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Point Transformer-based Salient Object Detection
Network for 3D Measurement Point Clouds
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Li, Fellow, IEEE

Abstract—While salient object detection (SOD) on 2D images
has been extensively studied, there is very little SOD work
on 3D measurement surfaces. We propose an effective point
transformer-based SOD network for 3D measurement point
clouds, termed PSOD-Net. PSOD-Net is an encoder-decoder
network that takes full advantage of transformers to model the
contextual information in both multi-scale point- and scene-wise
manners. In the encoder, we develop a Point Context Transformer
(PCT) module to capture region contextual features at the point
level; PCT contains two different transformers to excavate the
relationship among points. In the decoder, we develop a Scene
Context Transformer (SCT) module to learn context repre-
sentations at the scene level; SCT contains both Upsampling-
and-Transformer blocks and Multi-context Aggregation units to
integrate the global semantic and multi-level features from the
encoder into the global scene context. Experiments show clear
improvements of PSOD-Net over its competitors and validate
that PSOD-Net is more robust to challenging cases such as small
objects, multiple objects, and objects with complex structures.
Code is available at: https://github.com/ZeyongWei/PSOD-Net.

Index Terms—PSOD-Net, 3D salient object detection, point
transformer, 3D measurement point cloud

I. INTRODUCTION

Salient objects are the most attractive objects in contrast to
their surroundings in the scene [1], [2]. Salient object detection
(SOD) has a wide range of applications and can provide
pre-processing results for various vision tasks, including 3D
shape classification [3], compression [4], quality assessment
[5], and many others. Distinct from the relevant tasks, i.e.,
saliency detection [6], [7] and object detection [8]–[10], SOD
requires locating and completely segmenting salient objects,
hence being more challenging.

While SOD for 2D images has been extensively studied
[11], [12], there are very few efforts on SOD for 3D point
clouds. This is even though the rapid development of 3D
acquisition technologies has significantly simplified geometric
modeling [13], and 3D point clouds become more and more
popular with wide applications of autonomous driving, and
Metaverse [14], [15].
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(A) FM of PointSal (B) FM of PSOD-Net

Fig. 1: 3D heatmap visualization of feature maps (FM). Points
that belong to the same semantic part share more similar
features by (B) PSOD-Net than (A) PointSal [16].

In contrast to images where salient objects remain un-
changed, point clouds can easily undergo 3D view rotation.
This implies that an object, during view rotation, may tran-
sition from being salient to becoming a non-salient object.
PointSal [16] is the pioneering work of point cloud salient
object detection (PCSOD). It provides a novel dataset, namely
PCSOD, for point cloud salient object detection. To ad-
dress the ambiguity caused by the aforementioned viewpoint
changes, PCSOD divides the entire scene into different views
from different perspectives, with salient objects in each view
fixed. By combining the salient objects from the “given
views”, we obtain a complete description of the salient objects
for scenes in point clouds. Notably, PointSal takes full ad-
vantage of multi-scale features and global semantics to locate
salient objects. However, all feature extraction modules of
PointSal are implemented by multi-layer perceptrons (MLPs),
which seriously limits the capability of learning long-range
feature representations due to fixed receptive fields. When
dealing with an object with complex structures (see Figure
1 (A)), PointSal [16] fails to capture the complete structure
information.

To deal with the challenges of small/multiple objects and
objects with complex structures, we propose a point trans-
former model for PCSOD, dubbed PSOD-Net. Considering
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Fig. 2: Pipeline of PSOD-Net. PSOD-Net follows an encoder-decoder structure and mainly consists of a Point Context
Transformer (PCT) and a Scene Context Transformer (SCT). The input measurement point cloud is first fed into the encoder
to progressively capture multi-level semantic features by multiple continuous PCT modules. In PCT, two transformers (ψpre

and ψpost) learn the point-wise context information in the local and global region. The decoder employs SCT to recover
the resolution of the input point cloud by the Upsampling-and-Transformer (UT) block and integrate the scene contextual
information via a Multi-Context Aggregation (MCA) module.

that transformer has been proven remarkably effective at the
level of detailed object analysis and large-scale parsing of
massive scenes [17], we improve the ability to detect salient
objects by designing two types of transformer-based modules.
The first type is the Point Context Transformer (PCT) and
the second is the Scene Context Transformer (SCT). They
can capture multi-scale point-wise and scene-wise contextual
information simultaneously.

