extraction techniques on the
public Massachusetts road dataset. Statistical and visual results
demonstrate the superiority of the ResUNetFormer over the
state-of-the-art CNNs and vision transformers for segmentation.
The code will be made available publicly at https://github.com/
aj1365/ResUNetFormer

Index Terms—Vision transformers, road extraction, attention
mechanism, UNet, neighbourhood attention transformer (NAT).

I. INTRODUCTION

ONE of the most profound tasks in the area of remote
sensing is the accurate road extraction. Despite substan-

tial interest in the last decade, road extraction from high-
resolution imagery remains difficult due to occlusions, noise,
and the difficulty of the surrounding features in remotely
sensed imagery [1]. Deep neural network-based techniques
have achieved a high level of performance on a broad range of
computer vision tasks, including graph neural networks [2] and
multi-modal transformer networks [3]. Nevertheless, due to
issues such as vanishing gradients, training a very deep archi-
tecture is incredibly challenging [1]. To address this issue, He
et al. [4] proposed the deep residual learning method, which
employs identity mapping to aid in training. Ronneberger et
al. [5] introduced the UNet, which concatenates feature maps
from various levels to enhance segmentation performance,
rather than using skip connections in fully convolutional
networks (FCNs) [6]. UNet incorporates low-level detailed
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information with high-level semantic representation, resulting
in promising biomedical image segmentation performance [5].
On the other hand, ViTs utilize self attention mechanism
rather than the widely used convolutional operations employed
by standard deep models [7]. Consequently, unlike CNNs,
ViTs capture global contextual information in a better way
with the utilization of self-attention at the cost of quadratic
complexity. This helps the transformers to outperform the
CNN algorithms in terms of feature generalization capabilities.
Moreover, because of their flexible attention window, ViTs,
such as the neighborhood attention transformer (NAT) [8],
have demonstrated the potential of linear computational costs
and gains more attention in the vision community. As such,
we propose the ResUNetFormer that integrates the capabilities
of heterogeneous convolution (HetConv), residual learning,
UNet, and NAT for accurate prediction of road information
from high-resolution aerial imagery. The contributions of this
letter can be explained as:1) We developed a deep learning
UNet based semantic segmentation framework that effectively
utilizes HetConv operation to leverage heterogeneous kernels
within the residual learning unit for degradation free feature
representation learning, 2) In contrast with the conventional
vanilla ViTs, the proposed model utilizes NAT, which replaces
the computationally expensive self-attention mechanism for
enhancing the feature generalization ability limited within a
local neighborhood that substantially reduces the computation
cost, and 3) The decoder network’s capacity to determine
where to search for the discriminative and task-specific neces-
sary data is significantly improved by using the local attention
mechanism.

This letter introduces the ResUNetFormer in Section II,
presents the experiments and analysis in Section III, and
highlights the concluding remarks in Section IV.

II. PROPOSED SEGMENTATION FRAMEWORK

Given an image X ∈ RH×W×C where H and W represent
spatial height and width and C is the number of channels,
respectively. The goal is to predict y = F(X) that corresponds
to the pixel label classification map of input X having size
of (H × W ). The easiest way to perform such a task is to
use a convolutional U-network that maps input images into
high-level feature representations in encoding stages, and then
decode back to the full spatial resolution to produce a pixel-
wise label map. In this paper, we introduce the ResUNet-
Former model for semantic segmentation of the road extraction
task that incorporates the advantages of HetConv, U-network,
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Fig. 1: Proposed ResUNetFormer model for accurate extraction of road information where ⊕ and ⊖ represent element wise addition and concatenation operations and circular U
denotes the up-sampling operation of the feature maps.

