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A B S T R A C T

The increasing severity, duration, and frequency of destructive floods can be attributed to shifts in climate,
infrastructure, land use, and population demographics. Obtaining precise and timely data about the extent of
floodwaters is crucial for effective emergency preparedness and mitigation efforts. Deep convolutional neural
networks (CNNs) have shown astonishing effectiveness in various remote sensing applications, including flood
mapping. One of the key limitations of CNNs is that they can only predict whether a desired feature will appear
in an image, not where it can be recognized. To address this limitation, the incorporation of self-attention
mechanisms deployed in vision transformers (ViTs) can be particularly effective. However, the self-attention
modules in the ViTs are complex and computationally expensive, and they require a wealth of ground data to
attain their full capability in image classification/segmentation. Thus, in this paper, we develop the Residual
Wave Vision U-Net (WVResU-Net), a deep learning segmentation architecture that utilizes advanced Vision
Multi-Layer Perceptrons (MLPs) and ResU-Net for accurate and reliable flood mapping using Sentinel-1 SAR’s
dual polarization data. Results showed the significant superiority of the developed WVResU-Net algorithms over
several well-known CNN and ViT deep learning models, including Swin U-Net, U-Net+++, Attention U-Net,
R2U-Net, ResU-Net, TransU-Net and TransU-Net++. For example, the segmentation accuracy of TransU-Net++,
SwinU-Net, ResU-Net, R2U-Net, Attention U-Net, TransU-Net, and U-Net+++, was significantly improved by
approximately 5, 12, 13, 13, 16, 19, and 23 percentage points, respectively in terms of recall obtained
by the WVResU-Net with a recall value of about 69.67%. The code will be made publicly available at
https://github.com/aj1365/RWVUNet.
1. Introduction

Floods are among the most common natural disasters, and their fre-
quency has been alarmingly increasing over the past few decades (Schu-
mann et al., 2009). The global economic and social impact of flooding
is expected to worsen due to the effects of global warming and grow-
ing populations (Intergovernmental Panel on Climate Change (IPCC),
2014). From 2000 to 2019, the estimated annual global cost of flood
damage was 65 billion dollars (Tellman et al., 2021). In the years
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ahead, both the associated costs and the number of people affected by
this natural disaster are projected to rise. According to climate change
predictions, the global population affected by floods is set to double
by 2030, increasing from 72 million to 147 million (Islam and Meng,
2022). To efficiently manage and evaluate this growing flood risk, tools
such as Earth Observation (EO) are essential for accurately mapping
flooded areas (McCormack et al., 2022).
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Utilizing satellite data to its fullest extent is crucial for flood man-
agement because it provides a near real-time and cost-effective method
for mapping floods operationally (Giustarini et al., 2016; Pappas et al.,
2021). Moreover, satellite-derived flood zone visualizations can signifi-
cantly improve the ability to predict floods by enabling more precise
hydraulic model validation and calibration (Grimaldi et al., 2016;
Wood et al., 2016), incorporating flooded area data (Nguyen et al.,
2022), or integrating spatially distributed water levels obtained from
digital elevation models (DEMs) (García-Pintado et al., 2013; Moya
et al., 2022; Surampudi and Kumar, 2023). One critical element in
effective flood disaster mitigation is the determination of inundation
extent from satellite imagery. With an increasing quantity of satellites
and advancements in image analysis technology, this information can
be obtained more frequently and with higher quality (Martinis et al.,
2022).

The most widely used tool for mapping floods from space is Syn-
thetic Aperture Radar (SAR) equipment carried by satellites, thanks to
its ability to collect data 24/7 regardless of weather conditions (Tri-
pathy and Malladi, 2022; Tazmul Islam and Meng, 2022a). SAR is
an active system that directs microwave pulses at the target from an
oblique angle. Surface roughness is the primary factor affecting the
quantity of microwave energy scattered off a feature, while shape and
dielectric characteristics have secondary effects (Woodhouse, 2017).
Rough terrestrial terrains exhibit high backscatter because they scatter
energy in multiple directions, including back toward the sensor. On the
other hand, open water has a relatively smooth surface, reflecting radar
energy away from the sensor which results in low backscatter, appear-
ing as dark regions (Henderson and Lewis, 2008). Many flood mapping
techniques, such as automatic thresholding (Tiwari et al., 2020), re-
gion growing (Wan et al., 2019), Bayesian model averaging (Liu and
Merwade, 2018), supervised pixel-based classification (Tong et al.,
2018), unsupervised pixel-based classification (Zhang et al., 2021c),
object-oriented classification (Zhang et al., 2021a), and change de-
tection (Hamidi et al., 2023), leverage this characteristic due to the
typically high land-water contrast it provides.

Flood mapping using SAR satellite imagery is a complex and chal-
lenging task due to its inherent complexity and the presence of speckle
noise. During the imaging process, electromagnetic radiation can be
influenced by echo interference when it encounters rough surfaces,
leading to phase variations. This interference results in decreased echo
intensity and introduces speckle noise into the SAR data. Speckle noise
can obscure target details in the SAR image, making it difficult to rec-
ognize and identify SAR targets (Zhai et al., 2023). Moreover, various
parameters, including the local incidence angle and the geometrical
shapes of SAR imaging at the time of acquisition, significantly affect
backscatter variation (O’Grady et al., 2013). It should be noted that
this study is not focused on addressing the discussed issues inherent in
the SAR imaging systems, however, we are interested in significantly
improving the segmentation performance of the current state-of-the-art
models by incorporating advanced computer vision techniques. Effec-
tive emergency and land management depends on a comprehensive
understanding of flood dynamics at a large scale.