PCT can model point-wise relationships in the local and
global regions by two different transformers. The captured
local point-wise context information can describe the clear
boundary structure, and the global point-wise context in-
formation assists in distinguishing the points belonging to
different objects and classes. This ensures that our model can
accurately detect multiple objects with complex structures.
Besides, multiple continuous PCT modules in the encoder
are employed to progressively capture multi-scale semantic
features, which encourages our network to identify objects at
different scales. SCT integrates the multi-scale features from
the encoder to learn the global scene context information. The
global scene context information is beneficial for learning the
relationship between the salient objects and the background
and locating the salient object from the interfering background.

Benefiting from PCT and SCT, PSOD-Net can effectively
model the long-range dependencies and learn the contextual
information to obtain more accurate detection results. As
shown in Figure 1(B), it can be observed that the structural
features of the 3D flower are completely distinguished from
the complex backgrounds via PSOD-Net. Moreover, to verify
the effectiveness of PSOD-Net, we compare it with PointSal
[16] and several representative segmentation models on the
PCSOD benchmark dataset and achieve the best performance.
Besides, we successfully apply our method to LiDAR data
with different structures.

Our main contributions are three-fold:

• We propose a point transformer model for 3D salient ob-
ject detection (PSOD-Net). To the best of our knowledge,
we are the first to try using the transformer to solve the
salient object detection problem for 3D point clouds.

• We devise two types of transformers, i.e., Point Context
Transformer and Scene Context Transformer, capturing
contextual information at the point-and-scene levels. It
successfully addresses the challenges of small objects,
multiple objects, and objects with complex structures.

• Experiments verify that PSOD-Net outperforms PointSal
and several representative segmentation models on the
PCSOD dataset. Besides, our method is successfully
applied to LiDAR data with different structures.

II. RELATED WORKS

A. Salient Object Detection

Early works [18]–[21] capture low-level cues by hand-
crafted features. Due to the lack of global semantic informa-
tion, these methods cannot achieve satisfactory performance.
Thanks to the emergence of convolution neural networks
(CNNs) which have the powerful capability of feature rep-
resentations, the CNNs-based models overcome the defects of
traditional methods and make great progress. Hou et al. [22]
design a skip-layer structure by the short connections, which
fuses the multi-level and multi-scale features to provide ad-
vanced representations. Siris et al. [23] design a scene context-
aware network to capture the global semantic information to
assist in locating the salient objects. Although RGB image-
based methods [24]–[26] have achieved great performance,
they are restricted to understand complex scenes due to the
lack of spatial geometric information. Subsequently, efforts
are extended to depth images [27]–[31] for the task of RGB
SOD, where depth cues can assist in recognizing the most
attractive objects. Fu et al. [30] design a Siamese network
to simultaneously extract RGB and depth features and fuse
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them in a cross-level and cross-modal manner. Zhang et al.
[31] utilize the fine edge cues to locate salient objects by a
complementary fusion network.

Regarding the saliency study on point clouds, early works
[3], [7], [32], [33] attempt to compute the attention distribution
by simulating the human visual system. However, these meth-
ods only generate a heatmap to describe the salient regions
while not completely segmenting the salient objects. Fan et
al. [16] first dive into studying the feasibility of point clouds
salient object detection (PCSOD), and propose a benchmark
dataset and a baseline model for PCSOD.