residual skip connection, and vision transformers (ViT). The
ResUNetFormer provides several advantages: (1) HetConv
combines group-wise convolution and point-wise convolution
to increase the efficiency of the generalized representation; (2)
the residual learning will enable effective network training; (3)
the skip connections in a residual unit, which connects the low
level feature to its corresponding high level feature, improve
information propagation without degradation, enabling us to
construct lower complexity framework that captures better
semantic segmentation information with the limited amount
of reference data; (4) NAT allows a pixel-level operation that
localizes each pixel to its neighborhood and improves the
acquisition of global and local contextual information from
satellite imagery.
1) Residual learning: To increase the projection power of
CNNs, one of the traditional ways is to add more layers to the
network, which may hampers accurate propagation of models
information during back-propagation and yields degradation
gradient [4]. To tackle these shortfalls, a residual unit was in-
troduced in the place of the conventional convolutional blocks,
which carefully monitor the vanishing gradient issue with a
skip connection and residual learning. The skip connection of
a residual unit allows to map low level feature representation
to its high level representation in an easier way. Suppose
Xl−1

j represents the input jth feature map of the residual
blocks which is parameterized with FRN (Xl−1; θ1, θ2) using
HetConv filter banks W = {W l+i|1 ≤ i ≤ 2} of kernel size
kl1 × kl2 in the (l − 1)th and (l)

th layers, respectively. The
output feature map X l+1 obtained in the (l + 1)th layer can
be calculated as follows:

X l+1 = I(X l−1) + FRN (X l−1; θ1, θ2) (1)

where I(X l−1) the identity mapping in a residual unit.

FRN (X l−1; θ1, θ2) = ReLU(BN(X l ⊛W l+1 + bl+1)

X l = ReLU(BN(X l−1 ⊛W l + bl))
(2)

where ⊛ represents the HetConv operation and X l and X l+1

are output feature maps in lth and (l + 1)th layers, respec-
tively. θ1 and θ2 denote the weight and bias parameters
associated with the jth unit of the lth and (l + 1)th of HetConv
layers, respectively.

2) Neighborhood attention transformer (NAT): NAT limits
the receptive field of each query token to fixed-sized neighbor-
ing pixels in its local area of the neighborhood. The NAT is
driven by the goal of creating a local neighborhood region
in which the smaller neighboring area receives more local
attention, and the wider neighboring area obtains more global
attention. The local neighborhood region of all points ∀y such
that dist(x, y) ≤ r where r shows the radius of the local
window, which can be expressed as λ(i, j) = {y ∈ x :
dist(x, y) ≤ r}.

The NAT consider a pixel at location (i, j) of the fea-
ture map extracted from the bridge layer of encoder is
expressed as the linear projections Φ of the input features
X ∈ R(48×48×512), the queries Q = ΦqX whereas keys
K = ΦkX and the values V = ΦvX functions for all the ith
input patch with local wind of size r and the size of the patch
matrix is expressed as 48×48, whereas 512 is the embedding
dimension of the matrix of the input feature, and Φq , Φv ,
and Φk represent the parameters of the projections i.e., query,
value, and key, respectively. The Φ will be optimized utilizing
the Adam [9] optimizer in the phase of model’s training. To
produce weights of the attention Ak

i , the scaled dot product is
utilized whiting ith input queries (Q) with (r×r) neighboring
keys (K) as follows:

Ai =


QiK

T
λ(i,1) +Bλ(i,1)

QiK
T
λ(i,2) +Bλ(i,2)

...
QiK

T
λ(i,r2) +Bλ(i,r2)

 (3)

where λ(i, j) defines the jth neighboring region of the ith
query which is dependent on their relative positions, the
corresponding location bias is expressed by Bλi,j , which is
added to each point of attention weights. Afterwards, Vλ(i,j) =
[Vλ(i,1), Vλ(i,2), . . . Vλ(i,r2)] are presented by the r2 localized
region with the values of the ith input query. The output of ith
attention weights Ai in Eq. (3) is passed through a softmax
function to calculate the attention map. Thus, the NAT for the
ith input token of the Y r

i the output map is expressed as:

NAT(Yr
i ) = softmax

(
Ar

i√
D

)
Vλ(i,j)r (4)
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where the scale is defined by 1/
√
D, which is utilized to

enhance the softmax function’s small gradient propagation.
It should be noted that we used neighboring window r = 3
for the experimental analysis in this letter.
3) ResUNetFormer: In this work, we adopted the 7-layer
ResUNet architecture initially developed by Zhang et al. [1]
to address the accurate road extraction task as the backbone,
illustrated in Fig. 1. The ResUNetFormer is build with four
components which includes encoding, bridge, NAT, and de-
coding. In the encoding stage, i.e., E1 to E3, the input
images are compressed into compact representations which
is achieved through the consecutive use of the residual unit
as shown in Eq. (1). The final section, i.e., D1 to D3, is
responsible for restoring the representations to perform pixel-
by-pixel classification, i.e., semantic segmentation. The bridge
section acts as a link between the encoding and NAT sections
and helps the decoder for smooth recovering of the features.
The input of the NAT block is the feature map of the bridge
section, and the resulting attention maps will be passed into
the decoder section. The encoder, bridge, and decoder are
constructed by residual units, which have two 3× 3 HetConv
blocks and an identity mapping (defined by Eq. (1)) followed
by a Batch Normalization layer, a ReLU activation layer, and
a HetConv layer in each block of convolutions. It should be
noted that the identity mapping connects the low-level input
feature and high-level output feature in a residual unit.

The encoding part has three units of the residual function.
It should be mentioned that rather than employing a pooling
operation to reduce the size of output maps, a stride of 2 was
utilized in the first block of HetConvs in each unit, decreasing
the ratios of output maps by 50%. Similarly, the decoding
part has three residual units. Before each unit, output maps
from the lower level will be up-sampled and concatenated with
their relative encoding path output maps. A 2D convolution
with kernel size (1 × 1) and a sigmoid activation function
are employed after the last level of decoding for projecting
the multichannel output maps into the targeted segmentation
road map. It should be noted that we developed two versions
of ResUNetFormer. In ResUNetFormer-V1, similar to the
ResUNet model, we utilized Conv2D operations, while in
ResUNetFormer-V2, instead of using Conv2D functions, we
employed HetConv as seen in Fig. 1. In the HetConv layers,
there are three depth-wise convolutional groups with kernel
sizes of 3×3, while there is a point-wise Conv2D with a kernel
size of 1 × 1. The feature map of depth-wise convolutions
is added to the point-wise convolution to produce the results
of HetConv functions. The details of parameters and size of
feature maps for the ResUNetFormer-V1 and ResUNetFormer-
V2 are illustrated in Table I.

III. EXPERIMENTAL RESULTS

The developed model, ResUNetFormer, is evaluated against
several other state-of-the-art segmentation models, including
UNet [5], UNet++ [10], UNet+++ [11], Attention UNet [12],
SwinUNet [13], and ResUNet [1], respectively.

TABLE I: The layer-wise architecture of the ResUNetFormer-V1 and ResUNetFormer-
V2 segmentation algorithms.

