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Abstract— Effective road marking classification and segmenta-
tion play a pivotal role in advancing vehicle-to-everything (V2X)
applications and refining road inventory databases. However, the
irregular data formats and unordered permutation modes of 3D
point clouds, along with the limited availability of large-scale
datasets with point-level annotations, remain significant obsta-
cles to designing deep learning-based networks with superior
performance. To address these challenges, this paper proposes a
novel multi-level feature optimization network structure, named
MFPNet, and introduces two point cloud benchmarks, RdmkNet
and Toronto-Rdmk, for road marking classification and segmen-
tation in intricate urban environments. MFPNet is composed
of three integral modules. First, the M-transformer module,
consisting of three transformers obtained from different channels,
fully captures rich point cloud background information and
long-distance dependencies between objects. Then, the feature
pooling aggregation module uses parallel structured pooling
attention mechanisms to aggregate features captured by the M-
transformer module, while the prediction refinement module
further enhances the acquisition of semantic features. Com-
parative studies indicate that MFPNet can be embedded into
general deep learning networks without changing their origi-
nal network structures, significantly improving the accuracy of
multiple baseline networks. Furthermore, extensive experiments
demonstrate that the two newly-developed point cloud datasets
are meaningful for road marking classification and segmentation
tasks, contributing to the development of autonomous driving.
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I. INTRODUCTION

3D POINT cloud classification and semantic segmentation
are crucial and challenging tasks in the field of com-

puter vision and remote sensing, with various applications,
including autonomous driving, robotics, augmented reality,
high-definition map construction, and urban mapping [1], [2].
The objective of semantic segmentation of point clouds is to
assign a semantic label to each 3D point, while the goal of
3D point cloud classification is to assign a class label to each
point cloud, with all points in the point cloud sharing one
class label. Hence, classification and semantic segmentation
can provide fine-grained scene understanding and complement
the task of object detection [3]. Deep learning has proven to be
an effective and efficient solution for point cloud classification
and semantic segmentation tasks. However, training deep
learning models for classification and semantic segmentation
is demanding and resource-intensive, requiring large-scale
datasets with point-level annotations.

Advances in sensor technology, particularly in the rapid
development of diverse LiDAR systems (ground-based, air-
borne, satellite-based) and other devices such as contact
scanners and depth cameras, have significantly enhanced the
flexibility and convenience of acquiring point cloud data.
Currently, most publicly available point cloud semantic seg-
mentation datasets are scanned using radar sensors, including
the SICK LMS, Riegl LMS-Q120i, Terrestrial Laser Scanner,
Velodyne HDL-32E, Velodyne HDL-64E, Teledyne Optech
Maverick, and others [4]. However, even with a variety of
available data acquisition methods and decreasing difficulty of
data acquisition, the process of labeling for intensive datasets
is still very challenging and time-consuming [5], [6]. Although
some annotation tools have been developed, there is still
a lack of fully automated and intelligent annotation tools
that can meet the data requirements for deep learning. Data
annotation still relies heavily on manual work. Most point
cloud segmentation and classification datasets contain at least
10 million points, rendering this labeling process extremely
tedious. In summary, despite the growing availability of point
cloud data, the process of labeling dense datasets remains
a significant bottleneck in designing novel learning-based
networks with superior performance.

Currently, the most popular publicly available seman-
tic segmentation datasets include S3DIS [7], ScanNet [8],
Semantic3D [9], Paris-Lille-3D [10], SemanticKITTI [11],
Toronto-3D [4], and others. Almost all object classification and
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semantic segmentation networks employed these datasets for
algorithm development and performance comparison. How-
ever, these datasets do not specifically focus on road markings
and road surroundings.

The S3DIS dataset [7] and ScanNet [8] dataset are indoor
datasets. The Semantic3D dataset [9] contains eight semantic
classes: man-made terrain, natural terrain, high vegetation, low
vegetation, buildings, remaining hardscapes, scanning artifacts,
and cars. It covers a wide range of urban outdoor artificial
scenes and rural natural scenes, such as churches, streets, town
halls, sports grounds, villages, football fields, and castles. The
Semantic-KITTI dataset [11] shows inner-city traffic and resi-
dential areas around Karlsruhe, Germany, as well as highway
scenes and rural roads. It includes 28 semantic categories, but
there is no finer distinction between road markings, only side-
walk categories. It is worth mentioning that the entire dataset
consists of 518 tiles, requiring over 1400 hours of annotation
work. Additionally, each tile needs 10 to 60 minutes of valida-
tion and correction, resulting in a total of over 1700 hours. The
Toronto-3D dataset [4] covers approximately 1 km of roads in
Toronto, Canada, and comprises approximately 78.3 million
points. The dataset was manually labeled into eight categories:
roads, road markings, nature, buildings, utility lines, poles,
cars, and fences. Currently, there is a limited availability
of commonly used classification data, mainly the 3D CAD
model dataset ModelNet40 [12]. It contains 40 common object
categories, such as bed, bench, bookshelf, bottle, chair, sink,
sofa, stair, stool, table, and more. The ModelNet40 dataset
focuses on indoor scenes.

Therefore, it is highly noteworthy to create new dataset
benchmarks based on existing ones that match specific
application scenarios. In the realm of intelligent transportation
systems, road markings, characterized by their distinct shapes
and sizes, play an instrumental role in ensuring vehicular
safety and traffic regulation. While numerous datasets exist
for classification and semantic segmentation in autonomous
driving, there remains a notable deficiency in datasets
specifically tailored to road markings and their adjacent
environments. To address this deficit, the Toronto-Rdmk
dataset was meticulously constructed in this paper by
integrating the Toronto-3D dataset [4], recognized for its
expansive road surroundings data, with the 3D road marking
dataset [13], which offers a vast collection of road marking
details. Concurrently, the structure of the dataset was adapted
to mirror real-world scenarios more closely. Categories were
refined to be comprehensive, with broader categories encap-
sulating diverse road markings to enhance neural network
training efficiency. In parallel, RdmkNet was developed to
rectify the limitations inherent in the original road marking
dataset. Recognizing the intricate relationships between
individual road markings in real-world driving scenarios, the
dataset was restructured to better capture and reflect these
complexities. Categories were augmented and amalgamated
to address the noticeable gaps in the foundational dataset.

Accurate classification and segmentation of road mark-
ings are imperative for the advancement of V2X applica-
tions. The emergence of autonomous driving further under-
scores the necessity of precise road marking extraction [14].

Traditional methods, which emphasized manually crafted fea-
tures from 3D point clouds, though resourceful, often found
their efficacy compromised in intricate urban settings [15].
In contrast, contemporary research has leaned heavily into
deep learning paradigms for road marking segmentation. For
instance, in addressing the complexities of multi-beam data,
a study [16] advocated for a distinctive method that harnesses
point clouds from budget-friendly mobile LiDAR setups. This
methodology combines a pseudo-scan line structure with a
density-balanced window median filter and a marker edge
constraint detection technique, showcasing impressive road
marking detection prowess. Another groundbreaking inves-
tigation [17] introduced a deep learning framework lever-
aging capsule networks for road marking extraction and
classification from mobile LiDAR point clouds. Traditional
techniques face challenges due to point density and inten-
sity variations in LiDAR data. The proposed framework,
comprising data-preprocessing, extraction, and classification
modules, addresses these challenges, improving efficiency and
robustness. Subsequent research [18], determined to outclass
conventional strategies, introduced a model integrating a dense
feature pyramid network (DFPN) and a focal loss function, set-
ting new standards in marking extraction. Adding to this array
of innovations, the GAT_SCNet approach [19] capitalized on
the graph attention network’s multi-head attention dynamic,
achieving stellar results in discerning road markings’ intricate
spatial interrelationships. Acknowledging the pivotal role of
road marking accuracy, another initiative [20] assembled an
dataset of Spanish road markings and leveraged deep learning
to detect marking damages. Lastly, a study [21] introduced the
multi-attentional semantic segmentation (MASS) framework.
This framework, optimized for detailed top-view interpre-
tations, is based on a multi-attention mechanism and the
PillarSegNet method. It contributes to redefining benchmarks
in top-view LiDAR data segmentation.