B. Transformers for Computer Vision

Transformers have achieved great progress in the natu-
ral language processing task, which attracts the attention
of the computer vision field. After the emergency of the
vision Transformer [34], many works have introduced the
transformer-based structure in the image understanding task
[35]–[41]. Alexey et al. [41] take image patches as a token
to train the transformer by a large amount of data for the
image classification task. Further, Wang et al. [38] design
a pyramid transformer network to capture the multi-scale
feature representations and effectively decrease the cost of
computation and memory by progressive reduction attention.
Carion et al. [35] propose an end-to-end transformer detector
that directly generates the bounding boxes from the CNN
features by a transformer encoder-decoder. Lately, several
Transformer-based fusion models have been propose for other
types of image fusion tasks [42]–[45]. In [43], Zhang et
al. [43] present a Transformer-based pan-sharpening method
for redundancy reduction and global information exploitation.
Tang et al. [44] propose a multiscale adaptive Transformer
for multimodal medical image fusion in which an adaptive
convolution and an adaptive Transformer are designed for
global feature extraction. Later, Tang et al. [45] present YDTR
to achieve improved performance, which is a Y-shape dynamic
transformer-based network.

In the 3D vision field, transformers have also been employed
in various tasks [17], [46]–[52]. Zhao et al. [17] extract the
local features by a transformer block which applies self-
attention in the local region of each input point. Guo et
al. [46] propose an offset-attention module to calculate the
offset between the input features and the attention features to
optimize the original self-attention. Misra et al. [48] propose
a 3D end-to-end detector built on top of [35], where a trans-
former encoder directly extracts features on the point cloud
and a transformer decoder predicts the bounding boxes. Mao
et al. [50] introduce a Transformer-based framework to capture
long-range relationships between voxels. Lately, Zhang et al.
[52] propose an enhanced point feature network (EPFNet)
for point cloud salient object detection by aggregating image
features with the point cloud.

III. METHODOLOGY

A. Overview

We propose a novel transformer-based salient object detec-
tor for point clouds. PSOD-Net models the context-dependent

feature representations in both point and scene levels via Point
Context Transformer (PCT) and Scene Context Transformer
(SCT). It uses an encoder-decoder structure (see Figure 2).

Formally, given a fixed view V = {v1, v2, ..., vN} includes
N points with original features (e.g., xyz location and RGB
colors), where v ∈ Rdin . The encoder first extracts multi-
level features {F l

e}5l=1 from the raw point clouds V . The
first-level features are extracted by multi-layer perceptron
(MLP) layers and the feature dimension is fixed to 64 for
subsequent transformers. The remaining features are extracted
by multiple continuous PCT modules, the lth level features
F l
e have Nl =

N
4l−1 aggregated points with double the feature

dimension compared to the F l−1
e (except the second level

features have the same feature dimension with the first level
features).

To obtain the probabilities P = {p1, p2, ..., pN} of each
point in the raw point cloud that belongs to salient points,
the encoded features {F l

e}5l=1 are fed to the decoder to
progressively recover the resolution to the original size N .
Each UT module takes the output from the previous layer and
the corresponding encoder block as input and upsamples the
high-level features to fuse with low-level features. The last UT
module outputs the multi-scale perceptual aware features Fo.
To alleviate the dilution of high-level features, we aggregate
multi-level features {F l

e}5l=1 into the global scene context Fg

via MCA. Fo and Fg are subsequently concatenated together
to predict the final result by the prediction head.

B. Point Context Transformer

To construct the hierarchical feature representation for un-
derstanding the semantic information of whole scenes, we
follow PointNet++ [53] to build PCT in a pyramid manner. As
shown in Fig. 3, PCT consists of two different transformers
ψpre and ψpost. ψpre extracts local context in each sampled
group while ψpost models global context from the whole
pooled point cloud.

Given an input point cloud P = {p1, p2, ..., pN}, we first
generate a new subset {pc1 , pc2 , ..., pcM } with M points by the
furthest point sampling (FPS) operation. In this new set, each
point is recognized as the centroid to choose K closest points
in the local region within a given radius to form the point
group. We denote Fi = {fj |j ∈ N (pci)} as the ith group
with the centroid pci , where Fi ∈ RK×d represents features
of points in the ith group. The transformer is formulated as

qi = FiWq, ki = FiWk, vi = FiWv, (1)

F ′
i = Softmax(qi · ki/

√
d)vi, (2)

Trans(Fi) = Fi + FFN(F ′
i ), (3)

where Wq , Wk, and Wv are linear projections for query, key,
and value terms, d represents the feature dimension of key and
value vectors, FFN(·) is a feed-forward network.