A practical approach to generating maps of flooded zones over
extensive areas is the utilization of machine learning techniques. Re-
cently, traditional machine learning classifiers, such as Random Forest,
which are easy to implement, have been widely employed for mapping
of flooded areas (Woznicki et al., 2019; Feng et al., 2015; Vamsi
et al., 2023). However, traditional algorithms like Random Forest face
several key challenges: (1) The accuracy and performance of traditional
classifiers heavily depend on manual feature engineering. (2) These
techniques often struggle to capture complex feature characteristics,
particularly in densely populated and cultivated regions where textual
information is intricate. (3) Conventional algorithms overlook spatial
information and the spatial correlation among neighboring pixels, re-
lying solely on spectral or backscattering data. Deep Convolutional
2

Neural Networks (DCNNs) address these challenges and have shown
astonishing effectiveness in various applications, including image seg-
mentation (Zhang et al., 2023), object detection (Ye et al., 2023),
and image classification (Jackson et al., 2023; Qiao et al., 2023).
In recent years, there has been a significant rise in the utilization
of new computer vision-based techniques in various remote sensing
applications (Li et al., 2023; Wu et al., 2023; Yokoya et al., 2022; Chang
and Ghamisi, 2023; Yue et al., 2022). For instance, (Li et al., 2023)
introduced a low-rank representation (LRR) algorithm (LRR-Net), a
hyperspectral anomaly detection model that combines deep learning
methods with the LRR approach. The model utilizes prior expertise
across the deep network for controlling parameter optimization. Wu
et al. (2023) presented an efficient ‘‘U-Net in U-Net’’ deep learning
architecture for the detection of small entities in infrared images. The
developed model enables multi-scale and multi-level learning of the
representation of various features by embedding a tiny U-Net into a
larger U-Net backbone. Moreover, to enhance the AI model’s capacity
for generalization from multi-city locations, (Hong et al., 2023) created
a high-resolution domain adaptation network (HighDAN). Through ad-
versarial learning, HighDAN can close the gap caused by the significant
variations in RS image representations between various cities while
maintaining the geographically topological structure of the examined
urban environment. In Persello et al. (2022), the intersection of deep
learning and Earth observation and their contribution to sustainable
development goals has been explored. Unlike other machine learning
classification algorithms, CNNs employ a range of convolutions to
establish a hierarchical representation of information and can learn
feature representations from large datasets (Chen et al., 2016). This
enhanced learning capability results in improved accuracy and perfor-
mance. For instance, Muñoz et al. (2021) combined dual-polarized SAR
and multi-spectral Landsat imagery to assess the efficiency of a data
fusion framework based on CNNs for enhanced flood mapping. These
studies underscore the crucial role that deep learning algorithms can
play in advancing flood classification.

One of the key drawbacks of CNNs is that they can only predict
whether a desired feature will appear in an image, but not where
it can be recognized. Because of this, Long et al. (2015) suggested
a fully convolutional network (FCN) that enables the classification
of every pixel as a particular class, i.e., a pixel-based approach for
classification known as semantic segmentation, in contrast with im-
age classification, to address this limitation and increase the range
of applications of CNNs. One of the many FCN structures follows
the U-Net architecture, developed by Ronneberger et al. (2015). This
framework concatenates output maps at different levels to boost the
effectiveness of segmentation tasks. The primary distinction between
the U-Net architecture and conventional FCNs can be understood by
the higher number of expansion networks that allow the algorithm to
disseminate information through higher resolution levels. Moreover,
the CNNs’ fundamental constraints in the backbone restrict them from
precisely determining the sequential characteristics of an imagery.
By effectively utilizing the mechanism of self-attention deployed in
vision transformers (ViTs), this particular issue can be dealt with. For
example, by creating a UNet-based transformer (UNetFormer) model
for urban landscape segmentation, Wang et al. (2022) investigated a
lightweight version of ResNet-18 encoder for obtaining a robust global-
local attention system for modeling both local and global knowledge in
the decoder. Additionally, in order to enhance feature representation
capability while achieving better results on segmentation of cardiac
images, Yuan et al. (2023) developed a model that combined both
Transformers and CNNs.

Recently, due to the complexity and computational expense of the
self-attention modules in Vision Transformers (ViTs), simpler architec-
tures based on multi-layer perceptrons (MLPs), such as the MLP-Mixer
model (Tolstikhin et al., 2021), have gained popularity in computer
vision tasks. These vision MLPs offer greater versatility across tasks
and introduce fewer inductive biases compared to Convolutional Neu-

ral Networks (CNNs) and ViTs (Tang et al., 2022a). Additionally,
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while ViTs require a substantial amount of reference data to maximize
their image classification performance, CNNs also demand a signifi-
cant quantity of ground-truth information to reach their full potential.
Advanced MLPs have emerged as viable alternatives to both deep
CNNs and ViTs, particularly in situations where limited training data is
available (Tolstikhin et al., 2021). In this paper, we present the Residual
Wave Vision U-Net, hereafter referred to as WVResU-Net, which is
a deep-learning segmentation framework. We utilize advanced vision
MLPs and ResU-Net to achieve precise and reliable flood mapping
using dual-polarization data from Sentinel-1 SAR. The contributions
and novelties of this study can be described as:

• Development of a deep learning-based flood mapping architecture
that efficiently incorporates a vision MLP mechanism and residual
connections within a U-Net, significantly improving the segmen-
tation accuracy of the base ResU-Net segmentation architecture.

