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ABSTRACT Aircraft classification via remote sensing images has many commercial and military applica-
tions. The Swin-Transformer has shown great promise, recently dominating general-purpose image classifi-
cation benchmarks such as ImageNet. In this paper, we test whether the performance of the Swin-Transformer
on general-purpose image classification translates to domain-specific aircraft classification using the
Multi-Type Aircraft from the Remote Sensing Images dataset. We also investigate the effect of training
procedure vs. model selection on the validation score. Our carefully trained Swin-Transformer model
achieved an impressive 99.4 % validation set accuracy without super-resolution, and 99.5 % with super-
resolution.Moreover, the generalization ofmodels trained on theMTARSI dataset to real-world and synthetic
aircraft classification is evaluated with some out-of-distribution samples. Our results demonstrate that the
lack of complexity and heterogeneity of the MTARSI dataset, and the labeling errors resulted in models
which struggle to achieve high accuracy on the adopted test samples despite near perfect validation scores.

INDEX TERMS Aircraft classification, deep learning, MTARSI dataset, out-of-distribution, remote sensing,
self-attention, Swin transformer, vision transformer.

I. INTRODUCTION
Image classification is one of the most researched tasks in
Computer Vision. In remote sensing, one application of the
aforementioned is the classification of aircraft from aerial
images, which finds uses in air traffic control, surveillance,
and military intelligence. The Multi-Type Aircraft of Remote
Sensing Images (MTARSI) classification dataset was built for
the training and testing of aircraft classification algorithms.
This paper details the use of Hierarchical Vision Transform-
ers with Shifted Windows (Swin) models, as well as models
of similar complexity, on the MTARSI dataset for aircraft
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classification. Our results are benchmarked against previous
published state-of-the-art works on this dataset.

A. LITERATURE REVIEW
1) DATASETS
There are a wide variety of well-known general-purpose
image classification datasets used to benchmark new deep
learning models, the most popular of which are ImageNet [1]
and CIFAR10 [2]. These general-purpose datasets contain
object classes commonly found in daily life, and were used
to develop foundational and highly impactful deep learn-
ing models such as ResNet [3] and VGG [4]. Compared
to the general-purpose ones, remote sensing datasets tend
to be domain specific. Many popular supervised remote
sensing datasets exist for tasks such as building footprint
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extraction [5] and land-use/land-cover mapping [6], which
are commonly approached using segmentation methods.
These datasets contain segmentation masks/labels created by
geographic information system experts from unsupervised
image datasets of satellite or aerial images. The MTARSI air-
craft classification dataset [7] used in this study differs from
the aforementioned segmentation datasets. The images were
taken at different heights from various sources. The images
were cropped and zoomed into such that the landed aircraft
of interest was centered regardless of size; as such, there
was no single spatial resolution for the images. These images
were then labeled into distinct aircraft models/classes for
classification. Recent researches have achieved good results
on the dataset using a variety of classical models, including
Convolutional Neural Networks (CNNs) and mixed classi-
cal/deep learning methods [7], [8], [9], [10], [11]. The results
of Azam et al. [9] were worth highlighting. They achieved
an accuracy of 96.8 % using an SVM classifier trained on
Principal Components of CNN-extracted features, greatly
exceeding the results from the other aforementioned works.

The FGVC-Aircraft dataset [12] was another aircraft
classification dataset with some key differences from the
MTARSI dataset. The FGVC dataset’s labels were organized
into a hierarchy of Manufacturer-Family-Variant-Model and
are more suited than MTARSI for fine-grained classifica-
tion of similar variants and models. However, the FGVC
aircraft images were not remote sensing images from a top-
down view. They were instead mostly ground-level images of
landed and low-flying aircrafts with only some images being
from a top-down view. As such, the FGVC-trainedmodels are
not directly applicable toMTARSI results and vice-versa. The
RarePlanes dataset [13] encompassed both real and synthetic
airplanes from a remote-sensing top-down view. However,
the dataset was organized and labeled as an object detec-
tion and instance segmentation dataset and was not directly
comparable to the MTARSI dataset. The large scenes in the
RarePlanes dataset contained multiple airplanes each. The
Aircraft Context Dataset [14] on the other hand had images
of in-flight and grounded aircrafts with contextual labels
which could be further adapted to classification, detection,
and segmentation tasks, however, the images were not remote
sensing-based and were taken from ground level. Other popu-
lar land-use remote sensing datasets also had an aircraft clas-
sification component. Examples of thesewere theUCMerced
Land Use Dataset [15] and the RESISC45 [16], which were
scene classification datasets. However, the ground truths for
these two datasets were general land-use/land-cover classes
with ‘‘airplane’’ as one of many labels, and could not be
directly used to supplement the MTARSI dataset.