Unit level Filter-V1 Filter-V2 Stride Output size-V1 Output size-V2

Input - - - 384 * 384 * 3 384 * 384 * 3

E1 3 * 3 * 64 [3*(3 * 3*22)]+ [1*(1*1* 66)] 1 384 * 384 * 64 384 * 384 * 66

3 * 3 * 64 [3*(3 * 3*22)]+ [1*(1*1* 66)] 1 384 * 384 * 64 384 * 384 * 66

E2 3 * 3 * 128 [3*(3 * 3*42)]+ [1*(1*1* 126)] 2 192 * 192 * 128 192 * 192 * 126

3 * 3 * 128 [3*(3 * 3*42)]+ [1*(1*1* 126)] 1 192 * 192 * 128 192 * 192 * 126

E3 3 * 3 * 256 [3*(3 * 3*84)]+ [1*(1*1* 252)] 2 96 * 96 * 256 96 * 96 * 252

3 * 3 * 256 [3*(3 * 3*84)]+ [1*(1*1* 252)] 1 96 * 96 * 256 96 * 96 * 252

Bridge 3 * 3 * 512 [3*(3 * 3*84)]+ [1*(1*1* 510)] 2 48 * 48 * 512 48 * 48 * 510

3 * 3 * 512 [3*(3 * 3*84)]+ [1*(1*1* 510)] 1 48 * 48 * 512 48 * 48 * 510

NAT - - 1 48 * 48 * 512 48 * 48 * 510

D1 3 * 3 * 256 [3*(3 * 3*84)]+ [1*(1*1* 252)] 1 96 * 96 * 256 96 * 96 * 252

3 * 3 * 256 [3*(3 * 3*84)]+ [1*(1*1* 252)] 1 96 * 96 * 256 96 * 96 * 252

D2 3 * 3 * 128 [3*(3 * 3*42)]+ [1*(1*1* 126)] 1 192 * 192 * 128 192 * 192 * 126

3 * 3 * 128 [3*(3 * 3*42)]+ [1*(1*1* 126)] 1 192 * 192 * 128 192 * 192 * 126

D3 3 * 3 * 64 [3*(3 * 3*22)]+ [1*(1*1* 66)] 1 384 * 384 * 64 384 * 384 * 66

3 * 3 * 64 [3*(3 * 3*22)]+ [1*(1*1* 66)] 1 384 * 384 * 64 384 * 384 * 66

Output 1 * 1 1 * 1 1 384 * 384 * 1 384 * 384 * 1

A. Experimental Data and Settings

Mihn et al. [14] created the Massachusetts roads data
(MRD). The road benchmark contains 1171 high-resolution
images, which include 1108 images for training, 14 for vali-
dation, and 49 for testing. We trained the model with images
of size 384 × 384 in this letter. It should be mentioned that
throughout training, no data augmentation was used. In this
letter, we utilized a learning rate, batch size and number of
epoch of 0.0001, 1 and 40, respectively.

B. Segmentation Results

To validate the efficiency of the proposed ResUNetFormer
for accurate road extraction, we consider the MRD dataset
to create two experimental settings. In scenario 1 (MRD100),
we only used 100 images as the training data, whereas in
scenario 2 (MRD800), 800 images were utilized to train the
segmentation algorithms. We employed binary cross entropy
as the loss function in scenarios 1 and 2. On the other hand,
we have also used intersection over union (IoU) (IoU =
Area of Overlap
Area of Union ) loss function in scenario 1 (MRD100IOU) with
100 training images and scenario 2 (MRD800IOU) with 800
training images.

TABLE II: Segmentation results of the MRD100 dataset in terms of F1-score, Precision,
Recall, and Dice coefficient.

Algorithm F-1×100 ↑ Precision×100 ↑ Recall×100 ↑ Dice coefficient ↑ Time (min)

UNet [5] 48.53 82.03 25.91 0.3149 10
UNet++ [10] 53 79.56 32.52 0.3315 9.2

UNet+++ [11] 49.71 80 26.34 0.3392 12
AttUNet [12] 54.64 86.64 27.18 0.3879 8

SwinUNet [13] 44.38 69.42 29.73 0.3728 12.5
ResUNet [1] 65.6 91.41 41.3 0.469 10

ResUNetFormer V1 63.07 95.3 35.79 0.4394 10
ResUNetFormer V2 65.82 88.99 45.59 0.5113 12.5

As seen in Table II and Fig. 2, the best results in terms of re-
call (45.59%), dice coefficient (0.513), F1-score (65.82%), and
visual interpretation were achieved by the ResUNetFormer-V2
model with the HetConv operations. Moreover, the highest
precision was obtained by the ResUNetFormer-V1 (95.3%).
The ResUNetFormer-V2 results increased the F1-score, dice
coefficient, and recall of the ResUNet by about 1%, 9%,
and 10%, respectively. In addition, the ResUNetFormer-V2
with HetConv opertions model showed significantly less noise
compared to other segmentation techniques, including vision-
based SwinUNet and Attention UNet.