• Incorporating the vision MLP to address a key limitation of CNNs
and ViTs, namely their dependency on a large number of labeled
data and computational efficiency.

• Utilization of wave vision, which greatly enhances the decoder
network’s ability to identify where to find relevant discriminative
and task-specific information.

The proposed deep learning-based segmentation model of WVResU-
et significantly improves the segmentation capability of current cutt-

ng-edge deep learning models, including Swin U-Net (Cao et al., 2021),
-Net+++ (Huang et al., 2020), Attention U-Net (Oktay et al., 2018),
2U-Net (Alom et al., 2018), ResU-Net (Diakogiannis et al., 2020),
ransU-Net (Chen et al., 2021), and TransU-Net++ (Jamali et al.,
023), by effectively incorporating the capabilities of advanced vision-
ased MLPs and residual connections. The obtained segmentation re-
ults demonstrate a substantial segmentation enhancement by the pro-
osed model over the other CNN- and ViT-based algorithms in accu-
ately mapping flooded regions by using solely dual-polarized Sentinel-
SAR imagery.

. Proposed segmentation framework

The flowchart of the proposed methodology for flood mapping using
ual polarized Sentinel-1 SAR imagery is illustrated in Fig. 1. Various
olarization features are extracted from the dual-polarized Sentinel-1
AR imagery. Python TensorFlow GPU 2.6.2 is used for deep learning
odel development and the performance of each segmentation archi-

ecture for flood mapping is assessed. More details on the procedures
re discussed in the following sections.

Given a set of data (𝐗𝐒𝐀𝐑, 𝐘), where 𝐗𝐒𝐀𝐑 represents the in-
put Synthetic-Aperture Radar (SAR) backscattering coefficients for the
segmentation model, and 𝐘 represents binary or flooding maps. Con-
sidering the Sentinel-1 SAR imagery, 𝐗𝐒𝐀𝐑 ∈ R𝑤×ℎ×𝑏𝑐 , where 𝑤 and
ℎ represent spatial width and height, respectively, and 𝑏𝑐 = {2,… , 𝑛}
is the number of input backscattering features (i.e., VV, VH, and
the extracted backscattering features), the objective is to generate a
segmentation map, 𝐘 ∈ R𝑤×ℎ×𝑏𝑐 , where 𝑏𝑐 ∈ {𝑉 𝑉 , 𝑉 𝐻}. This can
be achieved by estimating the output of the pixel class using 𝐘 =
F (𝐗𝐒𝐀𝐑) for the input 𝐗𝐒𝐀𝐑 having the same spatial size as (𝑤 × ℎ).
We have developed and introduced the Residual Wave Vision U-Net
(WVResU-Net), as depicted in Fig. 2, which is an enhanced ResU-Net
framework for the segmentation of flooding regions. The proposed
WVResU-Net integrates the characteristics of vision MLPs in the form
of a U-shaped ResU-Net architecture. There are several significant
advantages to using the WVResU-Net: (1) The skip connections in a
residual unit, which convey low-level features to their corresponding
high-level feature representations, enhance the propagation of informa-
tion without degradation. This enables us to build a lower-complexity
segmentation model that gains more effective semantic segmentation
knowledge with a limited quantity of labeled data. (2)The use of
3

residual learning facilitates efficient network training. (3) The Wave
Vision function treats each image patch as a wave operation with two
essential key elements: amplitude and phase. Amplitude corresponds to
the initial backscattering coefficients, while the phase is estimated as
a complex value that varies relative to the semantic information of the
input Sentinel-1 SAR backscattering features.

2.1. Residual learning

It utilizes skip connections to facilitate training by allowing the
model to focus on learning residual (difference) information. This
approach enhances gradient flow and enables the creation of deeper
networks. Increasing the number of convolutional layers, thereby cre-
ating deeper CNN models, can enhance the projection capabilities
of CNNs. However, this approach can sometimes affect the accuracy
of the transmission of model information during back-propagation,
resulting in the common issue of the vanishing gradient problem (He
et al., 2016). To address this shortcoming, traditional convolutional
blocks have been replaced with a residual unit. By incorporating skip
connections and residual learning, this unit effectively addresses the
issue of gradient vanishing in the training phase. The inclusion of a skip
connection within a residual unit simplifies the process of converting a
low-level feature representation into its relative high-level counterpart.

2.2. Vision multi-layer perceptron

MLP algorithms primarily consist of two separate blocks: the chan-
nel-mixing MLP and the token-mixing MLP. Both of these blocks are
composed of layers of fully connected and activation functions. The
channel-mixing MLP converts the features of every token, while the
token-mixing MLP aims to combine features from various tokens. By
alternately stacking these two types of MLP blocks, the basic MLP
structure can effectively extract features and excel in vision-related
tasks (Tang et al., 2022a). Recent research in computer vision has
demonstrated that a pure MLP architecture, such as MLP-Mixer (Tol-
stikhin et al., 2021), primarily comprising fully connected (FC) layers,
can rival CNNs and Vision Transformers (ViTs) in terms of its ability
to extract effective features. An MLP algorithm essentially constitutes
a neural network with FC layers and non-linear activation functions.