2) CONVOLUTIONAL NEURAL NETWORKS AND
TRANSFORMERS
Convolutional neural networks (CNNs) have revolutionized
image processing. LeNet [17], developed by Yann LeCun,
was the earliest convolutional neural network. Invented in
1989, it was successfully applied to handwritten zip code

identification. However, CNNs and deep learning in general
had not achieved wide stream recognition until two decades
later. In the early 2010s, deep learning experienced a great
explosion in popularity. Convolutional Neural Networks have
been the focus of deep learning-based computer vision for the
past decade. The most popular among these are AlexNet [18],
VGG [4], InceptionNet [19], and ResNet [3] which have
dominated the ImageNet competition from 2012 to 2016.
ResNet is particularly worth highlighting, as its residual
connection alleviated problems with exploding or vanishing
gradients, allowing for the construction of very deep convo-
lutional neural networks. It was used as a backbone for many
important algorithms such as Mask R-CNN [20], as well as a
starting point for more modern CNNs. More modern CNNs
included innovations such as the pyramid architecture [21]
and attention mechanisms using hybrid attention/convolution
models [22], [23]. In the past 5 years, hundreds, poten-
tially thousands of CNN-based models were published, and
successfully applied to research fields with major image
processing components, such as remote sensing, medicine,
manufacturing, autonomous navigation and transportation,
and robotics, to name a few.

In 2017, Vaswani et al. developed the Transformer for
natural language processing [24]. By using a combination
of dense and self-attention layers, the authors produced a
highly scalable deep learning model incredibly suited for
pre-training on large datasets. This work inspired many
super-sized language models, such as the 175 billion param-
eter GPT3 [25] and the Switch Transformer with 1.6 trillion
parameters [26], which were trained using sophisticated
unsupervised techniques, and successfully fine-tuned to a
variety of downstream tasks. These models dwarf commonly
used convolutional neural networks, which were typically
less than a hundred million parameters E.g., the ResNet vari-
ants, ResNet-50 had 23 million parameters, and ResNet101
had 43 million parameters [3]. Large unsupervised and super-
vised image datasets also existed. However, in 2017, the
transformer architecture was designed for sequential data,
and could not easily be applied to computer vision.

In 2020, the Google Brain research team introduced the
Vision Transformer (ViT) [27], which adapted the Trans-
former architecture to computer vision. By treating images
as sequences of feature patches, they adapted the scalability
and the powerful unsupervised pre-training of giant NLP
Transformers to image processing and achieved state-of-the-
art results on the common image classification benchmarks
ImageNet [1] and CIFAR-10 [28]. Building on ViT, the team
at Microsoft Research proposed the Shifted Window Hierar-
chical Vision Transformer (Swin) [29]. The Swin improved
on the ViT with two key innovations; the hierarchical feature
mapping, and the shifted window attention. Despite being
initially developed for object classification benchmarks,
these computer vision transformers were adaptive backbone
architectures that have successfully been used for other
downstream tasks such as semantic segmentation, object
detection, image super-resolution, and instance segmentation
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via integration into well-known algorithms such as Mask-
RCNN [20] and HTC [30].

Data augmentation and training methodology can greatly
improve the results of older convolutional neural networks
to near Transformer levels. By using cleaver training tech-
niques, data augmentation, and carefully searching appropri-
ate learning rates and learning schedules, Wightman et al.
[31] trained a ResNet-50 a on ImageNet1k, and achieved
an extremely impressive top-1 accuracy comparable to
Swin-Transformer and Swin-MLPmodels, greatly exceeding
previous ResNet-50 performance.

3) SUPER-RESOLUTION
In many computer vision applications, super-resolution can
also be used to improve image quality and final classifica-
tion/segmentation results. Super-resolution is especially use-
ful in remote sensing due to the limitations on the resolution
of aerial and satellite images. Super-resolution methods in the
context of remote sensing typically are categorized into two
families. The first of which is Joint Image Super-Resolution.
It is applied to super-resolve lower resolution hyperspec-
tral images using spatial information from higher resolution
multi-spectral images [32]. The other family of methods is
Single Image Super-Resolution (SISR). The methods in this
family are more applicable in general since most datasets
are not built from hyperspectral images. In terms of single
image super-resolution, the advancement in deep learning
methods in computer vision directly translated to improved
image upsampling methods; as such, modern research largely
focused on deep learning methods. Examples of CNN-based
single-image super-resolution models included VDSR [33],
DRCN [34], RED-Net [35], AND DRRN [36]. More recent
super-resolution neural networks also used the self-attention
mechanism, e.g., RCAN [37], SAN [38], RFANet [39], and
MSCA-RFANet [40], which have greatly improved results
when integrated into the data pipeline of classification or
segmentation taskswhen input imageswere of low resolution.

B. CONTRIBUTIONS
In this paper, we studied aircraft classification on the
MTARSI dataset using state-of-the-art deep learning models
and training procedures.

• We implemented and trained a super-resolved Swin-
Transformer model which greatly exceeded previous
MTARSI benchmarks, achieving a validation score that
we believed to be at the upper limit of the MTARSI
dataset.

• We optimized different models in terms of the training
procedure, and showed that the selection of training
procedures and schedules greatly impacted model per-
formance to the extent of bringing older models to state-
of-the-art performance.

• We identified critical issues with the MTARSI dataset in
terms of label errors, separability of training/validation
sets, and data heterogeneity, and we suggested future

improvements, as well as recommendations for dataset
building.

• The generalizability of different models was eval-
uated on out-of-distribution samples, demonstrating
that the aforementioned issues with the MTARSI
dataset resulted in models which failed to classify
real-world, synthetic, and scale-model aircrafts. Our
results suggested that the dataset has limited real-world
applications.

