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A B S T R A C T

Efficient prediction and precise depiction of heavy metal concentrations in urban soil are essential for mitigating
non-point source pollution and safeguarding public health. Therefore, this research investigated the estimation of
soil heavy metal concentrations derived from Gaofen-5 (GF-5) hyperspectral images calibrated by the direct
standardization (DS) algorithm. The inversion strategy for soil heavy metal concentrations in response to the
two-dimensional soil spectral index (2D-SSI) was proposed by coupling Pearson correlation coefficient (r) and
competitive adaptive reweighting algorithm (CARS) for feature selection. The results indicated that the optimal
models based on 2D-SSI outperform the models based on calibrated, filtered original spectral bands. For Pb, Cu,
Cd, and Hg, the optimal model determination coefficients for the validation data set (R2V) were 0.871 (SVM),
0.883 (BPNN), 0.834 (PLSR), and 0.907 (PLSR), respectively. The spectral features were highlighted in the two-
dimensional feature space, and the predicted distribution of heavy metal concentrations was aligned with the
observed ground measurements. This study revealed that the prediction strategy based on DS-corrected GF-5
AHSI images with constructed 2D-SSI features can serve as a reliable technical approach for soil heavy metal
prediction and pollution prevention.

1. Introduction

Soil contamination continues to worsen in light of anthropogenic
instances like speedy industrialization and urbanization (Tao et al.,
2019; Qin et al., 2021; Nyarko et al., 2022). Thus, detecting and visu-
alizing of heavy metal contamination in urban soil can provide strategic
guidance for the rational development and use of urban land. However,
conventional monitoring techniques that rely on laboratory chemical
analysis and discrete sampling approaches have difficulty in accurately
obtaining continuous distributions with a limited number of samples,
which are expensive, labor-intensive, and prone to secondary pollution
(Chen et al., 2015). Consequently, credible and green approaches are
desperately needed to identify potential contaminated areas and
develop remediation measures.

Hyperspectral remote sensing, leveraging its spectral continuity,
broad spectral range, imaging characteristics, and non-invasive advan-
tages, finds extensive application in numerous domains such as

environment monitoring, geology, and soil science (Bonifazi et al., 2018;
Cheng et al., 2019). However, achieving high-accuracy metal retrieval
remains challenging due to inevitable influences from natural and
anthropogenic factors, such as spatial scale, soil physicochemical
properties, environmental details, and timeliness (Wang et al., 2018). It
is of paramount significance to comprehensively explore data from
hyperspectral imagery to obtain trace responses and then develop new
methodologies, especially for estimating with limited samples. Exten-
sive research suggests that high-precision estimation can be achieved
using laboratory spectra under well-controlled experimental conditions
(Tan et al., 2018). Therefore, employing laboratory-measured spectra to
adjust image spectra and thereby mitigating the impact of interference
components is an essential approach to enhancing spectral quality.
Environmental factor removal algorithms exhibit promise in hyper-
spectral inversion with special respect to soil attributes. The DS algo-
rithm has been applied to calibrate field-acquired spectra from specific
sampling sites with laboratory- measured spectra in early study (Ji et al.,
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2015a). Researchers have only recently begun to explore the application
of the DS algorithm for the calibration of continuous hyperspectral im-
ages (Zhang et al, 2022). However, image calibration for different land
use types in soil heavy metal inversion has rarely been touched, and the
potential and capabilities of the DS algorithm in correcting continuous
hyperspectral images acquired from satellites have yet to be evaluated
(Zou et al., 2020). Meanwhile, model prediction accuracy can be
improved by spectral mathematical transformation and by simulta-
neously incorporating significant bands from different transformed
spectra into inversion, as corroborated by numerous scholars (Dai et al.,
2022; Meng et al., 2020; Yang et al., 2023). Nonetheless, characteristics
supplied by only a few sensitive bands might be inadequate since the
trace nature of concentrations, which limits the model’s accuracy to a
certain extent (Husnizar et al., 2018; Wang et al., 2018). Hence, unlike
prior research, where 2D-SSI was commonly applied to multi-spectral
images with fewer bands, such as those from Landsat and Sentinel. In
this study, the 2D-SSI was constructed with the calibrated hyperspectral
image spectral bands, which is an approach that has been relatively less
explored to achieve feature expansion and fully utilize spectral infor-
mation. What’s more, PI constructed based on the soil line analysis is
rarely studied, and the previous 2D-SSI can not indicate the spectral
quality, while PI has the ability to discuss the reliability of the spectral.