In the context of the vision MLP, SAR imagery is initially divided
into numerous patches, often referred to as tokens. The features of
these tokens are then captured using two key components: the token-
FC (TFC) and the channel-FC (CFC), as described in the following
sections. Considering the intermediate feature maps with 𝑛 tokens as
𝑇 = [𝑡1, 𝑡2,… , 𝑡𝑛], where each token 𝑡𝑗 represents a 𝑑-dimensional
vector, the CFC can be expressed as:

𝐶𝐹𝐶(𝑡𝑗 ,𝑊 𝑐 ) = 𝑊 𝑐 𝑡𝑗 , 𝑗 = 1, 2, 3,… , 𝑛 (1)

where learnable weights are expressed by 𝑊 𝑐 . In order to obtain the
features from every token, the channel-FC performs a separate proce-
dure on its various CFC layers which are typically stacked together
with a non-linear activation function, creating a channel-mixing MLP,
to improve the transformation capability. To combine information from
various tokens, the TFC process is required and defined by:

𝑇𝐹𝐶(𝑇 ,𝑊 𝑚)𝑗 =
∑

𝑘
𝑊 𝑚

𝑗𝑘 ⊙ 𝑡𝑘, 𝑗 = 1, 2, 3,… , 𝑛 (2)

where weights of token-mixing are expressed as 𝑊 𝑚, element-wise
multiplication is presented as ⊙, and the 𝑗th output token is defined by
index 𝑗. By combining characteristics from various tokens, the TFC aims
to acquire spatial information. In such a way, we are limiting the power
of MLPs by ignoring meaningful semantic information of tokens derived
from different input images by such a simple token-mixing operation
with fixed weights.
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Fig. 1. The flowchart of the proposed methodology for flood mapping using dual-polarized Sentinel-1 SAR imagery.
Fig. 2. Overall design of the proposed Residual Weve Vision U-Net architecture.
2.3. Wave vision multi-layer perceptron

As discussed, the current state-of-the-art MLP algorithms directly
combine tokens from various input images with fixed weights, disre-
garding the differing semantic data of the image patches derived from
various images. In contrast, we can consider each token as a wave
operation with two key elements: amplitude and phase, as suggested
by Tang et al. (2022a). The initial feature is considered as the ampli-
tude, and the phase is calculated as a complex value that varies based
on the semantic information of the input images (e.g., backscattering
coefficients). The phase modulates the MLP interaction between tokens
and its fixed weights. The aggregate output of these wave-like tokens
4

is influenced by the variation in phase among them, and tokens with
similar phases often enhance each other, as shown in Fig. 3. Thus,
the correlation between tokens and predetermined weights in a typical
MLP can be dynamically altered effectively by introducing the phase
variable. A token can be considered as a wave, denoted as 𝑡∼𝑗 , and can
be defined as:

𝑡∼𝑗 = |𝑡𝑗 |⊙ 𝑒𝑖𝜃𝑗 , 𝑗 = 1, 2, 3,… , 𝑛 (3)

where the imaginary unit is expressed as 𝑖 (𝑖2 = −1). The contextual
information of each token is defined by the real value |𝑡𝑗 |, and 𝑒𝑖𝜃𝑗 rep-
resents a periodic operation. The phase is expressed as 𝜃𝑗 , indicating the
positional information of each token within a wave. Thus, each token
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Fig. 3. Unfolding the steps of the Token Mixing module.
𝑡∼𝑗 , comprising amplitude and phase, is considered as a complex-valued
entity.

For instance, considering two tokens 𝑡∼1 and 𝑡∼2 , the amplitude (𝑡𝑟)
and phase (𝜃𝑟) can be defined as:

|𝑡𝑟| =
√

|𝑡𝑖|
2 + |𝑡𝑗 |

2 + 2|𝑡𝑖|⊙ |𝑡𝑗 |⊙ cos(𝜃𝑗 − 𝜃𝑖) (4)

𝜃𝑟 = 𝜃𝑖 + atan2(|𝑡𝑗 |⊙ sin(𝜃𝑗 − 𝜃𝑖), |𝑡𝑖| + |𝑡𝑗 |⊙ cos(𝜃𝑗 − 𝜃𝑖)) (5)

where atan2(𝑥, 𝑦) defines a two-variable arc tangent operation. Thus,
considering the phase difference (𝜃𝑗 − 𝜃𝑖), it has a significant effect on
the amplitude of the combined result (𝑡𝑟).

Considering the output feature maps of the encoders 𝑋 = [𝑥1, 𝑥2,… ,
𝑥𝑛] as input of the wave vision, and the amplitude of 𝑡𝑗 is defined by:

𝑡𝑗 = 𝐶𝐹𝐶(𝑥𝑗 ,𝑊 𝑐 ). 𝑗 = 1, 2, 3,… , 𝑛 (6)

A token as a wave comprising real (amplitude) and complex values
(phase) can be rewritten as:

𝑡∼𝑗 = |𝑡𝑗 |⊙ cos(𝜃𝑗 ) + 𝑖|𝑡𝑗 | sin(𝜃𝑗 ). 𝑗 = 1, 2, 3,… , 𝑛 (7)

Resultant complex value output tokens can be aggregated through
the token-mixing operation, as expressed by:

𝑂∼
𝑗 = 𝑇𝐹𝐶(𝑇 ∼,𝑊 𝑚)𝑗 . 𝑗 = 1, 2, 3,… , 𝑛 (8)

The real value 𝑂𝑗 can be estimated through the sum of real and
imaginary parts of the 𝑂∼

𝑗 as defined by:

𝑂𝑗 =
∑

𝑘
𝑊 𝑚

𝑗𝑘𝑡𝑘 ⊙ cos(𝜃𝑘) +𝑊 𝑖
𝑗𝑘𝑡𝑘 ⊙ sin(𝜃𝑘), 𝑗 = 1, 2, 3,… , 𝑛, (9)

where learnable weights are presented by 𝑊 𝑚 and 𝑊 𝑖, and phase is
expressed as 𝜃𝑘.