In scenario 2, as seen in Table III and Fig. 3, statistical
result analysis and visual interpretation illustrated the supe-
riority of the ResUNetFormer-V2 with the HetConv opera-
tions over the other vision-based algorithms using a recall,
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TABLE III: Segmentation results of MRD800 dataset in terms of F1-score, Precision,
Recall, and Dice coefficient.

Algorithm F-1×100 ↑ Precision×100 ↑ Recall×100 ↑ Dice coefficient ↑ Time (min)

UNet [5] 51.38 87.96 26.64 0.4671 78
UNet++ [10] 49.74 89.89 23.19 0.4584 80

UNet+++ [11] 51.91 87.15 28.29 0.4811 100
AttUNet [12] 61.56 92.53 32.08 0.4608 68

SwinUNet [13] 61.52 86.14 43 0.5171 97
ResUNet [1] 57.2 92.45 31.94 0.5706 79

ResUNetFormer V1 64.65 98.13 34.1 0.5143 80
ResUNetFormer V2 65.62 97.12 36.66 0.5522 120

dice coefficient, F1-score, and precision of 36.66%, 0.5522,
66.62%, and 97.12%, respectively. The ResUNet segmentation
algorithm obtained the highest dice coefficient (0.5706). The
ResUNetFormer-V2 results enhanced the ResUNet model’s
precision, F1-score, and recall by around 5%, 13%, and 13%,
respectively.

TABLE IV: Segmentation results in terms of F1-score, Precision, Recall, and Dice
coefficient for MRD100IOU dataset.

Algorithm F-1×100 ↑ Precision×100 ↑ Recall×100 ↑ Dice coefficient ↑

UNet [5] 52.64 81.46 35.94 0.4929
UNet++ [10] 54.36 73.05 46.62 0.5142

UNet+++ [11] 56.63 73.87 51.44 0.53
SwinUNet [13] 50.74 78.02 37.33 0.4808

ResUNet [1] 64.57 92.23 48.08 0.6227
ResUNetFormer V1 65.19 90.75 49.48 0.6238
ResUNetFormer V2 65.3 92.52 53.19 0.6269

In scenario 1 with IoU loss function, statistical analysis
and visual interpretation showed better segmentation capa-
bility of the ResUNetFormer-V2 over the other semantic
segmentation models that achieved a recall, dice coefficient,
F1-score, and precision of 53.19%, 0.6269, 65.53%, and
92.52%, respectively, as reported in Table. IV and Fig. 4.
The ResUNetFormer-V2 enhanced the semantic segmentation
performance of the ResUNet by approximately 1%, 1%, 1%,
and 10%, in terms of F1-score, precision, dice coefficient, and
recall, respectively.

TABLE V: Segmentation results in terms of F1-score, Precision, Recall, and Dice
coefficient for MRD800IOU dataset.

Algorithm F-1×100 ↑ Precision×100 ↑ Recall×100 ↑ Dice coefficient ↑

UNet [5] 53.28 80.03 39.78 0.6296
UNet++ [10] 53.66 78.19 43.29 0.6278

UNet+++ [11] 53.99 71.58 49.87 0.5992
SwinUNet [13] 50.25 87.57 34.11 0.6273

ResUNet [1] 58.37 90 42 0.6833
ResUNetFormer V1 67.94 94.94 50.33 0.6860
ResUNetFormer V2 65.62 96.02 46.10 0.6602

In scenario 2 with IoU loss function, as seen in Table V and
Fig. 5, the ResUNetFormer-V1 shows superior performance
over other semantic segmentation models that obtained a
recall, F1-score, and dice coefficient of 50.33%, 67.94%, and
0.686%, respectively. The ResUNetFormer-V2 algorithm also
achieved the highest precision (96.02%). The results of the
ResUNet in terms of dice coefficient, precision, F1-score, and
recall were improved by the ResUNetFormer-V1 by approx-
imately 1%, 5%, 14%, and 17%, respectively. Moreover, as
shown in Fig. 6, the results demonstrated high Area under the
ROC Curve (AUC) values of 0.988, 0.988, 0.966, and 0.961 for
MRD100, MRD800, MRD100IOU, and MRD800IOU, respec-
tively. Results illustrated that the proposed ResUNetFormer-
V1 and ResUNetFormer-V2 with the use of NAT led to
much better segmentation accuracy and produces much less
noisy road maps as compared with the vision and attention-
based models like SwinUNet and Attention UNet. Overall,
the utilization of the HetConv operations over the standard
Conv2D resulted in a better segmentation accuracy.