These groups are first fed into the Feature Normalization
(FN) module to normalize the feature distributions in the local
region. Then, the transformer block ψpre takes these groups as
input to model the context dependencies between points in the
group, which describes the structural features on the boundary.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3355968

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 21,2024 at 02:14:57 UTC from IEEE Xplore.  Restrictions apply. 



4

Tr
an

sf
or

m
er

Furthest Point Sampling

Point Context Transformer

Grouped Features

Max-
Pooling

preψ postψ

FN

Centroids 
features

Tr
an

sf
or

m
er

𝑅𝑅𝑀𝑀×𝐾𝐾×𝑑𝑑
𝑅𝑅𝑀𝑀×𝑑𝑑𝑅𝑅𝑀𝑀×𝑑𝑑𝑅𝑅𝑀𝑀×𝐾𝐾×𝑑𝑑

Fig. 3: Point Context Transformer (PCT). We first apply FPS and ball query to generate the local point groups. The Feature
Normalization (FN) module is designed to simulate different feature distributions among diverse groups. Subsequently, two
transformers are employed to capture the relationships of elements in the local region and global sampled points.

The max-pooling function aggregates the features of neigh-
bor points into the centroid to reduce the resolution and expand
the receptive field of the sampled points. Subsequently, the
aggregated features are fed into the transformer block ψpost to
learn the correlations among the sampled points, which assists
in interfering with the category of each point.

The whole operation is formulated as

f ′i = A(ψpre(Fi)), (4)

Fe = ψpost({f ′i |i ∈ [1,M ]}), (5)

where Fi = {fj |j ∈ N (i)} ∈ RK×d is the grouped set with
the centroid fi. A represents the max-pooling aggregation
function. ψpre and ψpost are both transformers in Eq. 3,
which extract local context and global context, respectively.
{f ′i |i ∈ [1,M ]} ∈ RM×d represent the extracted local context
features of all groups, and Fe is the output of PCT.

C. Feature Normalization Module

The self-attention layer is the key component of the Trans-
former, which has a strong ability to learn the feature repre-
sentations. But simply stacking self-attention layers to learn
the deeper features will decrease the accuracy and robustness
of performance. This is because points are sparse and irregular
and feature distributions among the different local groups are
diverse, while shared self-attention layers treat these groups
equally. Inspired by [54], we utilize a Feature Normalization
(FN) module to assign different weights to diverse groups. Let
{fi,j}j=1,...,K ∈ RK×d be the grouped set with the centroid
fi ∈ Rd, we transform the local grouped set by

σ =

√√√√ 1

M ×K × d

M∑
i=1

K∑
j=1

(fi,j − fi)2, (6)

{fi,j} = α⊙ {fi,j} − fi
σ + ϵ

+ β, (7)

where the standard deviation σ of all point cloud features are
calculated to describe the offset across all groups and feature
channels, α and β are learnable parameters to simulate the
distribution in different groups, ⊙ is dot production and ϵ is
a small number to maintain the numerical stability [55], [56].

D. Scene Context Transformer

The high-level semantics and the multi-scale features are
crucial for salient detection tasks [57]–[59]. Thereby we
integrate the global semantic and multi-level features {F l

e}5l=1

from encoders into the global scene context via the Scene
Context Transformer (SCT) module. Scene context that de-
scribes the object distributions can locate the salient object.
SCT mainly includes two components, i.e., Upsampling-and-
Transformer (UT) and Multi-Context Aggregation (MCA).