While LiDAR offers a groundbreaking shift from traditional
methods by capturing detailed and environment-resilient point
cloud data, further optimization is necessary to truly harness
its potential. Current methods, though advanced, still face
challenges in establishing spatial relationships between data
points, and in extracting and representing features in a manner
that can be efficiently utilized for large-scale point cloud
analysis. This leads us to the question: can we devise a more
effective mechanism to interpret and utilize the rich data that
LiDAR provides, especially in the context of road marking
segmentation? Building upon the strengths of LiDAR and
recognizing the gaps in existing methodologies, in this paper,
we introduce a novel approach to address these challenges.

Therefore, we propose the M-transformer module to estab-
lish spatial relationships between points in a straightforward
and effective manner to achieve feature extraction. Addition-
ally, we propose the feature pooling aggregation module,
which obtains the critical features in the global features
through max-pooling and average-pooling operations. The
weights of the features are learned by the softmax function
and multiplied by the input features. The prediction refinement
module obtains the maximum and average values of the input
features and then concatenates them to obtain the results.
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Similarly, the feature weights are acquired by the softmax
function, and afterward, the feature weights are calculated with
the initial features. The M-transformer module, the feature
pooling aggregation module, and the prediction refinement
module constitute the multi-level transformer feature optimiza-
tion network architecture MFPNet. The proposed MFPNet can
be easily embedded into other networks to enhance feature
representation for large-scale point cloud analysis tasks.

Our contributions can be summarized as follows: (1) We
introduce two new point cloud datasets, i.e., RdmkNet
and Toronto-Rdmk, which are specifically designed for
autonomous driving scenarios. These datasets are suitable
for road marking classification and semantic segmentation
tasks, respectively. (2) We propose MFPNet, a novel multi-
level transformer feature optimization network structure that
enhances feature representation for large-scale point cloud
analysis tasks. This network structure can be easily inte-
grated into other networks without changing their original
network structures. (3) We perform extensive experiments
on the Toronto-Rdmk, Toronto-3D, and RdmkNet datasets,
respectively. These experiments demonstrate the superior per-
formance of MFPNet and validate the practical training
significance of the two proposed datasets.

II. RELATED WORK

A. Object Classification

Deep learning methods for 3D object classification can
be primarily categorized into multiview-related, voxel-related,
and point-related approaches.

Multiview-related approaches [22], [23], [24], [25] first
classify 3D objects by projecting the 3D shapes into several
2D views and then learn features from each view to achieve
accurate shape classification through feature fusion. These
methods can effectively capture rich texture information from
the increasing number of views of 3D objects, contributing
to high classification accuracy. However, multiview-related
approaches tend to overlook the connections that exist between
regions and views among a variety of view images. These
relationships, however, are crucial for the representation of
3D objects in a multi-view setting. To address this limitation,
a relational network [23] was presented to enhance the knowl-
edge of separate view images by efficiently connecting the
areas corresponding to various viewpoints, thus utilizing the
interrelationships among a set of views and aggregating such
views to achieve discriminative 3D representations.

Voxel-related approaches [26], [27], [28] classify 3D objects
by converting a point cloud into a voxel grid representation,
followed by utilizing 3D CNNs for object classification.
Moreover, such methods are capable of handling 3D objects
of different sizes and shapes, which could properly deal
with the more general classification problem. Point-related
approaches [29], [30], [31], [32] can directly consume 3D
point clouds for 3D object classification without changing
the data format, thus avoiding unnecessary information loss.
Hassan et al. [32] proposed a module amalgamating sampling,
pooling, and annular convolution layers to effectively aggre-
gate point features. Enhanced by a residual block with skip

connections and non-linear shortcuts, this method supported
hierarchical learning directly from raw point clouds.

B. Semantic Segmentation

Deep learning methods for 3D semantic segmentation are
normally divided into four categories: projection-related [33],
[34], [35], [36], [37], discretization-related [38], [39], [40],
[41], [42], point-related [43], [44], [45], [46], [47], and hybrid
methods [48], [49], [50], [51].

Projection-related approaches convert raw point clouds into
regular formats like multiple views for semantic segmentation.
Such methods are inevitably influenced by viewpoint selec-
tion and occlusion, resulting in significant information loss,
including internal geometry information. Discretization-related
methods generally start by converting point clouds into dis-
crete representations, such as 3D voxels, which are processed
by 3D convolutional networks. Consequently, all points in the
voxel are given the same semantic label as the voxel to acquire
the point-level semantic segmentation results [38]. However,
a regular voxel data representation has many empty voxels,
leading to reduced computational efficiency when applying
dense convolutions to such empty voxels. Graham et al. [40]
addressed this issue by introducing a submanifold sparse
convolution (SSC) operator, which limited the convolution
outputs to occupied voxels, resulting in significant reductions
in memory and computational costs. SSC is highly efficient in
processing sparse data in high-dimensional spaces compared
to conventional 3D convolution operations, which has led to
its widespread adoption [52], [53].

Point-related networks operate directly on 3D point clouds,
despite the fact that they are disorganized and unstructured.
Hence, applying standard CNNs on point cloud data is not fea-
sible. PointNet [43], as the landmark algorithm in the direction
of semantic segmentation, achieved rotation invariance and
permutation invariance of the disordered point clouds through
spatial transformation and max-pooling operations. Since then,
numerous point-related networks have been introduced, and
these have been broadly categorized into point-by-point MLP
methods, point convolution techniques, recurrent neural net-
works (RNNs)-related methods, and graph-related methods.
For example, the SCF-Net [54] addressed the challenge of
capturing spatial contextual information in an unstructured
data environment. SCF-Net introduced the SCF module with
three blocks: Local Polar Representation (LPR), Dual-Distance
Attentive Pooling (DDAP), and Global Contextual Feature
(GCF). These components respectively tackle local context
representation, local feature learning, and global contextual
feature capture, overcoming issues like z-axis rotation variance
in local contexts. Hybrid methods combine the strengths of
the aforementioned methods and attempt to overcome their
shortcomings. RNNs are employed for semantic segmenta-
tion as well to extract intrinsic contextual features from
point clouds. For instance, 3DCNN-DQN-RNN [48] was pro-
posed, where residual RNN extracted and fused the 3DCNN
features, coordinates, and colors of each point in multiple
scales, resulting in a more robust and differentiated feature
representation.
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Fig. 1. Illustration of the TR_1 training set in the proposed Toronto-Rdmk dataset. Different colors signify distinct semantic categories in the dataset. The
segment labeled as ‘road’ pertains to the primary drivable surface for vehicles. ‘nature’ encompasses a diverse range of environmental features including
trees, vertical barriers such as wooden fences and construction site walls, parts of low and multi-story buildings, storefronts, and shrubs. The categories of
‘arrow’, ‘lane’, ‘dashed’, ‘crossing’, ‘text’, and ‘diamond’ each refer to specific road markings and indicators that convey critical navigational and regulatory
information for drivers and autonomous systems alike.

C. Transformer

The Transformer architecture [55] initially gained
widespread utilization in the domains of NLP [56], [57],
[58] and image processing [59], [60], [61]. However,
Transformer has now flourished in various domains, including
the 3D computer vision field. The considerable challenge in
processing point clouds is due to their disordered properties,
but Transformer does not require a secondary operation to
achieve permutation invariance.

Fan et al. [62] introduced the Single-stride Sparse Trans-
former (SST) to evaluate the influence of different stride sizes
on 3D object detectors, leveraging local attention to mitigate
the challenge of a shrinking receptive field. Lai et al. [63]
implemented a hierarchical sampling strategy in transformer-
based networks, densely sampling close points and sparsely
sampling distant ones, enhancing the receptive field and
contextual information with reduced computational costs.
Zhao et al. [64] devised GraFormer, a transformer and graph

convolution-based approach for 3D pose estimation. It used
GraAttention for global interaction among 2D joints and
ChebGConv to highlight implicit relationships between joints.
Lastly, Wang et al. [65] presented several modules including,
Geometric Details Perception (GDP) and Self-Feature Aug-
mentation (SFA), to perceive short and long-term relationships
among points. A new framework for point cloud completion
using a popular encoder module is built on the foundation of
GDP and SFA, which addresses the impact of data density
distribution and produces high-quality complete shapes.