Correlation analysis is widely preferred by scholars for feature se-
lection due to its statistical foundation and interpretability (Wilford
et al., 2016; Bolón-Canedo et al., 2015). Additionally, with the inno-
vation and advancement of machine learning algorithms, the CARS al-
gorithm (Li et al., 2019) has been well received for feature selection
(Jiang et al., 2018; Wang and Wang, 2022). Selecting the optimal
combination of hyperspectral characteristics introduces challenges since
the complex interplay of spectral and spatial data dimensions. The
combination of the Pearson correlation and the CARS algorithm ensures
reliable input selection and significantly reduces computational
complexity compared to conventional single-feature selection algo-
rithms. For model inversion, conventional statistical regression tech-
niques often fail to capture the nonlinear linkage between soil spectral

variables and concentration dependent variable, resulting in low-
precision predictions (Guo et al., 2021). Partial least-squares regres-
sion (PLSR) is efficient in handling high-dimensional data, as well as
providing a precise expression for the inversion model and revealing the
significance of each feature (Sun and Zhang, 2017). With the introduc-
tion of machine learning algorithms, multivariable models, such as back
propagation neural networks (BPNN), support vector machines (SVM),
random forests (RF), have exhibited the capability to overcome the
linear limitations for soil attribute estimation (Odebiri et al., 2021;
Wang et al., 2020; Xavier and Yoshua, 2010). Moreover, the diversity
and high dimensionality of remote sensing data pose additional chal-
lenges to traditional machine learning algorithms.

The study endeavors to delve into concentration prediction by
accurately calibrating hyperspectral imagery and 2D-SSI construction.
Specifically, our objectives are as follows: (1) Utilizing the DS algorithm
to calibrate the GF-5 Advanced Hyperspectral Imagery (AHSI) with
laboratory spectra, from which the representative spectra were chosen
by the Kennard Stone (KS) algorithm. (2) Constructing 2D-SSI to thor-
oughly explore spectral information, enhancing and highlighting the
spectral signature. (3) Extracting features via coupling the Pearson
correlation coefficient with the CARS algorithm. (4) Mapping the spread
of soil heavy metal concentrations with ultimate model, which was
identified through contrasting of the inversion accuracy of PLSR, RF,
SVM, and BPNN.

2. Datasets and methods

Fig. 1 illustrates the methodology based on 2D-SSI generated from
the DS-corrected GF-5 imagery for urban soil heavy metal content esti-
mation. The overall researchmethodology comprises fivemain steps: (1)
Spectral data collection and pre-processing, including image spectra and
laboratory spectra. (2) DS calibration of the GF-5 hyperspectral imagery
with laboratory spectra. (3) Construction of 2D-SSI informed by the DS-
corrected GF-5 images and feature extraction by coupling the Pearson
correlation coefficient with the CARS algorithm. (4) Establishment and

Fig. 1. Flowchart of our study.
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evaluation of PLSR, RF, SVM, and BPNN inversion models. (5) Mapping
the concentrations spatially in accordance with the optimal model
picked from (4).

2.1. Study area

The investigation area depicted in Fig. 2 is situated in Fengdong New
District, which is subordinate to the Xixian development zone in Xi’an,
Shaanxi Province, China (34◦12′21″N, 108◦46′10″E). The region expe-
riences an annual average precipitation of 600 to 700 mm, with a yearly
average temperature of 13.4 ◦C. The region features a flat topography
with a mean elevation of 388 m. The predominant soil types are
collapsible loess and Lou soil, which are conducive to the growth of
various crops. The land use pattern is complex, characterized by crop-
land, built-up areas, and bare/sparsely vegetated land as the predomi-
nant land types. As a transitional area connecting urban and rural areas,
it has a high population density and is marked by well-developed in-
dustrial and transportation infrastructure. However, the growth of in-
dustries has contaminated and degraded the soil, and the accumulation
of heavy metals has substantially exceeded regulatory thresholds due to
insufficient environmental protection awareness. The region exhibits
typical characteristics commonly observed in other developing urban
fringe areas.