UT upsamples the output F i+1
d from the previous UT block

and concatenates it with features F i
e of the corresponding

PCT module using the short link. Later, a transformer block
excavates the inner relationships of the whole features as

F i
d = Trans(C(U(F i+1

d ), F i
e)), (8)

where U(·) is an upsampling function and C(·, ·) is a concate-
nation function. MCA directly takes outputs {F l

e}5l=1 from all
PCT modules as input. We concatenate them together as the
global scene context to assist in predicting the salient object.
Specifically, we first adopt a channel compression operation
for each output, which consists of the MLP layer and max-
pooling function. MLP compresses outputs to an identical
feature dimension and the max-pooling function is employed
to generate different vectors for succeeding concatenation as

Fg = C({A(MLP(F i
e))|i ∈ [1, 5]}), (9)

where C(·, ·) is a concatenation function and A is the max-
pooling function.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. PCSOD [16] is a benchmark dataset for 3D
salient object detection. It includes 2,873 3D views from over
one hundred scenes, where each view has 240,000 points.
Each salient object is hierarchically labeled as three levels
of annotations, i.e., class, bounding boxes, and segmentation
map. Following the widely used split ratio of 7:3, PCSOD is
randomly split into 2,000 training samples and 872 testing
samples. Moreover, PCSOD contains a certain amount of
challenging samples, such as multiple objects, small objects,
complex structures, and low illumination.
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Fig. 4: The qualitative of different methods for PCSOD in the case of simple samples.
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Fig. 5: The qualitative of different methods for PCSOD in the case of complex structures.
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Fig. 6: The qualitative of different methods for PCSOD in the case of small objects.
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Fig. 7: The qualitative of different methods for PCSOD in the case of multi-objects.
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Scene GT A B C D E F

Fig. 8: The visual examples from the PCSOD dataset for ablation studies. For different configurations, “A”: PSOD-Net (full
modules), “B”: PSOD-Net (w/o FN), “C”: PSOD-Net (w/o ψpre), “D”: PSOD-Net (w/o ψpost), “E”: PSOD-Net (w/o UT), “F”:
PSOD-Net (w/o MCA).

TABLE I: Comparison with the state-of-the-art methods on
the PCSOD dataset.

Methods MAE ↓ F-measure ↑ E-measure ↑ IoU ↑

ASSANet [60] 0.089 0.709 0.814 0.606
PointTransformer [17] 0.075 0.762 0.848 0.670

PCT [46] 0.069 0.770 0.846 0.652
PointMLP [54] 0.065 0.792 0.875 0.702
PointNeXt [61] 0.066 0.779 0.859 0.680
ShellNet [62] 0.074 0.753 0.848 0.648

PointSal [16] 0.069 0.769 0.851 0.656
Ours 0.058 0.805 0.878 0.711

Evaluation Metrics. We utilize four widely recognized
evaluation metrics for performance benchmarking to compare
the results of different methods. These metrics include the
mean absolute error (MAE), F-measure, E-measure, and inter-
section over union (IoU).

The MAE metric evaluates the degree of point-wise approx-
imation between the predicted segmentation maps and their
corresponding ground truths. MAE can be formulated as

MAE =
1

N

N∑
i=1

|pi − gi|, (10)

where pi ∈ P and gi ∈ G are the prediction and ground truth,
respectively.

F-measure is calculated as the harmonic mean of the preci-
sion (prec) and recall (reca), which is calculated by comparing

the saliency map with the corresponding ground truth as

F −measure =
(1− β2)prec · reca
β2prec+ reca

, (11)

where β2 is set to 0.3 to emphasize the importance of
precision.

E-measure is a comprehensive evaluation metric that takes
into account both local matching and global statistics infor-
mation of segmentation maps for assessment [63], which can
be formulated as

E −measure =
1

W ×H

H∑
y=1

W∑
x=1

ϕFM (x, y), (12)

where H and W are the height and width of the saliency map,
and ϕFM is the enhanced alignment matrix.

IoU is a performance metric that quantifies the extent of
overlap between two segmentation maps, which is defined as

IoU =
intre

union
, (13)

where inter and union indicate the intersection and union of
two segmentation maps, respectively.