III. NEW DATASETS

A. Toronto-Rdmk

Toronto-Rdmk consists of the Toronto-3D dataset [4] and
the 3D road marking dataset [13]. The Toronto-3D dataset
contains rich road surroundings points, and the 3D road
markings dataset includes abundant road marking points. More
specifically, we extracted five types of 3D points from the
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TABLE I
THE NUMBER OF POINTS FOR DIFFERENT CLASSES IN EACH SCENE

Toronto-3D dataset, i.e., nature, buildings, power lines, poles,
and fences. As we primarily focus on the applications for
autonomous driving road surface scenarios, road surroundings
are necessary but relatively less important. Thus, we combined
the data from the above-mentioned five categories into the
nature class. Meanwhile, we extracted the road surface data
from the 3D road marking dataset, which contains a rich col-
lection of road markings, including arrows, lanes, dashed lines,
zebra crossings, text, and diamond-shaped signs. The original
3D road markings dataset contains arrows, dashed lines, and
texts, which are further classified into finer categories. The
length of dashed lines 1 and 2 are dissimilar, while texts 1, 2,
3, and 4 correspond to distinct Chinese characters. Moreover,
arrows 1 and 2 denote straight and turning arrows, respectively.
However, the limited number of instances in each of these
categories is not sufficient for effective network training. Thus,
we merged the arrows, dashed lines, and texts into broader
categories. Specifically, we combined dashed lines 1 and 2 into
a single dashed lines category, texts 1, 2, 3, and 4 into a
unified texts category, and road arrows 1 and 2 into one road
arrows category. Consequently, Toronto-Rdmk contains eight
classes: road, arrow, lane line, dashed line, zebra crossing, text,
diamond, and nature.

The 3D road marking dataset and the Toronto-3D dataset
contain twelve road scenes and four road scenes, respectively.
To adhere to the distribution rules of the Toronto-3D dataset,
we included L001, L003, and L004 in the training set, while
L002 was assigned to the testing set. For the 3D road marking
dataset, we selected eight scenes for the training set and four
scenes for the testing set. Next, we combined the training
sets of both datasets to create a unified training set. Similarly,
we merged the testing sets from the two datasets to create a
testing set. Fig. 1 shows the training set TR_1 scene with a
zoom-in view, while Table I presents the number of points for
the different classes in each scenario.

B. RdmkNet

For the task of road marking classification, the original
dataset [13] manifests several critical limitations. As delin-
eated in Fig. 2, the dataset segregates the dashed lines, lane

Fig. 2. Illustration of the three main representative categories from the
original road marking dataset: zebra crossing, dashed line, and lane line.
Each type is isolated in distinct files, focusing on individual line entities. This
presentation limits the representation of their inherent interplay and configu-
rations, crucial for real-world autonomous driving road marking classification.

Fig. 3. Illustration of the six refined categories in the RdmkNet dataset:
arrow, lane line, dashed line, zebra crossing, text, and diamond. The dataset
underwent a rigorous refinement process, including re-extraction of road
markings and restructuring to suit each category’s unique shape. Instead of
maintaining numerous subcategories, we merged them to form these broader,
more discernible categories. Due to the limited instances of the triangle
category, it was excluded. Additionally, to bolster the dataset, we integrated
rich data elements from the 3D road marking dataset. This enhancement aims
to achieve a higher fidelity representation of real-world road scenarios, with a
focus on ensuring data quality and precision for advanced classification tasks.

lines, and zebra crossings into separate files, with each file
predominantly showcasing a single type of line. However, the
true differentiation among categories such as dashed lines, lane
lines, and zebra crossings arises from the unique arrangements
of these lines rather than the individual lines themselves.
Further analyzing the original 3D road markings dataset,
we observed it encompassed arrows, dashed lines, and texts.
These were further refined into subcategories: two distinct
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TABLE II
THE NUMBER OF OBJECTS FOR DIFFERENT CLASSES IN THE TRAINING SET AND TEST SET OF THE PROPOSED RDMKNET DATASET

lengths for dashed lines, varied Chinese characters for texts,
and specific designations for arrows (e.g., straight and turning).
However, the limited number of instances in these categories
hindered effective network training. Accordingly, we merged
the arrows, dashed lines, and texts into broader categories,
combining similar entities into singular categories for arrows,
dashed lines, and texts. Additionally, the original dataset
showed a glaring absence of triangle-shaped markings. Even if
data augmentation techniques can be employed to enrich this
collection, they may still fall short of the voluminous data
prerequisites of deep learning models, limiting for training
robust deep neural networks.

To rectify these challenges, we implemented comprehensive
data processing measures. We re-extracted road markings from
every scene, allowing us to reorganize and tailor the data to
each category’s specific shape. Recognizing the limitations
of finer subcategories in the original dataset, we merged the
arrows, dashed lines, and texts into broader categories, com-
bining similar entities into singular categories. This heightened
the dataset’s quality, making it more fit for precise classifica-
tion tasks. Post-restructuring, we classified the data into six
clear-cut categories: arrow, lane line, dashed line, zebra cross-
ing, text, and diamond, as depicted in Fig. 3. Addressing the
dataset’s noticeable scarcity in the triangle domains, we opted
to eliminate the triangle category. Moreover, we harnessed data
from the 3D road marking dataset, which boasted an abundant
array of road markings, like arrows, lanes, and diamond-
shaped signs. To mitigate the scarcity of road marking
instances in the original collection, we employed data aug-
mentation, choosing 50 random rotation orientations, thereby
augmenting our dataset fiftyfold. In this paper, we divided
the enhanced dataset into a 7:3 training-testing ratio, yielding
10,287 training and 4,413 testing samples, as detailed in
Table II. Prioritizing data diversity, we enriched the dataset
with normals and random noise, ensuring it mirrors the varied
and unpredictable facets of real-world driving scenarios.

IV. METHOD

A. Motivation

(1) Critical Need for Precise Road Marking Interpretation.
Accurate segmentation of road markings plays an instrumental
role in enhancing V2X applications and regularly updating
road inventory databases. The precise delineation of these
markings directly contributes to the safety of autonomous
driving systems within diverse road scenarios. Nonetheless, the
inherent irregularity of 3D point cloud data, combined with
unordered permutation patterns and a paucity of point-level
annotated datasets, poses substantial challenges in the devel-
opment of effective deep learning-based networks.

(2) Leveraging Advanced Neural Structures in Point Cloud
Processing. The advent and prominence of Transformer-based
models in diverse computational domains suggest their poten-
tial utility in enhancing point cloud data processing. Effec-
tively amalgamating these transformative architectures into
existing deep learning networks, without perturbing their foun-
dational structures, remains an area worthy of exploration.

(3) Enriching Representations with Low Attention
Scores. Current methodologies, especially Transformer-
based approaches, are predisposed to marginalizing point
relationships with lower attention scores. However, even
low-scoring relationships are crucial for understanding certain
road scenarios. The challenge lies in developing a mechanism
that factors in these overlooked relationships, thereby
refining the prediction and leading to a more comprehensive
understanding of the environment.