2.3.1. Residual wave vision U-Net model
In order to enhance the robustness of flood mapping, an improved

ResU-Net (WVResU-Net) algorithm is developed, which leverages the
advantages of residual learning and Wave Vision to precisely map
flooded regions using Sentinel-1 SAR imagery in a U-shaped model.
Consider an 8-channel image dataset, where images of size (256×256×8)
pixels serve as input to the proposed deep learning network, WVResU-
Net. In the encoding part, there are three residual blocks (𝑅) and one
bridging (bottleneck) (𝐵𝑟) block, as defined by:

𝑅 = Conv(BN(ReLU(Conv(𝑥)))) + 𝑥 (10)

𝐵𝑟 = BN(ReLU(Conv(BN(ReLU(Conv(𝑥)))))) + 𝑥 (11)

The output maps of the first, second, and third encoding blocks
are fed to the second, third, and bridge encoding blocks, respectively.
Then, the feature map of the bridge block is fed to the vision block
and upsampled in the first decoding block. The resultant feature map is
concatenated with the vision block positioned after the third encoding
5

residual block, resulting in feature map 𝑋𝑑𝑒1. The next operations in
the decoding block 𝐷𝑒1 can be expressed as:

𝐷𝑒1 = BN(ReLU(Conv(BN(ReLU(Conv(𝑋𝑑𝑒1)))))) +𝑋𝑑𝑒1. (12)

The resultant feature map is then upsampled, and the output map
is concatenated with the vision block positioned after the second en-
coding block, resulting in feature map 𝑋𝑑𝑒2. The next operations in the
second decoding block 𝐷𝑒2 can be defined as:

𝐷𝑒2 = BN(ReLU(Conv(BN(ReLU(Conv(𝑋𝑑𝑒2)))))) +𝑋𝑑𝑒2. (13)

The output map of the second decoding block is then upsampled,
and the feature map is concatenated with the vision block positioned
after the first encoding block, resulting in the feature map 𝑋𝑑𝑒3. The
next operations in the third decoding block 𝐷𝑒3 can be expressed as:

𝐷𝑒3 = BN(ReLU(Conv(BN(ReLU(Conv(𝑋𝑑𝑒3)))))) +𝑋𝑑𝑒3. (14)

With a kernel size of (1 × 1), a 2D convolution layer with a sigmoid
activation operation is used at the final stage of decoding to map the
resultant feature output of the final decoding residual block into the
desired flooded area maps.

2.4. Comparison algorithms

The proposed segmentation model, WVResU-Net, is assessed over
various well-known segmentation algorithms of Swin U-Net (Cao et al.,
2021), U-Net+++ (Huang et al., 2020), Attention U-Net (Oktay et al.,
2018), R2U-Net (Alom et al., 2018), ResU-Net (Diakogiannis et al.,
2020), TransU-Net (Chen et al., 2021), and TransU-Net++ (Jamali
et al., 2023). The binary cross-entropy was employed as the loss func-
tion in this study in all the developed segmentation models as ex-
pressed:

𝐻𝑝(𝑞) = − 1
𝑁

|𝑁|

∑

𝑖=1
(𝑦𝑖 ⋅ log(𝑝𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑝𝑖)) (15)

where 𝑦 and 𝑝 present the flood labels and predicted probability of flood
values. Additionally, the learning rate and number of the epoch are set
as 0.001, and 40, while the optimizer was set as 𝐴𝑑𝑎𝑚 optimizer. It
should be noted that we used the comparison models with their original
parameters without any further modification except for the input image
size in all the implemented deep learning models (i.e., we used input
images of size 256 × 256).

2.5. Accuracy evaluation metrics

The outcomes of the flood area segmentation for the developed deep
learning models are evaluated in overall accuracy (OA), precision, F-1
score, recall, and dice coefficient, which have been used frequently in
relevant studies (Cai et al., 2021; Ghorbanzadeh et al., 2022).

𝑂𝐴 = 𝑇𝑃 + 𝑇𝑁 (16a)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁



International Journal of Applied Earth Observation and Geoinformation 127 (2024) 103662A. Jamali et al.

𝑅

𝐹

𝐷

n

2

w
m
f
1
i
o
b
S
i
A
p
i
2
t
h
c
e
f
F
g
i
s
n
1
𝑉

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(16b)

𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(16c)

1-𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(16d)

𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 ∗ 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃 ) + (𝑇𝑃 + 𝐹𝑁)

(16e)

The FP, TP, and FN show false positive, true positive, and false
egative values, respectively.