II. METHODOLOGY
A. DATASET AND DATA AUGMENTATION
The MTARSI dataset is a supervised image classification
dataset containing 20 classes of commercial and military air-
craft from Google Earth images (which sourced images from
a variety of remote sensing image providers), as well as from
other datasets such as FGVC-Aircraft. The aircrafts were
landed, and viewed from a top-down point-of-view with only
slight deviations in viewing angles. In this paper, we refer
(except in tables) to MTARSI class labels with quotation
marks (e.g. ‘‘F-22’’) and real-life airplanes without quotation
marks (e.g. F-22). The dataset’s class distribution is imbal-
anced, with some classes such as the ‘‘F-22’’ occurring more
than twice as often as some other classes (See Fig.1). More-
over, it does not represent real-life distribution with military
aircraft being over-represented. We note that the MTARSI
dataset only covered 36 airports and contains many images
of rare military aircraft. As such, some of the same aircraft
appear in multiple images, albeit captured under different
imaging conditions. To generate the 9385 images, the authors
also performed augmentation on the dataset by segmenting
airplanes, performing rotations and flips, and finally switch-
ing backgrounds. Despite having a large number of images,
the variety of unique aircrafts was relatively low. The dataset
was not canonically split into training and validation sets by
the original authors [7]. We randomly split the 9385MTARSI
dataset images into 7045 training and 2340 validation images,

FIGURE 1. MTARSI class distribution histogram. We note a relatively high
class imbalance.
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FIGURE 2. Sample of the MTARSI images.

resulting in a 75:25 training-to-validation ratio. We note the
original MTARSI dataset authors used an 80:20 ratio; our
split should in theory contribute to more accurate validation
results.

Fig.3 showed that a non-negligible fraction of images had
heights and widths which were less than 150 pixels. We saw

FIGURE 3. Distribution of heights and widths (in pixels) and the aspect
ratios of images (as a fraction) in the MTARSI dataset.

from the aspect ratio histogram that the images were moder-
ately skewed vertically.

For our experiments, as part of the data pipeline, the
images were resized via bi-cubic scaling and center cropping
(while maintaining an aspect ratio to not deform images).
This was due to the limitations of the pre-trained models,
where weights were only available for a fixed input size.
224 × 224 was used for Swin-Transformer and ResNet-50
models. 256 × 256 was used for Swin-MLP. In a separate
data pipeline, we also performed experiments using a Single
Image Super Resolution deep neural network to super-resolve
(upsample) the images by a factor of 2× prior to bi-cubic
re-scaling and cropping to 224 × 224 or 256 × 256.

Preliminary experiments showed that the model strug-
gled to learn after reaching training accuracies above 99.9%
while validation accuracies remained in themid-to-high 90%.
To prevent overfitting while training complex models for
a large number of epochs and encourage further training,
advanced data augmentations were then employed. These
include the ones suggested by the authors [27], [29], [31],
implemented in the TIMM package [41]. They include ran-
dom color jittering using a factor of 0.5, random erasure
(via masking or replacement with noise) of image sections
with probability of 0.25, random mixing of images via alpha
blending (α = 0.8), randomly chosen composed augmen-
tations (TIMM [41] package Class) of Rotation, Equal-
ization, Shear, Pixel translation, Brightness shift, Contrast
adjustment, and Sharpness adjustment. Fig.4 shows example
images from a training batch with full data augmentation.
These data augmentations also had real-world motivations.
The geometry of any type/model of aircraft (as viewed from
above) is fixed. These augmentations can account for the
different paint patterns, lighting conditions, and camera con-
ditions, and help the model generalize to out-of-distribution
aircraft. Moreover, the random occlusion of image sections
can help the model learn to recognize the specific body,

FIGURE 4. Sample of the training images with data augmentation.

134430 VOLUME 10, 2022



K. Gao et al.: Optimizing and Evaluating Swin Transformer for Aircraft Classification

FIGURE 5. Swin Transformer architecture. Sourced from [29].

wings, or tail shapes. In addition to these data augmenta-
tions, we also shifted and scaled the brightness values to
match ImageNet1k, and resized the images to 224 × 224 for
Swin-Transformer and ResNet and 256× 256 for Swin-MLP.
This transformation also helped with pre-trained model con-
vergence. The validation set images were only resized, and
the mean/standard deviation shifted to ImageNet with further
no data augmentation.

B. ResNet, SWIN TRANSFORMER, AND SWIN MLP
ResNet [3] is a family of deep convolutional neural networks
with residual connections. These residual connections mit-
igated vanishing and exploding gradients, allowing for the
construction of deeper neural networks. ResNet also makes
use of Batch Normalization after each convolution layer. The
ResNet family of convolutional neural networks is one of the
most well-known architectures in computer vision, having
been used as a neural backbone for a variety of classification,
detection, and segmentation tasks. As such, we refer the
readers to the original paper [3] for detailed descriptions of
this architecture.

The basic building block of the Swin Transformer is the
Swin Transformer Block composed of Multi-Layer Percep-
tron (MLP) andMulti-head Attention modules in both shifted
window and standard configuration.