Algorithm 1 MFPNet Processing Pipeline

Require: Input point cloud: P ∈ RN×d with features fi ∈ Rd

Ensure: Refined features: FRef
1: function M-TRANSFORMER(P)
2: F0 ← InitialFeatures(P)

3: Fh ← Te (F0)

4: MQ,K ,V ← Tl (Fh)

5: Obtain multi-level MQ,K ,V using Eq. (3)
6: Fe

(t)← 8dot
(
Q(t), K(t)

)
7: Calculate F (t)

A and Fm
A using Eqs. (8, 9)

8: FM ← Concat
(
F1

A,F2
A
)

9: return FM

10: function FEATUREPOOLINGAGGREGATION(FM )
11: Apply max-pooling and average-pooling on FM to

obtain FM A using Eqs. (11, 12, 13)
12: FAgg ← Sof tmax (FM A) · FM
13: return FAgg

14: function PREDICTIONREFINEMENT(FAgg)
15: Calculate FG using Eq. (15)
16: FRef ← Sof tmax (FG) · FAgg
17: return FRef

18: FM ← M-TRANSFORMER(P)

19: FAgg ← FEATUREPOOLINGAGGREGATION(FM )

20: FRef ← PREDICTIONREFINEMENT(FAgg)

B. Method Overview

The MFPNet comprises three essential modules: the
M-Transformer module, the feature pooling aggregation mod-
ule, and the prediction refinement module, as illustrated in
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Fig. 4. Illustration of the proposed MFPNet (bottom) working on PointNet++ network (top). Within the PointNet++ structure, N signifies the number of
input points, d stands for the point coordinates’ dimensionality, and C denotes the dimensionality of the point features. The matrix N × (d +C) encompasses
inputs from N points, integrating the d-dimensional coordinates and C-dimensional point features. The term K designates the number of neighboring points
of centroid points, while N1 and N2 represent the number of subsampled points post-processing. The matrix N1 × (d + C1) outputs the N1 subsampled
points combined with d-dimensional coordinates and the revised C1-dimensional feature vectors, and similar logic applies for subsequent layers. Transitioning
to the MFPNet module, Q is the query matrix dictating attention focus, K is the key matrix paired with Q to determine focus areas, and V is the value
matrix containing the data processed by the attention mechanism. The symbols

⊕
,
⊙

and
⊗

represent addition, concatenation, and multiplication operations,
respectively.

Fig. 4. These modules work together to provide a compre-
hensive understanding of point cloud data by encoding both
local and global dependencies. Additionally, the prediction
refinement module further enhances predictions by incorpo-
rating point relationships with lower attention scores. This
holistic approach ensures that MFPNet captures an accurate
representation of the data, leading to improved performance.
Algorithm 1 outlines the primary steps and computations
required to carry out the MFPNet’s intricate processes, com-
mencing from the initial input of the point cloud up to the
final refined features.

C. M-Transformer

The M-Transformer module is introduced to enrich fea-
ture encodings by capturing rich contextual information and
long-range dependencies of point clouds. This module applies
multiple linear transformations to input point cloud features,
resulting in a hierarchy of point cloud features, including three
stratified query matrices, key matrices, and value matrices.
The attention mechanism in this module learns the importance
of different point relationships, enabling the model to focus
on the most relevant points. Furthermore, the multi-level
transformer structure balances accuracy and computational
cost, making it an efficient and effective solution for feature
encoding in point cloud analysis.

To be more specific, each point pi has d-dimensional
features fi ∈ Rd in the input point cloud P = {pi |i = 1,

2, . . . , N } ∈ RN×d , where N represents the number of points

in the input point cloud and d denotes the feature dimension
of each point. The initial features of the complete point cloud
can be represented as F0 ∈ RN×d . High-dimensional point
cloud features Fh are obtained by point feature encoding Te
as follows:

Fh = Te (F0) ,Fh ∈ RN×C (1)

where C represents the dimensionality of the features Fh .
Next, the linear transformation Tl is applied to the features

Fh to produce the query matrix Q, the key matrix K and the
value matrix V as follows:

MQ,K ,V = Tl (Fh) (2)

To extract a rich hierarchy of point cloud features, the
M-transformer module adopts several linear transformations
of different feature channels acting on the features, resulting
in three stratified query matrices, key matrices, and value
matrices. These matrices are expressed using the following
equations:

MQ,K ,V =


Q1 ∈ RN×C

4 K1 ∈ RN×C
4 V1 ∈ RN×C

4

Q2 ∈ RN×C
8 K2 ∈ RN×C

8 V2 ∈ RN×C
8

Q3 ∈ RN× C
16 K3 ∈ RN× C

16 V3 ∈ RN× C
16

(3)

Additionally, the attention module is capable of learning
the query vector, the key vector, and the value vector. Then,
the energy function Fe

(t) is obtained by performing the dot
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product operation 8dot on the query vector and the key vector
as follows:

Fe
(t) = 8dot

(
Q(t), K(t)

)
,Fe

(t) ∈ RN×N (4)

Next, the attention scores S(t) are calculated by normalizing
the energy function to a finite range using the Softmax
function, followed by the weights of the value vectors as
follows:

S(t) = Sof tmax
(
Fe

(t)

)
(5)

W v
(t) =

S(t)

σ + S(t)
(6)

where σ indicates the bias.
Moreover, the encoded point features F (t)

w ∈ RN×C are
obtained by multiplying the value vectors with their weights
as follows:

F (t)
w = W v

(t) · V(t) (7)

These point features are sequentially operated by convolu-
tion, batch normalization, and the ReLU activation function
to acquire the attention features F (t)

A ∈ RN×C . The output
features Fm

A ∈ RN×C of three attention layers are fused by
the following equations:

F (t)
A = Relu

(
B N

(
Conv

(
F (t)

w

)))
(8)

Fm
A = Sum

(
F (1)

A ,F (2)
A ,F (3)

A

)
(9)

The depth of the M-Transformer, denoted by the two-layer
structure, can be adjusted based on computational capacity
to strike a balance between accuracy and computational effi-
ciency. Specifically, the outputs from each M-Transformer,
represented as FM ∈ RN×2C , are concatenated in the sub-
sequent manner as follows:

FM = Concat
(
F1

A,F2
A

)
(10)

In this study, the proposed M-Transformer module can
effectively obtain long-range dependencies between different
points, significantly improving the feature encoding in com-
plex road scenarios.

D. Feature Pooling Aggregation Module

The feature pooling aggregation module is then developed
to enhance the M-transformer by encoding local and global
dependencies between objects based on pooling operations.
Specifically, it utilizes max-pooling and average-pooling oper-
ations on the M-transformer features to capture both the most
salient features and the global characteristics of objects. This
allows for a more comprehensive understanding of the point
cloud data and leads to a more robust representation of objects.

To be more specific, the feature pooling aggregation module
takes the obtained features FM as inputs and performs two
pooling operations, i.e., max-pooling and average-pooling,
to aggregate the learned features. The max-pooling operation
is designed to extract the salient features of the object,
while the average-pooling operation focuses on capturing the
global features. Then, the features FM A obtained from both

pooling operations are concatenated to form the final feature
representation as follows:

Fmp = Maxpooling (FM ) (11)
Fap = Avgpooling (FM ) (12)

FM A = Sum
(
Fmp,Fap

)
(13)

Next, the feature weights are obtained by applying the
softmax function to the features FM A. These weights are used
to compute the weighted sum of features FM , which results
in the aggregated features FAgg . This is calculated using the
following equation:

FAgg = Sof tmax (FM A) · FM (14)

Therefore, the proposed M-Transformer module can effec-
tively obtain long-range dependencies between different
points, while the feature pooling aggregation module makes
the network consider the local nature of objects and local
interactions, significantly improving the network’s ability to
encode both local and global dependencies between objects in
complex road scenarios.

E. Prediction Refinement Module

To overcome the limitation of the M-Transformer module,
which tends to overlook point relationships with low scores,
the prediction refinement module is introduced. This module
computes both the minimum and mean values of the feature
sequence, concatenating them to produce two-dimensional
features. By applying feature weighting to the initial features,
the module creates enriched feature representations that incor-
porate information with lower attention scores. The refined
features, denoted as FAgg , are processed through two separate
functional functions. The first function calculates the minimum
value of the feature sequence, while the second function
calculates the mean value. The resulting minimum and mean
values are then concatenated to capture low-scoring point
relationships, which can be computed using the following
equation:

FG = Concat
(
Gmin

{
FAgg

}
, Gmean

{
FAgg

})
(15)

Next, the feature weights of FG are obtained using the
softmax function, and these weights are then applied to the
initial features using feature weighting to obtain the final
predicted features FRef as follows:

FRef = Sof tmax (FG) · FAgg (16)

This process effectively enriches the feature representations,
even for lower attention scores, thereby contributing to the
feature encoding ability of the proposed MFPNet.

V. EXPERIMENTS

A. Semantic Segmentation

1) Dataset Description: We performed extensive exper-
iments on 3D scene segmentation leveraging two pivotal
datasets: the Toronto-Rdmk dataset and the Toronto-3D
dataset. The Toronto-Rdmk dataset encompasses 12 distinct
road scenes with an aggregate of approximately 223 million

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Waterloo. Downloaded on May 09,2024 at 01:29:46 UTC from IEEE Xplore.  Restrictions apply. 