Implementation. We implement our model with Pytroch
on an NVIDIA RTX 2080ti GPU. The point clouds include 9-
dimensional features that consist of spatial coordinates, RGB
colors, and normalized coordinates. We randomly split the
complete 3D view into patches with 4,096 points, and treat
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these patches as input. We train our model with the Adam
optimizer in an end-to-end manner. The total training epochs
are 800 and the initial learning rate is 5e−4.

B. Comparison and Analysis

We compare our method with PointSal [16] and five repre-
sentative segmentation methods [17], [46], [54], [60], [61].

Quantitative results. From Table I, our method achieves
the best performance among all the methods on PCSOD. Our
PSOD-Net outperforms the suboptimal model PointMLP [54]
in all metrics on the PCSOD testing set. Point Transformer
[17] and PCT [46] design various transformer modules on
the point feature extraction. Although these sophisticated local
feature extractors already learn the local context well, their
performances are not effective enough due to the lack of
representation of the global scene context. PointMLP enhances
the ability to learn the point cloud feature representation by
stacking more residual feed-forward MLPs. However, the fixed
receptive field restricts the representation power of MLPs.

Qualitative results. To further verify the effectiveness of
PSOD-Net, we visualize the predicted results on some chal-
lenging views, e.g., structure-complex objects (Figure 5(b)),
small objects (Figure 6(c)) and multi-objects (Figure 7(d)).

Simple Samples in Fig. 4(a). While some other methods
such as ASSANet, PointSal, and PCT may segment part of the
background point cloud as a salient object in simpler scenes,
our PSOD-Net avoids such interference from the background.

Complex Structure in Fig. 5(b). Some salient objects have
complex and sharp edges. Other methods, such as PointSal and
PCT, will lose part of the edges or simply smooth complex
edges into a whole. While our PSOD-Net can accurately
segment these complex edges.

Small Objects in Fig. 6(c). Small salient objects, due to their
smaller point count, are easily disturbed by more numerous
background points. Therefore, most methods tend to segment
the adjacent background parts together with the salient object.
However, our method can more accurately separate small
salient objects from the background.

Multi-objects in Fig. 7(d). A scene may contain multiple
salient objects, which are very close to each other with bound-
aries tightly adjacent. Existing methods cannot accurately
segment the boundaries of multiple objects, resulting in the
blurring of multiple objects into whole, or being affected by
background interference, resulting in only partial segmentation
of salient objects. However, our method more accurately
segments multiple salient objects and their boundaries.

The above results indicate that our method can accurately
detect small objects, multiple objects, and objects with com-
plex structures. This is attributed to our transformer-based
PCT and SCT modules, which can improve the ability to
detect salient objects. Specifically, firstly, the transformer is
still effective in the PCSOD task, which can be proven by our
experiment. Secondly, our PCT module can learn point-wise
context information in the local and global regions. The local
point-wise context information can describe the clear boundary
structure, while the global point-wise context information
can distinguish the points belonging to different objects and

TABLE II: Ablation study on the PCSOD testing set.

Methods MAE ↓ F-measure ↑ E-measure ↑ IoU ↑

PSOD-Net (w/o FN) 0.071 0.755 0.842 0.649
PSOD-Net (w/o ψpre) 0.066 0.789 0.864 0.687
PSOD-Net (w/o ψpost) 0.063 0.799 0.873 0.700

PSOD-Net (w/o UT) 0.069 0.775 0.858 0.678
PSOD-Net (w/o MCA) 0.061 0.801 0.873 0.702

PSOD-Net (full) 0.058 0.805 0.878 0.711

classes. This assists in accurately detecting multiple objects
with complex structures. Besides, our network can identify
objects at different scales by continuously using multiple PCT
modules in the encoder to progressively capture multi-scale
features. Thirdly, our SCT module can extract the global
scene context information from the multi-scale features of
the encoder. The global scene context information contains
the potential relationship between salient objects and the
background and is beneficial for locating the salient object
from the interfering background. For these reasons, benefiting
from our PCT and SCT modules, PSOD-Net can achieve better
results.