Fig.5 illustrates the Swin-Transformer architecture, which
is composed of sequentially arranged Swin-Transformer
Blocks interlaced with patch processing layers. The image
patches are gradually reduced in height and width, but gain
channels as they pass through the transformer blocks. H and
W denote the original height and width of the image, respec-
tively. C denotes feature dimension and is user-defined.
Three sequences q, k, v, are mapped through learned

embedding layers, where Q = W qq, K = W kk , V = W vv,
for learned weight matrices W q,W k ,W v. The embedded
sequences Q,K ,V are then passed onto the attention layer.
Q and K are multiplied together and passed to a softmax
function. This step generates attention weights, which are
used to scale the elements in V .

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V . (1)

These attention layers usually are composed of multiple
attention heads, each of which learns its own embedding
matrices and attention weights. The outputs of each head
are concatenated and passed through a final linear layer.
The attention layer is also position agnostic. A positional
encoding layer embeds the position of each token in the input
sequence. Readers are referred to the original Transformer
paper [24] for further details.

The attention mechanism was initially built for process-
ing sequences. Thus, Transformers were not fit for image
processing tasks. Dovovitskiy et al. [27] however adapted
Transformers to images by treating images as a sequence
of featurized image patches. Liu et al. then improved on
this visual attention by introducing self-attention in shifted
window configurations and hierarchical feature maps. The
Swin-Transformer used relative positional encoding (2) via
positional bias, which according to their ablation study,
outperformed the traditionally used absolute positional
encoding, as well as the self-attention with no positional
information. The self-attention with relative positional bias
is given by

Attention(Q,K ,V ) = softmax(
QKT
√
dk
+ B)V (2)

where B ∈ RP×P, is the relative positional bias matrix for an
attention window with P patches. Liu et al. [29] also created
the Swin-MLP, by improving the MLP-Mixer [42] architec-
ture with hierarchical feature mapping and the shifted win-
dow scheme. Mixer layers are comprised of a token-mixing
MLP and a channel-mixing MLP, with layer normalization
layers and residual connections intermixed. The Swin-MLP
uses neither convolutions nor self-attention, relying solely
on MLP-mixer layers, achieving only slightly worse results
than a Swin-Tranformer of equivalent size for small models
(around 20 million parameters). It could refer to the original
papers for a detailed description of the architecture.

C. SINGLE IMAGE SUPER RESOLUTION
Super-resolution via Single Image Super-resolution (SISR)
Networks was shown to increase the performance of deep
learning models in remote sensing research to varying
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FIGURE 6. Hierarchical feature map, sourced from [29]. The Swin
transformer built feature maps hierarchically, which increased the
receptive field of each image patch in the latter layers. Furthermore, this
limited the maximum sequence length input into attention layers,
resulting in a linear complexity Transformer.

FIGURE 7. Shifted window attention, sourced from [29]. The shifted
window attention scheme connected the disjoint attention windows in
any fixed layer and according to the ablation study by the original authors
drastically improved model performance.

degrees depending on the task. For the MTARSI dataset,
when not using super-resolution, we bi-cubically scaled and
cropped the images to 224 × 224. As shown in Fig.3, a non
negligible portion of images had heights and widths less than
150 pixels. For these images, we believed super-resolution
could benefit in enhancing the discernability of airplane fea-
tures. Visual inspection showed that the bi-cubic upsampling
of some of these ‘‘small’’ images resulted in visual artifacts
in the form of pixelation.

For single-image super-resolution, we used the MSCA-
RFANet [40], to super-resolve remote sensing images for
semantic segmentation of buildings from remote sens-
ing images, significantly outperforming bi-cubic interpola-
tion. The MSCA-RFANet was based on the RFANet [39],
a widely used single-image super-resolution network that
used convolutions and spatial attention to generate accu-
rate super-resolution results. The MSCA-RFANet [40] addi-
tionally included channel attention blocks in the trunk of
the baseline RFANet, and achieved great results on remote
sensing images. For the detailed architectures of these super-
resolution networks, we refer the readers to the original
papers.

D. TRAINING PARAMETERS AND ENVIRONMENT
Pytorch 19.0 compiled with CUDA 11.1 was used to write
the training script. Benchmark models were trained under

Stochastic Gradient Descent (SGD) with Nesterov Momen-
tum (momentum factor = 0.1), under different learning rate
schedules. Exact details are found in Section II-E. A dropout
rate of 0.1 and drop-path rate of 0.2 were used for the
Swin-Transformer and Swin-MLP models. The loss function
used was soft-target categorical cross entropy due to tar-
get mix-up augmentation via alpha blending. Gradients with
norms greater than 5.0 were clipped. Hardware specifications
are i9-10900KF CPU and Nvidia GTX 3080 GPU.