DU et al.: RdmkNet & Toronto-Rdmk: LARGE-SCALE DATASETS 9

TABLE III
SEGMENTATION RESULTS (%) OF DIFFERENT METHODS ON TORONTO-RDMK DATASET

points. It differentiates data into eight salient categories: road,
arrow, lane line, dashed line, zebra crossing, text, diamond,
and nature. The Toronto-3D dataset, on the other hand, con-
tains 1km of road scenes with around 78.3 million points
and includes eight categories: road, road marking, nature,
building, utility line, pole, car, and fence. Through rigorous
experimentation on both datasets, we have substantiated the
superior performance of the proposed MFPNet in semantic
segmentation on vast road scenarios.

2) Experimental Setup: In setting up experiments,
we largely adhered to the original parameter settings for
each network. Nevertheless, due to GPU memory constraints,
we made necessary adjustments in certain areas. Specifically,
we reduced the batch size to manage the limited memory
capacity effectively. Additionally, to further accommodate
this constraint, we increased the size of the subsampling
grid, which helped in reducing the computational load.
Concurrently, a reduction in the maximum number of
points processed in each batch was implemented. These
modifications were carefully considered to ensure that the
experimental setup remained viable within the limits of our
hardware resources while striving to minimize any impact on
the performance and accuracy of the networks. To maintain
fairness in evaluations, we adopted consistent parameters for
the same comparison networks. It is pertinent to highlight that
further parameter refinements have the potential for better
outcomes across various models.

3) Segmentation Results on the Toronto-Rdmk: Table III
presents the experimental results of our proposed method,
which we tested against multiple baseline models to com-
pare their segmentation accuracy. We used the Toronto-Rdmk
dataset and evaluated the results using three metrics, i.e.,
Overall Accuracy (OA), mean Accuracy (mA) and mean
Intersection over Union (mIoU). Our method outperformed the
multiple baseline networks, as demonstrated in Table III. Com-
pared to the original PointNet++, the version of PointNet++

integrated with MFPNet demonstrated marked enhancements
in OA and mA, with gains of 2.1% and 17.2% respectively.
Notably, with MFPNet, the mIoU of PointNet++ experi-
enced a significant increase, showing a growth of 24.7% to
reach 80.8%. Additionally, PointNet++ + MFPNet achieved
a 100% IoU in the diamond category. When compared to
PointNet++ + MSG, PointNet++ + MSG + MFPNet
showed improvements in all three evaluation metrics OA, mA,
and mIoU by 0.2%, 1.1%, and 3.8%, respectively.

When integrated with MFPNet, SPG achieved enhance-
ments of 0.2% in OA, 0.4% in mA, and 1.3% in mIoU
compared to the standalone SPG. Similarly, KPConv aug-
mented with MFPNet exhibited a substantial mIoU increase
of 5.2% over the base KPConv. Furthermore, FPConv, when
combined with MFPNet, marked improvements of 1.7% in
OA, 13.4% in mA, and 14.9% in mIoU over its standalone
counterpart. Notably, FPConv + MFPNet achieved 100% IoU
in the segmentation of dashed lines and diamonds, outper-
forming the base FPConv. Likewise, PAConv integrated with
MFPNet realized improvements of 3.2% and 2.7% in mA
and mIoU metrics, respectively, when contrasted with the
base PAConv. When integrated with the proposed MFPNet,
Point Transformer V2 not only maintains its original strengths
but also demonstrates marked improvements in segmentation
performance. This indicates the effectiveness of MFPNet in
complementing and amplifying the capabilities of advanced
transformer-based models like Point Transformer V2, espe-
cially in complex urban road scenarios. GAM, illustrating
the application of the Gradient Attention Module to the
PointNet++ network, displayed notable advancements. The
further integration of MFPNet into this configuration resulted
in additional accuracy enhancements, with increases of 0.3%
in OA, 3.1% in mA, and 4.8% in mIoU. Moreover, this
combination led to notable improvements in the IoU across
all categories. The proposed MFPNet leverages a hierarchi-
cal structure that helps in capturing both global and local
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Fig. 5. Segmentation results on Toronto-Rdmk dataset. (a) Ground truth, (b) SPG, (c) SPG + MFPNet prediction, (d) SPG error, (e) SPG + MFPNet error.
Diverse colors represent distinct semantic categories. Areas segmented accurately are denoted in green, while mis-segmented regions are marked in red.

Fig. 6. Detailed segmentation results on Toronto-Rdmk dataset. (a) Ground truth, (b) SPG, (c) SPG + MFPNet prediction, (d) SPG error, (e) SPG + MFPNet
error. Diverse colors represent distinct semantic categories. Areas segmented accurately are denoted in green, while mis-segmented regions are marked in red.

Fig. 7. Segmentation results on Toronto-Rdmk dataset. (a) Ground truth, (b) SPG, (c) SPG + MFPNet prediction, (d) SPG error, (e) SPG + MFPNet error.
Diverse colors represent distinct semantic categories. Areas segmented accurately are denoted in green, while mis-segmented regions are marked in red.

contextual information from the input point clouds. This
architecture enables the network to consider a broader context
when conducting segmentation prediction, resulting in more
accurate and coherent segmentations.

Figs. 5 and 7 depict the segmentation results for the test
scenes R_3 and R_5, respectively. Each scene includes five
subfigures, including (a) displaying the ground truth labels,
(b) presenting the predictions generated by the SPG network,
and (c) showcasing the predictions resulting from the SPG
network combined with the MFPNet module. To allow for a
clearer comparison of prediction discrepancies before and after
the addition of the MFPNet module, all accurately segmented
points are denoted in green, while all mis-segmented points are
represented in red. Subfigures (d) and (e) in both Figs. 5 and 7
provide visual comparisons of the correct and erroneous points
predicted by the standalone SPG network and the SPG network
integrated with the MFPNet module, respectively.

Figs. 6 and 8 showcase the segmentation results for specific
areas within test scenes TR_3 and TR_5, respectively. Upon
closer inspection of Fig. 6, it is apparent that the addition of
the MFPNet module to the SPG network leads to a reduction
in segmentation errors on zebra crossings. Similarly, a detailed
evaluation of Fig. 8 shows a decrease in segmentation errors
on lane markings when the SPG network is supplemented
with the MFPNet module. MFPNet’s hierarchical architecture
provides both local and global contextual information to the
SPG network, enhancing its ability to comprehend point-to-
point relationships within the point cloud. By integrating this
information, the combined network can capture the intricacies
of the data and achieve higher accuracy compared to the
standalone SPG network.

4) Segmentation Results on the Toronto-3D: Table IV dis-
plays the quantitative segmentation results for several methods
applied to the Toronto-3D dataset. Among these methods,
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Fig. 8. Detailed segmentation results on Toronto-Rdmk dataset. (a) Ground truth, (b) SPG, (c) SPG + MFPNet prediction, (d) SPG error, (e) SPG + MFPNet
error. Diverse colors represent distinct semantic categories. Areas segmented accurately are denoted in green, while mis-segmented regions are marked in red.

TABLE IV
SEGMENTATION RESULTS (%) OF DIFFERENT METHODS ON TORONTO-3D DATASET

the proposed KPFCNN + MFPNet demonstrates significant
advantages over the original KPFCNN [45] and other methods
across multiple categories. These results indicate the effective-
ness of the proposed MFPNet for segmentation improvement,
especially in complex urban road scenarios. The feature
pooling aggregation module and the prediction refinement
module are crucial components of the MFPNet, contributing
to its superior performance. The feature pooling aggregation
module enhances the feature representation by incorporating
contextual information and improving feature discriminabil-
ity. Meanwhile, the prediction refinement module improves
fine-grained localization, corrects errors, and enhances robust-
ness to noise. These factors collectively contribute to the
improved segmentation results and higher IoU scores achieved
by KPFCNN + MFPNet compared to other models. When
comparing the class-specific IoU scores, KPFCNN + MFP-
Net demonstrates superiority in several categories. Notably,
it achieves remarkable performance for building (93.1%), car
(93.9%), and fence (36.8%), which is substantially better than
the original KPFCNN that achieves 91.5% for building, 85.7%
for car, and 15.7% for fence. i

B. Road Marking Classification

1) Dataset Description: We employed the RdmkNet
dataset, which encompasses six distinct categories: arrow, lane,
dashed, crossing, text, and diamond. The dataset has been

systematically partitioned into a training set with 10,287 sam-
ples and a test set containing 4,413 samples. Moreover,
we augmented the training process on the RdmkNet dataset by
incorporating noise and normals. To maintain consistency and
ensure fair comparison, we uniformly segregated the training
and test sets and upheld parameter standardization throughout
the training phase.