C. Ablation Study
The use of residual learning and UNet with NAT resulted

in better segmentation accuracy and much lower segmenta-
tion noises as compared to the base ResUNet segmentation
algorithm. For example, in scenario 1 with IoU loss function,
the ResUNetFormer-V2 utilizing both the HetConv and NAT
enhanced the semantic segmentation performance of the Re-
sUNet by approximately 1%, 1%, 1%, and 10%, in terms of
F1-score, precision, dice coefficient, and recall, respectively,
as shown in Table IV. In scenario 2 with the IoU loss function,
as seen in Table V, the ResUNetFormer-V2 algorithm achieved
the highest precision (96.02%). In addition, the results of
the ResUNet in terms of dice coefficient, precision, F1-
score, and recall were improved by the ResUNetFormer-V1 by
approximately 1%, 5%, 14%, and 17%, respectively, through
the utilization of the NAT mechanism.

D. Computational Cost of Segmentation Models
The computational cost of the implemented segmentation

models can be seen in Table II and Table III. The least
and the highest required training time belonged to Attention
UNet (8 min), Swin UNet (12.5 min), and ResUNetFormer-V2
(12.5 min), respectively, utiltizing 100 images as the training
data. Moreover, in using 800 training images, the highest and
least training time were for Attention UNet (68 min) and
ResUNetFormer-V2 (120 min). As the results indicate, due to
the use of HetConv and local attention mechanism functions,
the computational cost of the developed ResUNetFormer in-
creased compared to the base ResUNet algorithm, while the
segmentation accuracy of the ResUNet considerably improved.
The ResUNetFormer-V1 using only the local attention mech-
anism resulted in a better trade-off in terms of segmentation
accuracy improvement and computation cost complexity.

IV. CONCLUSION

This letter proposes and discussed a deep vision
transformer-based technique for semantic segmentation, which
employs NAT to enhance feature extraction capabilities locally
whereas significantly lowering computation costs. The results
on the Massachusetts road data demonstrate that the developed
model, ResUNetFormer, outperforms statistically and visually
the state-of-the-art semantic segmentation models, including
UNet, UNet++, UNet+++, Attention UNet, SwinUNet, and
ResUNet. ResUNet with HetConv and local attention mech-
anism operations resulted in much lower noise than that of
current CNN and transformer-based semantic segmentation
techniques.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 2: Segmentation maps over MRD100 dataset using (a) RGB image (b) Ground Truth, (c) UNet, (d) UNet++, (e) UNet+++, (f) Attention UNet, (g) SwinUNet, (h) ResUNet,
(i) ResUNetFormer-V1, and (j) ResUNetFormer-V2.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 3: Segmentation maps over MRD800 dataset using (a) RGB image (b) Ground Truth, (c) UNet, (d) UNet++, (e) UNet+++, (f) Attention UNet, (g) SwinUNet, (h) ResUNet,
(i) ResUNetFormer-V1, and (j) ResUNetFormer-V2.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4: Segmentation maps over MRD100IOU dataset using (a) RGB image, (b) Ground Truth, (c) UNet, (d) UNet++, (e) UNet+++, (f) SwinUNet, (g) ResUNet, (h) ResUNetFormer-
V1, and (i) ResUNetFormer-V2.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 5: Segmentation maps over MRD800IOU dataset using (a) RGB image, (b) Ground Truth, (c) UNet, (d) UNet++, (e) UNet+++, (f) SwinUNet, (g) ResUNet, (h) ResUNetFormer-
V1, and (i) ResUNetFormer-V2.
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