E. BENCHMARK MODELS
For the benchmarks on the MTARSI dataset, we tested a vari-
ety of training procedures on ResNet-50, Swin-Transformer
(Tiny), and Swin-MLP (Tiny). The Swin-Transformer (Tiny)
used in our experiments is characterized by {3,6,12,24}
heads in the four Transformer blocks, in order. The feature
depths are {2,2,18,2}, in order. The Swin-MLP (Tiny) has
{3,6,12,128} heads in the four Swin-MLP blocks, and has the
same feature depths as above. We chose the models which
were both the closest in numbers of parameters to ResNet-
50 and also had available ImageNet pre-trained weights
from the original authors [29]. The Swin-Transformer(Tiny),
Swin-MLP (Tiny) and ResNet-50 models have 28, 23, and
23 million parameters, respectively. For our experiments,
Swin-Transformer, and Swin-MLP refer specifically to these
‘‘Tiny’’ variants. A single linear layer was used as the classi-
fication head for all three models.

We also included the benchmark results from previ-
ous authors, which included baseline models from [7],
BD-ELMNet [8], FGATR-Net [10], and the LinearSVM
with PCA on features extracted from the author’s CNN [9].
We note that theMTARSI dataset was not canonically divided
into training and validation splits by the authors of the original
paper. Such authors performed their own training and valida-
tion splitting.1

III. RESULTS
A. THE EFFECTS OF THE TRAINING PROCEDURE
1) TRANSFER LEARNING
Preliminary results showed that from-scratch Transformer
models failed to converge using the AdamW [43] optimizer
for some low learning rates and some weights initialization.
To examine the effect of transfer learning using pre-trained
ImageNet weights, we trained ResNet-50, Swin-Transformer,
and Swin-MLP for 10 epochs using Stochastic Gradient
Descent (SGD) with a cosine learning rate schedule, with
1 warmup epoch, with a maximum learning rate of 2e-3 and
a minimum learning rate of 5e-6. We also mean-shifted and
scaled our images to the mean and standard deviation of the
ImageNet dataset. Table 1 shows the results of the transfer
learning experiment. We noticed using pre-trained ImageNet
weights significantly improved the convergence speed of
models from all three architectures. This was especially true

1The training and validation split used in our experiments is available at
https://github.com/kyle-gao/Swin-MTARSI
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TABLE 1. Accuracy (%) of pre-trained vs. from-scratch models after
10 epochs.

for Swin-Transformer and Swin-MLP, which without pre-
trained weights, struggled to learn some weight initialization,
optimizers, and learning rate schedules. In these failed train-
ing scenarios, we observed no loss function decrease.

2) LEARNING RATE AND LEARNING SCHEDULE
We used SGD with Nesterov momentum as the optimizer.
We performed a convergence test to find a good baseline
learning rate to train our models. Fig.8 shows the results
of 20 training epochs at different learning rates for mod-
els with pre-trained ImageNet weights. For this experiment,
we used a constant learning rate schedule. At learning rates
of 5e-3 and 1e-2, both ResNet-50 and Swin-Transformer
quickly achieved validation accuracies above 95% converg-
ing at around 98%.

FIGURE 8. Validation accuracy for 20 epochs transfer learning
experiments with Stochastic Gradient Descent (SGD) optimizer. All
models used pre-trained ImageNet weights.

We noticed that models tended to converge to above 98.5%
validation accuracy, using both constant and cosine learn-
ing rate schedules within 20 epochs using a base learning
rate of 5e-3, with faster convergence for constant schedules.
However, for longer training experiments, we decided to
use the cosine schedule based on experiments from previous
authors [29], [31]. For the cosine schedule, the learning rate
starts low to warm up the optimizer, then the high base
learning rate would drive the model toward convergence
faster, with the learning rate decreasing to control the training
fluctuations at convergence. We achieved excellent results
with the cosine learning rate schedule when training for 100+
epochs.

FIGURE 9. One cycle of cosine learning rate schedule as a function of
gradient descent iterations for 100 epochs. Base learning rate = 5e-3,
10 epochs warm-up. These settings were used for data augmentation
experiments.

TABLE 2. Accuracy (%) of models after 100 epochs with data
augmentation vs. no data augmentation.

3) DATA AUGMENTATION
We noticed that by using the appropriate training schedule,
the Swin models and ResNet-50 were able to reach very
high validation accuracy (98.5%+) within 50 epochs, while
the training accuracies reached 99.9 %. However, at these
extremely high training accuracies (around 7 misclassifica-
tions for the 7045 image training set), we were not confi-
dent the model could learn any more from the training set
data. With data augmentation, the training accuracy and loss
converged more slowly for all three models. Moreover, the
training accuracy was consistently lower than the validation
accuracy, and slowly increased throughout the 100 epochs
and beyond. Nonetheless, the validation set performance of
all models were mutually similar after 100 epochs, whether
or not using data augmentation. However, there was a large
difference in training accuracy when using data augmentation
as opposed to when not.

For the final data augmentation experiment, we trained the
Swin-Transformer for 300 epochs using a cosine schedule
with 3 cycles with a baseline learning rate of 5e-3 for the first
200 epochs, and 5e-4 for the last 100 epochs. We believed
the Swin-Transformer to be the most promising of the model
based on previous benchmarks on ImageNet1K [29]. After
150 epochs, up to 300 epochs, the validation accuracy hov-
ered between 99.0% and 99.4%, despite this, the training
accuracy kept slowly increasing from low to mid 90’s to
maximum of 93.4 %, which we believed would make the
model more robust to out-of-distribution images.