.6. Experimental data and settings

In this research, 542 ‘‘chips’’ from flooding occurrences around the
orld, each containing dual polarization data, including 𝑉 𝑉 and 𝑉 𝐻 ,
ake up the Sentinel-1 SAR data. Each chip includes an associated

lood label mask that identifies the water-containing pixels in a scene.
3 flood events’ worth of training data are included. Each unique
ncident has between 15 and 69 chips (30 and 138 images), with half
f the events having fewer than 32 chips (64 images). The data spans a
road geographical region. For the flooding that occurred in the United
tates, Paraguay, India, and Slovakia, there are more than 60 chips (120
mages). The data can be accessed through Microsoft AI for Earth STAC
PI.1 On the one hand, it has been discussed that the classification
erformance of deep learning models can be significantly enhanced by
ncreasing the number of input features (Tang et al., 2022b; Han et al.,
022; Mayer et al., 2021). On the other hand, using various backscat-
ering coefficients extracted from the dual-polarized Sentinel-1 imagery
as been used and discussed to improve the classification/segmentation
apability of various classification algorithms in recognizing differ-
nt features of interest from Sentinel-1 SAR imagery, specifically for
lood mapping (Zhang et al., 2021b; Tazmul Islam and Meng, 2022b).
or instance, for flood mapping, (Tazmul Islam and Meng, 2022b)
enerated several polarization combinations from Sentinel-1 imagery,
ncluding 𝑉 𝑉 + 𝑉 𝐻 , 𝑉 𝐻 − 𝑉 𝑉 , 𝑉 𝑉 ∗ 𝑉 𝐻 . Thus, to improve the
egmentation performance of deep learning algorithms and increase the
umber of polarization features, from the dual polarization Sentinel-
SAR imagery, we derived several polarization features, including
𝑉 +𝑉 𝐻 , 𝑉 𝐻−𝑉 𝑉 , 𝑉 𝑉 ∗ 𝑉 𝑉 , 𝑉 𝐻 ∗ 𝑉 𝐻 , 𝑉 𝑉 ∗ 𝑉 𝐻 and (𝑉 𝑉 +𝑉 𝐻) ∗

(𝑉 𝐻 − 𝑉 𝑉 ), as shown in Fig. 4. It is worth mentioning that for flood
mapping, we used all the discussed dual polarization coefficients and
extracted features.

3. Segmentation results

As shown in Table 1, the WVResU-Net segmentation model achieved
the best scores for overall accuracy (96.2%), F1-score (82.03%), recall
(69.67%) and dice coefficient (0.7345) over the other segmentation ar-
chitectures: Swin U-Net, Attention U-Net, R2U-Net, ResU-Net, TransU-Net
and TransU-Net++. However, it is important to note that the TransU-
Net segmentation model attained the highest precision score at 95.33%.
For instance, the developed segmentation algorithm of WVResU-Net
with a dice coefficient of 0.7345 substantially outperformed the seg-
mentation accuracy of other models, including SwinU-Net, R2U-Net,
U-Net+++, TransU-Net++, AttentionU-Net, TransU-Net and ResU-Net,
by 9, 10, 11, 13, 13, 14, and 15 percentage points, respectively.
Additionally, the accuracy of segmentation algorithms like TransU-
Nt++, SwinU-Net, ResU-Net, R2U-Net, AttentionU-Net, TransU-Net and
U-Net+++ was significantly improved by about 5, 12, 13, 13, 15,
16, 19, and 23 percentage points, respectively, in recall value when
compared to the results obtained by the WVResU-Net segmentation
model with a recall value of 69.67%, as shown in Table 1.

1 https://github.com/radiantearth/stac-api-spec
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3.1. Segmentation maps and confusion matrices

Flood segmentation maps and confusion matrices as shown in
Figs. 5–8 illustrate that the developed segmentation algorithm of
WVResU-Net resulted in the best segmentation performance for map-
ping flooded areas, while the over-segmentation of flooded regions
was not significantly high. Interestingly, the TransU-Net model resulted
in the least over-classification of flooded regions, but it struggled to
recognize flooded regions accurately (i.e., it under-classified flooded
pixels). The highest over-classification of flooded regions was observed
in the results obtained by the R2-UNet algorithm, followed by the
TransU-Net++ model. The highest under-classification of the flooded
area was seen in the results of the U-Net+++ model, followed by
the segmentation model of TransU-Net. In addition to the developed
WVResU-Net model, the TransU-Net++ and SwinU-Net segmentation al-
gorithms resulted in the highest accuracy in identifying flooded pixels.
The most interesting pattern observed in the results of segmentation
was the better accuracy of the model based on vision transformers
for accurate flood mapping compared to the CNN-based segmentation
models. As discussed, CNNs have several significant disadvantages,
one of which is that they can only predict whether a desired feature
will appear in an image, not where it will be located. The sequential
properties of the backscattering coefficients of SAR imagery cannot be
precisely determined by CNNs due to their fundamental limitations
in the backbone. The self-attention technique utilized in ViTs can
effectively address this specific issue. It should be noted that under-
classification can occur due to factors like wind, inundated vegetation,
and rain, which can make open water regions appear as rough surfaces
and alter the backscattering pattern. Conversely, low backscatter from
smooth or dark urban surfaces, such as roofs, car parks, concrete, and
asphalt, which may resemble water, can lead to over-classification.
Furthermore, one of the greatest challenges in flood recognition is
interpreting the backscatter responses of various targets within urban
and vegetated regions based on the presence or absence of floodwater.
For example, it was observed that the deep learning models, specifically
CNN-based algorithms had difficulty in differentiating between inun-
dated vegetation and urban areas due to similar backscattering pattern
of these two features. The reason is that the double-bounce is the
predominant backscattering mechanism in both inundated vegetation
and urban areas. Nevertheless, intricate backscatter mechanisms caused
by various kinds of buildings and heights, vegetation areas, and distinct
road patterns make detecting floods in urban areas difficult for SAR.