2) Classification Results on the RdmkNet: We compared
three methods, namely PT [73], PCT [74], and SortNet [75],
aiming to adapt the transformer architecture for 3D point
clouds. Each method introduced unique self-attention mecha-
nisms tailored to capture local and global contextual informa-
tion. Despite sharing a common goal, they proposed different
networks and experimental setups. Remarkably, these methods
demonstrated exceptional performance in various tasks, e.g.,
point cloud classification and segmentation, outperforming
state-of-the-art methods on many benchmark datasets.

We evaluated these methods for road marking classification
using two common criteria: instance accuracy and class accu-
racy. Instance accuracy measures the percentage of instances
that are correctly classified, while class accuracy measures the
percentage of classes that are correctly classified. Table V
displays the classification results on the RdmkNet dataset.
The results demonstrated that PCT outperformed the other
methods in terms of both instance accuracy and class accu-
racy, with scores of 92.3% and 88.6%, respectively. SortNet
also achieved relatively high scores, but it fell behind PCT.
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Fig. 9. Comparison of class accuracies for PT, PCT, and SortNet networks on the original RdmkNet dataset (a-c) and its extended version with added
normals and noise (d-f) across six classes. Each subfigure represents the class accuracy for a specific network on the respective dataset.

Additionally, PT indicated the lowest scores among these three
methods, with instance accuracy and class accuracy scores of
71.9% and 57.5%, respectively.

Table VI shows the classification results of the different
transformer-based methods on the RdmkNet dataset with noise
and normals. The results demonstrate that SortNet outperforms
the other methods with the highest instance accuracy and class
accuracy of 92.1% and 93.5%, respectively. PCT and PT show
similar classification performance, with instance accuracy and
class accuracy of 91.6% and 88.3%, and 73.1% and 57.8%,
respectively.

C. Ablation Study

We evaluated the performance of three different deep learn-
ing networks, PT, PCT, and SortNet, on the RdmkNet dataset
and their extended versions. These extended versions include
added normals and noise and cover six different classes.
We evaluated the performance based on various metrics,
including class accuracy and confusion matrix.

Fig. 9 shows a comparison of class accuracies achieved by
each network on both versions of the dataset. The results indi-
cate that the performance of all networks was affected by the
addition of noise and normals. Specifically, SortNet and PCT
demonstrated stronger robustness and adaptability, as most
categories showed significant improvements in accuracy after
incorporating noise and normals. In contrast, the PT network
experienced a decline in accuracy for most categories. These
findings highlight the value of the RdmkNet dataset for road
marking classification.

Fig. 10 shows the confusion matrices for each network
on both versions of the dataset, revealing the distribution of
misclassifications among different classes. These matrices can
help identify which classes are frequently confused with each

TABLE V
CLASSIFICATION RESULTS (%) OF DIFFERENT METHODS

ON THE RDMKNET DATASET

TABLE VI
CLASSIFICATION RESULTS (%) OF DIFFERENT METHODS

ON THE RDMKNET DATASET WITH NOISE AND NORMALS

other. As seen in Figs. 10 (a) and (d), categories labeled
as 2 (dashed line) and 4 (lane line) are the most easily
confused. In the original RdmkNet dataset, 294 instances of
the dashed line category were predicted as lane lines, while
228 instances of the lane line category were predicted as
dashed lines. When noise and normals were introduced in the
RdmkNet dataset, 353 instances of the dashed line category
were predicted as lane lines and 111 instances of the lane line
category were predicted as dashed lines. Moreover, as shown
in Figs. 10 (f), 195 instances of the dashed line category were
predicted as lane lines. These results confirmed the discrim-
inative training capabilities of the released RdmkNet dataset
with or without the added noise and normals. The RdmkNet
dataset showcases its advantages in providing diverse and
challenging scenarios that aid in evaluating the networks’
ability to differentiate between similar classes. The confusion
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Fig. 10. Comparison of confusion matrices for PT, PCT, and SortNet networks on the original RdmkNet dataset (a-c) and its extended version with added
normals and noise (d-f) across six classes. Each subfigure represents the confusion matrix for a specific network on the respective dataset.

between the dashed line and lane line categories highlights
the dataset’s complexity and real-world applicability, which is
crucial in developing more effective and robust models for 3D
point cloud processing.

VI. CONCLUSION

This study presents two point cloud benchmarks, RdmkNet
and Toronto-Rdmk, tailored for the classification and seg-
mentation of road markings within complex urban scenar-
ios. Alongside these benchmarks, we introduce MFPNet,
an innovative multi-level feature optimization network struc-
ture. MFPNet is segmented into three pivotal components: the
M-Transformer module, the feature pooling aggregation mod-
ule, and the prediction refinement module. The M-Transformer
module effectively captures rich contextual information and
long-range dependencies within point clouds. This is com-
plemented by the feature pooling aggregation module, which
strategically employs max-pooling to extract salient features
and average-pooling for a comprehensive global feature under-
standing. The prediction refinement module addresses the
nuances of MFPNet by emphasizing and incorporating the
more subtle, often overlooked point relationships with lower
attention scores, ensuring a refined predictive capability for
MFPNet. The benchmarks, RdmkNet and Toronto-Rdmk, cou-
pled with the robustness of MFPNet, represent a significant
progression in road marking classification and segmentation,

contributing to advancements in the autonomous driving
domain.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the Spa-
tial Sensing and Computing Laboratory at Xiamen University
for their support in providing the raw road marking point cloud
data.

REFERENCES

[1] Y. He et al., “Deep learning based 3D segmentation: A survey,” 2021,
arXiv:2103.05423.

[2] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep
learning for 3D point clouds: A survey,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 43, no. 12, pp. 4338–4364, Dec. 2021.

[3] M. Liu, Y. Zhou, C. R. Qi, B. Gong, H. Su, and D. Anguelov, “Less:
Label-efficient semantic segmentation for LiDAR point clouds,” in Proc.
Eur. Conf. Comput. Vis., vol. 13699, 2022, pp. 70–89.

[4] W. Tan et al., “Toronto-3D: A large-scale mobile LiDAR dataset
for semantic segmentation of urban roadways,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020,
pp. 797–806.

[5] O. Unal, D. Dai, and L. Van Gool, “Scribble-supervised LiDAR semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 2687–2697.

[6] Q. Hu et al., “SQN: Weakly-supervised semantic segmentation of large-
scale 3D point clouds,” in Proc. Eur. Conf. Comput. Vis., vol. 13687,
2022, pp. 600–619.

[7] I. Armeni et al., “3D semantic parsing of large-scale indoor spaces,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1534–1543.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Waterloo. Downloaded on May 09,2024 at 01:29:46 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[8] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “ScanNet: Richly-annotated 3D reconstructions of indoor
scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2432–2443.

[9] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and
M. Pollefeys, “Semantic3D.net: A new large-scale point cloud classifi-
cation benchmark,” 2017, arXiv:1704.03847.

[10] X. Roynard, J.-E. Deschaud, and F. Goulette, “Paris-Lille-3D: A large
and high-quality ground-truth urban point cloud dataset for automatic
segmentation and classification,” Int. J. Robot. Res., vol. 37, no. 6,
pp. 545–557, May 2018.

[11] J. Behley et al., “SemanticKITTI: A dataset for semantic scene under-
standing of LiDAR sequences,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9296–9306.

[12] Z. Wu et al., “3D ShapeNets: A deep representation for volumetric
shapes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2015, pp. 1912–1920.