2.2. Data acquisition

2.2.1. Sample data gathering
The 800× 800 m equidistant grid method was employed for sys-

tematic sampling, and a cumulative count of 500 soil samples was

gathered between April and June 2020 using the five-point sampling
approach. Soil specimens were amassed at an approximate depth of
10–20 cm and filtered through a nylon sieve measuring 0.15 mm. Pre-
pared soil samples were delivered to a specialized testing institution for
the concentration detection of Pb, Cu, Cd, and Hg. GPS coordinates were
obtained at same time as sampling, and the surrounding environment
was documented. The spectra were recorded by the spectrometer SR-
2500. A 100 W halogen lamp was fixed and maintained at a 30◦ angle
to the vertical direction, serving as the light source for the soil spectrum
measurements. Subsequently, soil spectral readings were performed
with the probe positioned 15 cm above the leveled soil surface verti-
cally. Reference whiteboard calibration was performed initially and
repeated after every three soil samples were measured to mitigate sys-
tematic errors arising from environmental changes. Eight spectral pro-
files were acquired for every sample, and the effective spectrum was
derived by averaging the data with erroneous readings removed.

2.2.2. GF-5 AHSI imagery acquisition and processing
The GF-5 AHSI imagery adopted by research was acquired on April 9,

2020, with center coordinates of 108.590◦ E and 34.269◦ N, and was
acquired via the platform of Land Satellite Observation Data Service
(China Centre for Resources Satellite Data and Application, 2024). The
image spatial resolution, swath width, and spectral range of the GF-5
AHSI imagery are 30 m, 60 km, and 390–2513 nm, respectively, with
a total of 330 spectral bands. The solar altitude angle for the image
acquisition is 23.103◦. Comprehensive specifications of the AHSI sensor
were documented in the literature of Zhang et al. (2022). Pre-processing
of the GF-5 images involved the removal of bands significantly affected
by water vapor, bands with poor imaging quality, and overlapping

Fig. 2. Study area overview and distribution of sampling sites.
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bands in the shortwave infrared, near-infrared, and visible ranges.
Additionally, some bands with stripe noise and bad lines were repaired.
Finally, 277 bands remained for further analysis. Radiometric correction
and atmospheric correction were performed to mitigate the interference
from atmosphere and other environmental variables. Elevation data was
incorporated into the orthorectification process to enable precise ground
reflectance retrieval (Tan et al., 2021; Ye et al., 2020). Furthermore, the
SVM algorithm was employed for image classification, from which areas
of built-up, cropland, and bare land were extracted.

2.3. Method

The methods employed in this study primarily include DS spectral
correction, construction of 2D-SSI, feature selection, model inversion
and evaluation. The details are as follows:

2.3.1. Spectroscopic calibration
Sampling points in bare land, cropland and built-up areas were

extracted and classified first based on the sampling coordinates and the
classified image. Subsequently, soil sample spectra of the GF-5 AHSI
image and laboratory in various areas were prepared. A subset with
dimensions of m× p of laboratory-measured spectra (Xlab) and GF-5
AHSI image spectra (XGF− 5) needs to be chosen to serve as the DS al-
gorithm transfer matrix, where the size is equal to or greater than two-
thirds of aggregate sample size, which signifies the disparity between
the two sets of spectra (Eq. (1)).

Xlab = XGF− 5B+E (1)

where B is a spectral transformation matrix, and E means the residual
matrix. DS correction obtains the parameter B through baseline differ-
ence adjustment, spectral centering, and least squares transformation
(Eq. (2)), and parameter E is then calculated based on B.

B = H+
GF− 5Hlab (2)

where Hlab is the centralized matrices of laboratory spectra and H+
GF− 5

represents the generalized inverse matrix of the centralized matrices of
image spectra. The details concerning the process can be seen from the
published paper (Ji et al., 2015). Once the parameters B and E are
determined, the corrected field spectra XC

GF− 5 can be obtained from the
high-resolution imagery set according to the scale invariance principle
(Eq. (3)).