3.2. Visualization of vision network feature maps

We further show the feature maps derived from a spatial trans-
former network, the first layer of the attention gate-assisted decoded
feature, and the resulting feature map of four Sentinel-1 SAR imagery
produced by the WVResU-Net segmentation architecture in order to
further clarify how the vision network affects intermediate feature
representation. These instances are shown in Fig. 9. As seen in Fig. 9c1-
c3, the proposed vision mechanism was able to signify and differentiate
the flooded areas from other regions by emphasizing the positional
information derived from dual SAR imagery and the extracted SAR
backscattering coefficients. Moreover, it is clear from Fig. 9c1-c3 that
the vision mechanism puts much less attention on the non-flooded.
The maps produced by the vision network indicate how these functions
better focus on the areas where different regions are flooded, improving
the effectiveness of the developed deep learning architecture for flood
mapping based on the SAR backscattering coefficients and polarization
features derived from Sentinel-1 satellite imagery across the globe (see
Fig. 9). Due to the vision transformer architecture on the skip connec-
tion path in decoded features, which facilitated task-specific learning as
outlined in the previous subsections, the segmentation accuracy of the
ResU-Net model were substantially enhanced by the proposed WVResU-
Net architecture. The results achieved illustrated that the WVResU-Net

https://github.com/radiantearth/stac-api-spec


International Journal of Applied Earth Observation and Geoinformation 127 (2024) 103662A. Jamali et al.
Fig. 4. A randomly selected example of SAR backscattering coefficients and their extracted features.
Table 1
Flood segmentation accuracy of the developed models in Precision (%), OA (%), F1-score (%), Recall (%), and Dice coefficient,
respectively.
Algorithm OA Precision Recall F1-score Dice coefficient Time (min)

U-Net+++ (Huang et al., 2020) 93.94 92.80 46.87 62.53 0.6232 18
R2U-Net (Alom et al., 2018) 93.56 77.29 56.28 65.41 0.6320 42
AttentionU-Net (Oktay et al., 2018) 94.49 95.18 51.00 69.20 0.6048 12
SwinU-Net (Cao et al., 2021) 94.91 91.42 57.80 72.63 0.6470 35
TransU-Net (Chen et al., 2021) 94.45 95.33 50.47 69.26 0.5994 20
TransU-Net++ (Jamali et al., 2023) 94.56 80.66 64.50 71.27 0.6092 20
ResU-Net (Diakogiannis et al., 2020) 94.40 58.59 57.10 69.56 0.5864 23
WVResU-Net (ours) 96.20 92.97 69.67 82.03 0.7345 35
model considerably enhanced the segmentation accuracy of the ResU-
Net 2, 12, 13, 15 and 34 percentage points in terms of overall accuracy,
F1-score, recall, dice coefficient, and precision, respectively.

In addition, the level of measurement of separability is represented
by the area under the curve (AUC). It demonstrates how well a seg-
mentation method can discriminate between different classes, and in
this case, how well a model can reliably distinguish between flooded
7

and unflooded areas. Greater levels of AUC demonstrate how well a
model detects flooded regions. The segmentation model created by
WVResU-Net considerably outperforms competing algorithms, such as
SwinUNet (0.786), TransU-Net++ (0.775), R2U-Net (0.772), AttentionU-
Net (0.753), TransU-Net (0.751) and ResU-Net (0.780), with an AUC
value of 0.845, as seen in Fig. 10. The obtained results illustrated that
due to the use of the vision mechanism on the skip connection path
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Fig. 5. Segmentation maps of four randomly selected areas obtained using segmentation algorithms of (a1-a4) Sentinel-1 polarization data of 𝑉 𝑉 , (b1-b4) flood masks, (c1-c4)
UNet+++ and (d1-d4) AttentionU-Net, respectively.
in decoded features, the AUC value of the base ResU-Net segmentation
algorithm (0.78) was enhanced by approximately 7 percentage points
by the WVResU-Net architecture (0.845).

As discussed by Rasti et al. (2022), it is widely acknowledged that
during the remote sensing imaging procedure, data typically suffer
from a variety of deteriorations, noise effects, or variabilities. For
instance, spectral variability in hyperspectral imagery from satellite or
aircraft sources is unavoidable, which makes it challenging for spectral
unmixing to accurately calculate abundance maps. As discussed in the
introduction section, the Sentinel-1 SAR imagery suffers from various
similar issues and limitations. For instance, during the imaging process,
electromagnetic radiation can be significantly impacted by echo inter-
ference when it encounters rough surfaces, leading to phase variations.
This interference results in decreased echo intensity and introduces
8

speckle noise into the SAR data. Considering the discussed limitations,
specifically the intrinsic speckle noise in SAR imagery, the developed
WVResU-Net segmentation architecture through the effective use of the
wave vision MLP and residual connections could significantly enhance
the segmentation capabilities of current state-of-the-art CNN- and ViT-
based deep learning models. The obtained segmentation results proved
the excellent ability of the developed model in flood mapping even
with the presence of speckle noises and similar backscatter responses
of various features within urban and inundated vegetated regions.