[13] C. Wen, X. Sun, J. Li, C. Wang, Y. Guo, and A. Habib, “A deep learning
framework for road marking extraction, classification and completion
from mobile laser scanning point clouds,” ISPRS J. Photogramm. Remote
Sens., vol. 147, pp. 178–192, Jan. 2019.

[14] Y. Li et al., “Deep learning for LiDAR point clouds in autonomous
driving: A review,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 8, pp. 3412–3432, Aug. 2021.

[15] M. Cheng, H. Zhang, C. Wang, and J. Li, “Extraction and classification
of road markings using mobile laser scanning point clouds,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 3, pp. 1182–1196,
Mar. 2017.

[16] R. Yang, Q. Li, J. Tan, S. Li, and X. Chen, “Accurate road marking
detection from noisy point clouds acquired by low-cost mobile LiDAR
systems,” ISPRS Int. J. Geo-Inf., vol. 9, no. 10, p. 608, Oct. 2020.

[17] L. Ma et al., “Capsule-based networks for road marking extraction and
classification from mobile LiDAR point clouds,” IEEE Trans. Intell.
Transp. Syst., vol. 22, no. 4, pp. 1981–1995, Apr. 2021.

[18] S. Chen, Z. Zhang, R. Zhong, L. Zhang, H. Ma, and L. Liu, “A dense
feature pyramid network-based deep learning model for road marking
instance segmentation using MLS point clouds,” IEEE Trans. Geosci.
Remote Sens., vol. 59, no. 1, pp. 784–800, Jan. 2021.

[19] L. Fang, T. Sun, S. Wang, H. Fan, and J. Li, “A graph attention network
for road marking classification from mobile LiDAR point clouds,” Int.
J. Appl. Earth Observ. Geoinf., vol. 108, Apr. 2022, Art. no. 102735.

[20] O. Iparraguirre, N. Iturbe-Olleta, A. Brazalez, and D. Borro, “Road
marking damage detection based on deep learning for infrastructure
evaluation in emerging autonomous driving,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 11, pp. 22378–22385, Nov. 2022.

[21] K. Peng et al., “MASS: Multi-attentional semantic segmentation of
LiDAR data for dense top-view understanding,” IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 9, pp. 15824–15840, Sep. 2022.

[22] T. Yu, J. Meng, and J. Yuan, “Multi-view harmonized bilinear network
for 3D object recognition,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 186–194.

[23] Z. Yang and L. Wang, “Learning relationships for multi-view 3D
object recognition,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 7504–7513.

[24] C. R. Qi, H. Su, M. NieBner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view CNNs for object classification on 3D data,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 5648–5656.

[25] W. Wang, H. Zhou, G. Chen, and X. Wang, “Fusion of a static and
dynamic convolutional neural network for multiview 3D point cloud
classification,” Remote Sens., vol. 14, no. 9, p. 1996, Apr. 2022.

[26] D. Maturana and S. Scherer, “VoxNet: A 3D convolutional neural
network for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Sep. 2015, pp. 922–928.

[27] Y. Ben-Shabat, M. Lindenbaum, and A. Fischer, “3DmFV: Three-
dimensional point cloud classification in real-time using convolu-
tional neural networks,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 3145–3152, Oct. 2018.

[28] A. S. Gezawa, Z. A. Bello, Q. Wang, and L. Yunqi, “A voxelized point
clouds representation for object classification and segmentation on 3D
data,” J. Supercomput., vol. 78, no. 1, pp. 1479–1500, Jan. 2022.

[29] H. Zhao, L. Jiang, C.-W. Fu, and J. Jia, “PointWeb: Enhancing
local neighborhood features for point cloud processing,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 5565–5573.

[30] Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8895–8904.

[31] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon, “Dynamic graph CNN for learning on point clouds,”
ACM Trans. Graph., vol. 38, no. 5, pp. 146:1–146:12, Oct. 2019.

[32] R. Hassan, M. M. Fraz, A. Rajput, and M. Shahzad, “Residual learning
with annularly convolutional neural networks for classification and seg-
mentation of 3D point clouds,” Neurocomputing, vol. 526, pp. 96–108,
Mar. 2023.

[33] F. J. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. S. Khan, and
M. Felsberg, “Deep projective 3D semantic segmentation,” Proc. CAIP,
vol. 2, pp. 95–107, 2017.

[34] A. Boulch, B. L. Saux, and N. Audebert, “Unstructured point
cloud semantic labeling using deep segmentation networks,” in Proc.
EG3DOR, 2017, pp. 1–8.

[35] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “SqueezeSegV2:
Improved model structure and unsupervised domain adaptation for road-
object segmentation from a LiDAR point cloud,” in Proc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 4376–4382.

[36] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet++: Fast
and accurate LiDAR semantic segmentation,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 4213–4220.

[37] Y. Guo and T. Chen, “Semantic segmentation of RGBD images based
on deep depth regression,” Pattern Recognit. Lett., vol. 109, pp. 55–64,
Jul. 2018.

[38] J. Huang and S. You, “Point cloud labeling using 3D convolutional
neural network,” in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR),
Dec. 2016, pp. 2670–2675.

[39] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner,
“ScanComplete: Large-scale scene completion and semantic segmen-
tation for 3D scans,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 4578–4587.

[40] B. Graham, M. Engelcke, and L. van der Maaten, “3D semantic
segmentation with submanifold sparse convolutional networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 9224–9232.

[41] C. Choy, J. Gwak, and S. Savarese, “4D spatio-temporal ConvNets:
Minkowski convolutional neural networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 3075–3084.

[42] H. Su et al., “SPLATNet: Sparse lattice networks for point cloud
processing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 2530–2539.

[43] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet:
Deep learning on point sets for 3D classification and segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 77–85.

[44] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Annu. Conf.
Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 5099–5108.

[45] H. Thomas, C. R. Qi, J. Deschaud, B. Marcotegui, F. Goulette, and
L. Guibas, “KPConv: Flexible and deformable convolution for point
clouds,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 6410–6419.

[46] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan, “Graph attention
convolution for point cloud semantic segmentation,” in Proc. IEEE
CVPR, Jun. 2019, pp. 10296–10305.

[47] Z. Zeng, Y. Xu, Z. Xie, W. Tang, J. Wan, and W. Wu, “LEARD-Net:
Semantic segmentation for large-scale point cloud scene,” Int. J. Appl.
Earth Observ. Geoinf., vol. 112, Aug. 2022, Art. no. 102953.

[48] F. Liu et al., “3DCNN-DQN-RNN: A deep reinforcement learning
framework for semantic parsing of large-scale 3D point clouds,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5679–5688.

[49] A. Dai and M. Nießner, “3DMV: Joint 3D-multi-view prediction for 3D
semantic scene segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV),
vol. 11214, 2018, pp. 458–474.

[50] M. Jaritz, J. Gu, and H. Su, “Multi-view PointNet for 3D scene
understanding,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop
(ICCVW), Oct. 2019, pp. 3995–4003.

[51] H.-Y. Chiang, Y.-L. Lin, Y.-C. Liu, and W. H. Hsu, “A unified point-
based framework for 3D segmentation,” in Proc. Int. Conf. 3D Vis.
(3DV), Sep. 2019, pp. 155–163.

[52] X. Zhu et al., “Cylindrical and asymmetrical 3D convolution networks
for LiDAR segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 9939–9948.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Waterloo. Downloaded on May 09,2024 at 01:29:46 UTC from IEEE Xplore.  Restrictions apply. 



DU et al.: RdmkNet & Toronto-Rdmk: LARGE-SCALE DATASETS 15

[53] Y. Hou, X. Zhu, Y. Ma, C. C. Loy, and Y. Li, “Point-to-voxel knowledge
distillation for LiDAR semantic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 8469–8478.

[54] S. Fan, Q. Dong, F. Zhu, Y. Lv, P. Ye, and F.-Y. Wang, “SCF-
Net: Learning spatial contextual features for large-scale point cloud
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 14504–14513.

[55] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inform. Process. Syst. (NIPS), 2017, pp. 5998–6008.