C. Ablation Study

We split out five main components from our model and
remove them one by one to verify their effectiveness. They
are FN, ψpre, ψpost self-attention layers in PCT and UT, and
MCA modules in SCT. All results are reported in Table II.

Efficiency of Feature Normalization. Point clouds are
sparse and irregular and feature distributions among various
local groups are diverse. However, the self-attention layer in
transformers treats these groups equally. Simply stacking self-
attention layers results in reduced accuracy and robustness.
Therefore, we introduce the feature normalization module to
assign different weights to different groups, balancing the
feature difference between different groups. As shown in Table
II, the performance of PSOD-Net (w/o FN) is decreasing.

Efficiency of Point Context Transformer. PCT includes
two transformers that model the local and global point-wise
relationships. ψpre describes the boundary structure, while
ψpost helps in distinguishing the points belonging to differ-
ent objects and classes. To demonstrate the significance of
PCT, we remove ψpre and ψpost in PCT respectively. The
performance of modified model PSOD-Net (w/o ψpre) and
PSOD-Net (w/o ψpost) is shown in Table II. It can be observed
that after eliminating each of the two modules separately, the
performance of the model drops to varying degrees.

Efficiency of Scene Context Transformer. SCT explores
scene-wise context by UT and MCA modules. UT progres-
sively recovers the resolution of the point cloud via the upsam-
ple and transformer, MCA takes the output of all encoders as
input to concatenate them as the global scene context to assist
in predicting the salient object. To evaluate the efficiency of
SCT, we remove UT and MCA respectively, resulting in a
modified model denoted as PSOD-Net (w/o UT) and PSOD-
Net (w/o MCA). As shown in Table II, the model performs
poorly when lacking the scene-wise context.
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View GT Ours

Fig. 9: The visual results of aircraft remote sensing data. The two input data are scanned by Leica BLK360 and UAV aerial
Photogrammetry, respectively. The GT data is manually labeled. It can be seen that our method can detect the aircraft accurately.

Method #parameters ↓ FLOPs ↓ MAE ↓

PointTransformer [17] 7.8M 2.8G 0.075
PCT [46] 2.9M 2.3G 0.069

PointMLP [54] 12.6M 9.8G 0.065
PointNeXt [61] 7.1M 7.6G 0.066

PointSal [16] 4.8M 1.4G 0.069
Ours 8.2M 4.1G 0.058

TABLE III: Comparison of model parameters, floating point
operations, and MAE of different methods.

Therefore, the contextual information captured by PCT and
SCT indeed improves the performance of our method.

D. Efficiency and Model complexity

To compare the complexity of different methods, we show
the parameter numbers, floating point operations (FLOPs), and
MAE in Table III. Floating point operations are tested on 4096
points. It can be seen that our method is competitive in terms
of space and time efficiency.

E. Application

In this subsection, we develop a practical application on the
aircraft remote sensing data, which achieves favorable results.
Specifically, we test our approach on two data are two real-
scanned remote sensing data in Fig. 9. These two data are
scanned by Leica BLK360 and UAV aerial Photogrammetry,

respectively. In the results, our PSOD-Net accurately segments
the aircraft.

V. CONCLUSION

3D salient object detection is a new topic, remaining many
non-trivial problems to solve. For the first time, we propose
a transformer model for 3D salient object detection from
point clouds, namely PSOD-Net. Our PSOD-Net enhances
the ability to learn context-dependent feature representations
at the point and scene levels by introducing two different
types of transformers. The proposed Point Context Trans-
former (PCT) models hierarchical context-aware features at the
point level by two different transformer blocks. The proposed
Scene Context Transformer (SCT) captures the global scene
context by integrating the multi-scale contextual information
from different-level PCT modules. Thus, PSOD-Net is robust
to the cases of small objects, multiple objects, and objects
with complex structures. Extensive experiments verify the
effectiveness of our method over its competitors. In the future,
we will apply our method to more data with different structures
and information, and extend our idea to other 3D task, such
as feature extraction and segmentation.
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