B. MTARSI BENCHMARKS
As can be seen in Table 3, even without super-resolution,
our best model significantly outperformed the original
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FIGURE 10. Swin-Transformer transfer learning for 300 epochs with heavy
data augmentation: learning rate schedule and accuracy curves. When
data augmentation was used, the training accuracy was always lower
than the validation accuracy, and slowly increased.

TABLE 3. Model performance on the MTARSI benchmarks.

benchmarks, as well as the previously published models
for the MTARSI dataset. We also note that the ResNet-50
shown in Table 1 also significantly outperforms the ResNet-
50 trained by Wu et al. [7]. Wu used a 1e-3 constant learning
rate with decay, dividing by 10 every epoch (unspecified
optimizer). We believed Wu et al. [7] underfit their model;
instead of the model converging, their learning rate vanished,
remaining at reasonable learning rates for only two to three
epochs. We confidently believed that our models learned the
MTARSI classification task. However, due to the low varia-
tion in the dataset and potential issues with training/validation
set separability (see Subsection IV-B), we could not confirm
the generalizability of models trained on MTARSI data to
new out-of-distribution data based on MTARSI experiments
alone. As such, we performed additional out-of-distribution
testing (see Subsection III-D).
Table 4 shows the class-based metrics for our Swin-

Transformer. As can be seen, some classes are more easily
classified than others. Certain aircraft such as the B-2 has a
very distinctive shape, which is easy to classify. The model
noticeably struggled the most with ‘‘Boeing’’, which was a
class into which theMTARSI authors assigned multiple types
of commercial airlines.

C. SUPER-RESOLUTION EXPERIMENTS
For the MTARSI dataset in absence of super-resolution,
we scaled the images via bi-cubic interpolation such that the

TABLE 4. Class-based performance of Swin-Transformer after 300 epochs
on the validation set.

TABLE 5. Accuracy (%) of models after 100 and 300 epochs with data
augmentation and 2× super-resolved images.

smallest dimension was greater than 224 while maintaining
the aspect ratio. We then center-cropped the images to obtain
224 × 224 images. Most images were scaled by a factor
of 0.8-1.5, which we considered to be reasonable based on
visual inspection. However, a small fraction of images was
upsampled by a factor greater than 1.5. In these scenarios,
we could visually discern pixelation.

For the super-resolution experiments, we super-resolved
the images by a factor of 2× using MSCA-RFANet
prior to bi-cubic scaling and cropping of images to the
pre-determined sizes 224 × 224 or 256 × 256. The
super-resolution visibly improved image quality in some
cases, as shown in Fig.11. We compared the results of
ResNet50, Swin-MLP, and Swin-Transformer using the
cosine learning rate schedules, as shown in Fig.9 and Fig.10.
Comparing Table 2 and Table 5, after 100 epochs, the

super-resolution slightly improved the convergence of all
three models, with Swin-Transformer gaining 0.1%, Swin-
MLP gaining 0.1%, and ResNet50 gaining 0.2% overall accu-
racy, respectively. We also noted a similar overall accuracy
increase after 300 training epochs for the Swin-Transformer.

We also observed changes in class-based metrics for Swin-
Transformer after 300 epochs when using super-resolution
(Table 4 vs. Table 6). By using super-resolution, we observed
a slight reduction in the class-based IoU of ‘‘B-52’’, ‘‘Boe-
ing’’, ‘‘C-135’’, ‘‘KC-10’’, and ‘‘U-2’’. We also noted a slight
increase in the class-based IoU of ‘‘C-130’’, ‘‘C-21’’, ‘‘C-5’’,
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FIGURE 11. Image super-resolution results. The super-resolved image
(b) is smoother (less pixelated) than the native 93 × 93 image (a) when
both are then scaled to the same size. This is especially noticeable at the
boundary between the wings/fuselage and the background.

‘‘E-3’’, ‘‘F-16’’, and ‘‘F-22’’. We would like to highlight the
changes in ‘‘Boeing’’, ‘‘F-16’’, and ‘‘F-22’’ for discussion.

D. OUT-OF-DISTRIBUTION TESTING
The extremely high training and validation scores could be
because of the high degree of correlations between training
and validation images. The MTARSI dataset was taken from
33 airports. Some classes are extremely rare in real life.
As such, we suspect many images were of the same planes,
taken at different times under different imaging conditions
and with different backgrounds. Furthermore, the majority
of the 9385 images were generated via data augmentation
(isometries and background shifts), thus any single plane
appears multiple times. In this scenario, despite using random
splitting of the training and validation set, it is possible to
overfit the validation set without every training on a single
validation image.

To examine this potential overfitting, we performed addi-
tional testing on 36 additional out-of-distribution test images.
20 of these 36 images were from a vertical top-down

TABLE 6. Class-based performance of Swin-Transformer with super
resolution after 300 epochs on the validation set.

TABLE 7. Out-of-distribution test score out of 36 (SR denotes models
trained on super-resolved images).

perspective, which we considered to be ‘‘easy images’’
directly comparable toMTARSI images. The other 16 images
were from a top-down view, at an angle, and were considered
‘‘hard’’ images. No test images were taken from a ‘‘looking
up’’ point of view, showing the underneath of the aircraft. All
test images showed the entirety of the aircraft.