[56] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive language models beyond a fixed-length
context,” in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics, 2019,
pp. 2978–2988.

[57] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., vol. 1. MI, USA: Association for Computational Linguistics,
Jun. 2019, pp. 4171–4186.

[58] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le, “XLNet: Generalized autoregressive pretraining for lan-
guage understanding,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 5754–5764.

[59] H. Hu, Z. Zhang, Z. Xie, and S. Lin, “Local relation networks for
image recognition,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 3463–3472.

[60] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers
for image recognition at scale,” in Proc. 9th ICLR, 2021, pp. 1–21.

[61] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 10073–10082.

[62] L. Fan et al., “Embracing single stride 3D object detector with sparse
transformer,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 8448–8458.

[63] X. Lai et al., “Stratified transformer for 3D point cloud segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2022, pp. 8490–8499.

[64] W. Zhao, W. Wang, and Y. Tian, “GraFormer: Graph-oriented trans-
former for 3D pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 20406–20415.

[65] J. Wang, Y. Cui, D. Guo, J. Li, Q. Liu, and C. Shen, “PointAttN: You
only need attention for point cloud completion,” Proc. AAAI Conf. Artif.
Intell., vol. 38, no. 6, pp. 5472–5480, Mar. 2024.

[66] L. Landrieu and M. Simonovsky, “Large-scale point cloud semantic seg-
mentation with superpoint graphs,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 4558–4567.

[67] Y. Lin et al., “FPConv: Learning local flattening for point convolution,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 4292–4301.

[68] M. Xu, R. Ding, H. Zhao, and X. Qi, “PAConv: Position adaptive
convolution with dynamic kernel assembling on point clouds,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 3173–3182.

[69] X. Wu., Y. Lao, L. Jiang, X. Liu, and H. Zhao, “Point transformer V2:
Grouped vector attention and partition-based pooling,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 35, 2022, pp. 33330–33342.

[70] H. Hu, F. Wang, Z. Zhang, Y. Wang, L. Hu, and Y. Zhang, “GAM:
Gradient attention module of optimization for point clouds analysis,” in
Proc. AAAI, 2023, pp. 835–843.

[71] Y. Li, L. Ma, Z. Zhong, D. Cao, and J. Li, “TGNet: Geometric graph
CNN on 3-D point cloud segmentation,” IEEE Trans. Geosci. Remote
Sens., vol. 58, no. 5, pp. 3588–3600, May 2020.

[72] L. Ma, Y. Li, J. Li, W. Tan, Y. Yu, and M. A. Chapman, “Multi-
scale point-wise convolutional neural networks for 3D object seg-
mentation from LiDAR point clouds in large-scale environments,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2, pp. 821–836,
Feb. 2021.

[73] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point trans-
former,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 16239–16248.

[74] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu,
“PCT: Point cloud transformer,” Comput. Vis. Media, vol. 7, no. 2,
pp. 187–199, Jun. 2021.

[75] N. Engel, V. Belagiannis, and K. Dietmayer, “Point transformer,” IEEE
Access, vol. 9, pp. 134826–134840, 2021.

Jing Du received the M.Sc. degree from Jimei
University, Xiamen, China, in 2022. She is currently
pursuing the Ph.D. degree with the Department of
Systems Design Engineering, University of Water-
loo, Waterloo, ON, Canada. Her research interests
include point cloud analysis and processing, aiming
to explore high precision, and low memory con-
sumption methods for semantic segmentation of 3D
point clouds.

Lingfei Ma (Member, IEEE) received the M.Sc.
and Ph.D. degrees in geomatics engineering from
the University of Waterloo, Waterloo, ON, Canada,
in 2017 and 2020, respectively.

He is currently an Associate Professor with the
Central University of Finance and Economics,
Beijing, China. He has published more than
30 papers in refereed journals and conferences,
including IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING, ISPRS Journal of
Photogrammetry and Remote Sensing, IEEE

TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, IEEE
TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, and
IEEE-CVPRW. His research interests include autonomous driving, mobile
laser scanning, intelligent processing of point clouds, 3D scene modeling,
and machine learning. He was a recipient of the 2020 National Best Ph.D.
Thesis Award granted by Canadian Remote Sensing Society. He serves as
the Editorial Board Member for the International Journal of Applied Earth
Observation and Geoinformation.

Jing Li received the M.Sc. degree in geographic
information systems and remote sensing from
Beijing Forestry University, Beijing, China, in 2017,
and the Ph.D. degree from the Department of
Information Technology and Cyber Security, Peo-
ple’s Public Security University of China, Beijing,
in 2021. He is currently an Associate Professor
with the School of Information, Central University
of Finance and Economics. His research interests
include remote sensing, image processing, and pat-
tern recognition.

Nannan Qin received the Ph.D. degree in pho-
togrammetry and remote sensing from Wuhan Uni-
versity, Wuhan, China, in 2019. He is currently a
Lecturer of remote sensing and geomatics engineer-
ing with Nanjing University of Information Science
and Technology, Nanjing, China. His main research
interests include LiDAR point clouds, 3-D vision,
and GeoAI.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Waterloo. Downloaded on May 09,2024 at 01:29:46 UTC from IEEE Xplore.  Restrictions apply. 



16 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

John Zelek (Member, IEEE) received the Ph.D.
degree from McGill University, Quebec, Canada,
in 1996. He was formerly the Associate Grad-
uate Chair of the Systems Design Engineering
from 2013 to 2017. He is currently an Associate
Professor and the Co-Director of the Vision Image
Processing (VIP) Laboratory, University of Water-
loo, Waterloo, ON, Canada. His main research
interests include autonomous robotic mapping and
localization, 3D scene understanding, man made
infrastructure assessment (e.g., roads, buildings, and

bridges), eye (fundus, OCT) image understanding for disease, learning 3D
models from single-views, and athletic sport tracking and biomechanical
understanding of play and ability from video feeds.

Haiyan Guan (Senior Member, IEEE) received the
Ph.D. degree in photogrammetry and remote sensing
from Wuhan University, Wuhan, China, in 2009, and
the Ph.D. degree in geomatics from the University
of Waterloo, Waterloo, ON, Canada, in 2014.

She is currently a Professor with the School of
Remote Sensing and Geomatics Engineering, Nan-
jing University of Information Science and Technol-
ogy, China. She has published more than 50 research
papers in refereed journals, books, and proceedings,
including IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING, IEEE TRANSACTIONS ON INTELLIGENT TRANS-
PORTATION SYSTEMS, IEEE GEOSCIENCE AND REMOTE SENSING LET-
TERS, ISPRS Journal of Photogrammetry and Remote Sensing, and IGARSS
and ISPRS proceedings. Her current research interests include information
extraction from LiDAR point clouds and from earth observation images.

Jonathan Li (Fellow, IEEE) received the Ph.D.
degree in geomatics engineering from the University
of Cape Town, South Africa, in 2000. He is currently
a Professor of geomatics and systems design engi-
neering with the University of Waterloo, Canada.
He has coauthored almost 600 publications, more
than 150 of which were published in top remote
sensing journals, including Remote Sensing of Envi-
ronment, ISPRS Journal of Photogrammetry and
Remote Sensing, IEEE TRANSACTIONS ON GEO-
SCIENCE AND REMOTE SENSING, and International

Journal of Applied Earth Observation and Geoinformation (Journal of Applied
Gerontology). He has also published papers in flagship conferences in com-
puter vision and AI, including CVPR, AAAI, and IJCAI. He has supervised
nearly 200 master’s/Ph.D. students as well as post-doctoral fellows/visiting
scholars to completion. His main research interests include AI-based infor-
mation extraction from earth observation images and LiDAR point clouds,
pointgrammetry and remote sensing, GeoAI and 3D vision for digital twin
cities, and autonomous driving. He is a fellow of Canadian Academy of
Engineering, the Royal Society of Canada (Academy of Science), and the
Engineering Institute of Canada. He is the President of Canadian Institute of
Geomatics (CIG). He is the Editor-in-Chief of JAG and an Associate Editor of
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING and IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Waterloo. Downloaded on May 09,2024 at 01:29:46 UTC from IEEE Xplore.  Restrictions apply. 