3.3. Computational cost of the segmentation algorithms

The R2U-Net (42 min) and AttentionU-Net (12 min) segmentation
models had the highest and lowest computation costs in terms of
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Fig. 6. Segmentation maps of four randomly selected areas obtained using segmentation algorithms of (e1-e4) R2U-Net, (f1-f4) TransU-Net, (g1-g4) TransU-Net++, (h1-h4)
UNet+++, (i1-i4) ResU-Net and (j1-j4) the developed WVResU-Net, respectively.
training time, respectively, as shown in Table 1. Due to the embed-
ding of several vision MLPs in the decoding architecture, the devel-
oped WVResU-Net segmentation model, with a required training time
of 35 min, has an increased time complexity compared to the base
ResU-Net segmentation algorithm (23 min). However, the developed
WVResU-Net algorithm’s ability to recognize flooded areas has been
significantly enhanced by the use of a vision mechanism. The experi-
ments were carried out using the programming language Python on an
Intel Core-i7 CPU and an NVIDIA RTX 2070 MAX-Q GPU. All the deep
learning models are developed using Python TensorFlow GPU 2.6.2.
9

3.4. Ablation study

To better understand the significance of the wave vision approach in
the developed model, we conducted an ablation study. The achieved re-
sults illustrated that the use of Wave Vision MLP significantly improved
the segmentation capability of the base ResU-Net deep learning model.
For example, the segmentation results demonstrate that the WVResU-
Net algorithm significantly enhances the segmentation accuracy of the
ResU-Net deep learning model by about 2, 12, 13, 15 and 34 percentage
points in terms of overall accuracy, F1-score, recall, dice coefficient,
and precision, respectively, as seen in Table 1. The capability of the
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Fig. 7. Segmentation maps of four randomly selected areas obtained using segmentation algorithms of (i1-i4) ResU-Net and (j1-j4) the developed WVResU-Net, respectively.
Fig. 8. Confusion matrices obtained using segmentation algorithms of (a) R2U-Net, (b) Attention U-Net, (c) Swin U-Net, (d) TransU-Net, (e) U-Net+++, (f) TransU-Net++, (g)
ResU-Net and (h) WVResU-Net, respectively (0 = Non-flooded areas and 1 = flooded areas).
developed model of WVResU-Net in recognizing flooded areas was
significantly improved over the ResU-Net segmentation algorithm, as
illustrated in Fig. 8. Moreover, The segmentation results of the ResU-
Net algorithm were significantly enhanced by the WVResU-Net model
in terms of AUC by approximately 7 percentage points, as presented in
Fig. 10.
10
4. Conclusion

In this paper, we introduced WVResU-Net, an advanced deep learn-
ing segmentation model that leverages ResU-Net for precise flood map-
ping using Sentinel-1 dual-polarization data, along with a cost-effective
visual MLP based on the concept of wave vision. Our proposed wave
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Fig. 9. Feature maps derived from the developed segmentation algorithm of WVResU-Net for three randomly selected areas (a1-a4) SAR polarization data of 𝑉 𝑉 , (b1-b4) flood
masks, (c1-c4) derived feature map from last vision network and (d1-d4) last convolutional layer, respectively.



International Journal of Applied Earth Observation and Geoinformation 127 (2024) 103662A. Jamali et al.

T

v
p
v
I
k
i
o
r
o
i
N

p
h
e
m
t
o
T
s
l
t

F

(
8

C

M
S
C
F
e
W
I

Fig. 10. Area under the ROC Curve (AUC) obtained using segmentation algorithms of (a) R2U-Net, (b) Attention U-Net, (c) Swin U-Net, (d) TransU-Net, (e) U-Net+++, (f)
ransU-Net++, (g) ResU-Net, and (h) WVResU-Net, respectively.
ision approach utilizes dynamic weights, incorporating real-value am-
litude and complex-value phase modules, a departure from the con-
entional fixed-weight approaches used in most state-of-the-art MLPs.
n contrast to existing algorithms, which often directly combine to-
ens from various input images with fixed weights, thereby overlook-
ng the varying semantic information of image patches, our devel-
ped WVResU-Net takes a more dynamic and adaptive approach. The
esults of flood segmentation clearly demonstrate that WVResU-Net
utperforms several well-known deep learning segmentation models,
ncluding Swin U-Net, U-Net+++, Attention U-Net, R2U-Net, ResU-
et, TransU-Net and TransU-Net++. For example, the WVResU-Net

segmentation model with a dice coefficient of 0.7345 significantly out-
performed the segmentation accuracy of other deep learning models,
including SwinU-Net, R2U-Net, U-Net+++, TransU-Net++, AttentionU-
Net, TransU-Net and ResU-Net, by about 9, 10, 11, 13, 13, 14 and 15
ercentage points, respectively. The feature maps generated by ViTs
ighlight their ability to effectively focus on regions with flooded pix-
ls, enhancing the efficacy of our deep learning architecture for flood
apping. However, due to the integration of multiple vision MLPs in

he decoding section of the architecture, the computational complexity
f WVResU-Net, particularly in terms of training time, has increased.
he future research will mainly focus on developing new methods to
ubstantially decrease the computational cost of the developed deep
earning architecture, while increasing the segmentation capability of
he model.
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