As shown in Table 7, despite the excellent validation
scores, models trained on the MTARSI dataset did not gen-
eralize well to new data. The Swin-Transformer used in
the benchmark table, trained with heavy data augmentation
showed the best performance. With super-resolution, after
300 epochs, ResNet-50 and Swin-MLP also achieved similar
results. However, 17

36 correct classification despite having
approximately 99.5% validation accuracy indicates that the
validation score did not reflect out-of-distribution perfor-
mance, and that the MTARSI dataset is unsuited for training
generalizable aircraft recognition models.

IV. DISCUSSIONS
A. MTARSI DATASET LABELING PROBLEMS
The Swin-Transformer achieved an extremely high validation
accuracy of around 99.4% after 300 epochs, even without
super-resolution. Even without considering dataset errors,
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these results also indicate that these deep learning models
were likely at the upper limit of what this dataset can bench-
mark (in terms of model complexity), and that more complex
aircraft recognition datasets are required to benchmark bigger
and more complex aircraft recognition models. We believe
these results indicated that the model has ‘‘solved’’ the
MTARSI aircraft recognition task (but not aircraft classifi-
cation in general).

A visual inspection of the dataset showed that it had some
obvious labeling issues.We focus our discussions on potential
issues with the classes ‘‘Boeing’’, ‘‘C-17’’, ‘‘T-43’’, ‘‘F-16’’
and ‘‘F-22’’, but there are potentially similar issues with
classes we were less familiar with. The Boeing class con-
tained many different models of commercial airliners, some
of which were quad-engine planes, while others were twin-
engine planes. We believed this class should be refined for
the future, separating the different models (eg. Boeing 747)
within the manufacturer ‘‘Boeing’’. In fact, the C-17 and the
T-43 models were their own classes in the MTARSI dataset,
but are manufactured by Boeing, with the Boeing T-43 model
being a modified Boeing 737 variant. We believed the con-
struction of the MTARSI ‘‘Boeing’’ class resulted in prob-
lems with class separability.

Many images in the MTARSI class ‘‘C-17’’ were misla-
beled (Fig.13), where the left image does not have the engine,
tail, and fuselage shape of a C-17 plane. TheMTARSI classes
‘‘F-22’’ (Fig.12) and ‘‘F-16’’ were also often mislabeled,
with many examples of ‘‘F-15’’, ‘‘F-16’’, and ‘‘F-18’’ planes
intermixed.

In light of our knowledge of the mislabeling of certain
classes, a few interesting results indicated the potential over-
fitting of the validation set. As aforementioned, we believed
the ‘‘Boeing’’ class to be problematic since it contained
images of both twin-engine (eg. Boeing 737), and quad-
engine (eg. Boeing 747) commercial airliners. On the other
hand, the ‘‘T-43’’ class referred to the Boeing T-43, a mod-
ified Boeing 737 used by the United States Air Force for
training purposes with an indistinguishable airframe from
the commercial Boeing 737. The fact that the ‘‘T-43’’ class
received perfect classification scores despite being indis-
tinguishable top-down from certain planes in the ‘‘Boe-
ing’’ class indicated potential issues with the validation set.
We also noted the high accuracy of the classes ‘‘F-16’’ and
‘‘F-22’’, which increased under super-resolution, as shown in
Tables 4 and 6. From visual inspection, we were confident
that out of the 95 validation set images in the ‘‘F-16’’ class,
20 were not images of the F-16 fighter jets. Moreover, out of
the 215 ‘‘F-22’’ class images in our validation set, we believed
151 images were not of F-22 fighter jets. Despite this,
we achieved extremely high class-based scores on ‘‘F-22’’
and ‘‘F-16’’, which became perfect after we upsampled the
images via super-resolution. Super-resolution enhances the
discriminative features of images. Therefore, this behavior
strongly suggested that the model instead memorized which
planes belonged to the MTARSI assigned classes, rather
than learning the correct shape and pattern matching based

FIGURE 12. Possible mislabeling of ‘‘F-22’’ in MTARSI. the two aircraft
have different wing shapes (which also do not match those of an F-22).
(a) is likely an F-15 based on the wing (F-16-like) and tail shape (two
vertical stabilizers), and (b) is likely an F-18.

FIGURE 13. Possible mislabeling of ‘‘C-17’’ in MTARSI. Despite both being
quad-engine airplanes, these two are of different fuselages, engines, and
tail shapes. (a) is potentially a Boeing 747 and (b) is a C-17.

classification. This in return strongly suggested overfitting
of the validation set, despite the models never having been
trained on them. We further confirmed this with our out-of-
distribution testing.

B. RESULTS AND PROBLEMS WITH MTARSI DATASET
GENERALIZABILITY
Our results showed that the effect of a good training schedule
was much greater than changing models (as long as the model
size was similar). Our ResNet-50 performed very similarly to
our Swin-models, and greatly outperformedWu’s [7] ResNet-
50 from the original MTARSI paper, as well as all models by
previous authors [8], [9], [10], [11] on the MTARSI dataset.
We attribute the performance of our models to (1) having
chosen a good training regiment, and (2) using pre-trained
ImageNet weights and normalizing our dataset to ImageNet’s
mean and standard deviation (many previous authors have
used pre-trained weights but have not performed the addi-
tional normalization step). We would like to point out the
recent study [31] which corroborated this finding. In the
aforementioned paper, the authors trained a ResNet-50 that
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is ImageNet1k top-1 accuracy greatly exceeded the previous
ResNet-50 score (80.4 vs. 75.3 %), and was comparable to
Swin-Transformer’s (Tiny) 81.2 %. The training parameters
of the authors were very similar to ours, with the same base-
line learning rate, cosine scheduler, and similar data pipeline.

Most importantly, we found out using out-of-distribution
testing data that the MTARSI dataset is unsatisfactory for the
training and evaluation of aircraft classification algorithms
for real-life applications. The validation set results simply did
not translate to out-of-distribution data to a satisfactory level.
This was likely due to (1) the low unique aircraft diversity in
the dataset and (2) the construction of the dataset, where Wu
et al. [7] had not canonically split the dataset before applying
their data augmentation to generate new images (causing
subsequent authors to use cross-contaminated training and
validation sets). This resulted in potential overfitting of the
validation set while only training on the training set, since
both sets likely contained the same plane artificially placed on
different backgrounds. This cross-contamination also made
the judgment of overfitting impossible when using MTARSI
data alone.

C. SUGGESTIONS
We suggest future authors consider alternative datasets for
aircraft classification for research, and more importantly, for
real-life applications. Our results showed training procedure
was more important than architecture when considering mod-
els of similar sizes. Moreover, we suggest future authors
carefully investigate training procedure optimization before
building new models. Swin-Transformers has in the recent
past shown to be very promising. However, the fact that
the Swin-Transformer we trained only marginally exceeded
ResNet-50 should not be understood to reflect its true poten-
tial, as we believed both models have achieved the upper limit
of MTARSI dataset scores. We also note that we only used
the Tiny variant of Swin-Transformer and Swin-MLP due
to computational limitations. In future experiments, We are
considering testing the limits of the Swin-Transformer and
improving its architecture while training on more complex
aircraft classification tasks, such as the Aircraft Context
Dataset [14].

For improving the MTARSI dataset, we suggest recon-
structing it without including augmented images, as we
believe data augmentation should be part of the training data
pipeline, and not the dataset construction. This recommenda-
tion broadly applies to dataset construction in general, since
the choice of data augmentation depends on the needs of
the user. Moreover, it is easy to augment data, but it can
be difficult to recover original images from augmented data.
The MTARSI labels must be carefully examined for errors.
Given the severity of the labeling errors, it could be more rea-
sonable to relabel the images from scratch. We also suggest
the ‘‘Boeing’’ class be refined either into specific models,
or into general ‘‘Quad-engine airliner’’ and ‘‘Twin-engine
airliner’’ into which the T-43 planes should be merged. The
labeling errors of MTARSI classes ‘‘F-16’’ and ‘‘F-22’’ were

numerous. We suggest the creation of ‘‘F-15’’ and ‘‘F-18’’
classes for MTARSI, which would contain images previously
misclassified into ‘‘F-16’’ and ‘‘F-22’’. For testing purposes,
we suggest the MTARSI dataset, and future datasets are
constructed with canonically split training/validation/testing
sets, so that future users can train and test on the same splits.
Since modern state-of-the-art methods often only differ from
one-another by a fraction of a percent in terms of accuracy
scores, controlling for the testing dataset split should result
in a less biased benchmark. It can be also useful to include an
out-of-distribution test set created entirely separately from the
training/validation set, either from photo-realistic simulation
images or from independently taken remote sensing images.

V. CONCLUSION
By carefully selecting our training procedure, we have
achieved state-of-the-art results on the MTARSI dataset with
a 99.4%validation accuracy on a∼2000 image validation set,
greatly exceeding the results of the previous authors. Bymak-
ing use of pre-trained ImageNet weights, ResNet-50, Swin-
Transformer (Tiny), and Swin-MLP (Tiny) were all able to
exceed the previously published results using our training
procedures.We further improved our results to 99.5% valida-
tion accuracy when using a state-of-the-art super-resolution
method to upsample our images. We also found that for
this dataset, the training procedure was more important than
model selection. However, we noticed that the MTARSI
dataset has many issues. For example, the number of unique
aircraft is low, some images are mislabeled, some classes
are problematic in scope, and most importantly, the authors
performed data augmentation to generate the 9385 images
without canonically splitting the training set and validation
set. The validation and training sets generated via any random
split would likely be cross-contaminated and contain the same
aircraft, except under different augmentation. These data aug-
mentation also artificially raised the number of data sam-
ples which could mislead users about the dataset’s variety.
As such, we performed additional out-of-distribution testing
with challenging images taken from various sources, and
confirmed that the dataset’s validation score did not gener-
alize to true performance. We would like to caution against
using the MTARSI dataset for practical applications. Future
aircraft classification studies should investigate whether other
aircraft datasets generalize to out-of-distribution data, as well
as investigate robust generalizable models by training on
multiple datasets.
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