XC
GF− 5 = XGF− 5B+E (3)

However, given that the representativeness and quantity of transferred
samples also affects the DS algorithm’s performance, the KS algorithm
was initially employed to determine the sample set. The procedure
involved selecting the two samples which have the maximum Euclidean
distance serving as the initial dataset, subsequently, the remaining were
sequentially added to the transformation set based on their maximum
distance from the existing sample set until the predetermined quantity
was reached (Zou et al., 2019). Subsequently, the DS capability was
assessed using the cosine similarity, which is expressed as follows, ac-
cording to which the optimal sample set was determined.

θ = cos− 1
∑n

i=1X
C
GF− 5Xlab

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Xlab)

2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
XC

GF− 5
)2

√ (4)

where n indicates the total amount of wavelengths.

2.3.2. Construction of two-dimensional spectral indices
The traditional vegetation index (VI) relies on regions with abundant

vegetation cover, which often results in poor estimation of soil proper-
ties in areas with bare land and sparse vegetation coverage. Therefore,

2D-SSI has been developed to identify optimal feature combinations
from image spectral data (Table 1). According to the PI calculation
formula, the slope and intercept of the soil line, as described as below,
can indicate the quality of remote sensing images or spectral data
(Bellinaso et al., 2021). Therefore, analyses of the soil line were con-
ducted to reflect the quality of the image spectral data in various areas.

NIR = α × Red+ β (5)

where NIR and Red symbolize the reflectance of the near-infrared and
red bands, respectively, α and β are the slope and intercept of the soil
line.

2.3.3. Feature selection methods
The Pearson significant correlation bands corresponding to the

confidence thresholds of P = 0.01 and P = 0.05 were chosen as the
initial screening feature set. Subsequently, the CARS algorithm was
employed for fine selection based on significant correlation bands,
which addressed the issue of combinatorial explosion in variable se-
lection to some extent (Li et al., 2009). The CARS algorithm functions in
the following specific manner:

Firstly, the Monte Carlo (MC) sampling method was employed,
where, in each iteration, samples were randomly divided by the ratio of
8:2 to serve as the datasets used for modeling and calibration of the PLS
model. The weights (wi) which assigned to the absolute values of
regression coefficients (|li|) were computed in each sampling process.

wi = |li|/
∑p

i=1
|li| (6)

where p represents the quantity of variables utilized in each sampling
procedure.

Secondly, variables with relatively small weights were forcibly
removed by the exponentially decreasing function (EDF). The variable
retention rate was determined according to EDF and can be expressed as

Ri = μe− ki (7)

where μ and k are constants. In the first and last iteration (N) of MC
cross-validation sampling, the variable retention rate was 1 and 2/p. The

Table 1
2D-SSI constructed for feature expansion.

2D-SSI Abbreviation Equation Reference

Difference DI Ri − Rj (Ge et al.,
2019)

Sum SI Ri + Rj (Liu et al.,
2022)

Ratio RI Ri/Rj (Ge et al.,
2019)

Normalized
difference

NDI
(
Ri − Rj

)
/
(
Ri +Rj

)
(Ge et al.,
2019)

Re-normalized
difference

RNDI (
Ri − Rj

)
/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Ri + Rj

)√ (Roujean
and Breon,
1995)

Derived ratio DRI
log

(
Ri

Rj

)
(Bao et al.,
2021)

Derived simplified
ratio

DSRI logRi/logRj (Liu et al.,
2022)

Reflectivity ARI ⃒
⃒
⃒R2i − R2j

⃒
⃒
⃒/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Ri + Rj

)√ (Gitelson
et al., 2001)

Brightness BI ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R2i + R2j

√
/2 (Escadafal,

1989)
Perpendicular PI (

Ri − αRj − β
)
/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1+ α2)

√ (Ge et al.,
2019)

Attention: α and β for
PI in various
regions correspond
to different values.

PI_Bare Land
Area

α = 1.030, β = 0.082 R2 = 0.675

PI_Cropland
Area

α = 0.783, β = 0.087 R2 = 0.581

PI_Built-up
Area

α = 0.685, β = 0.187 R2 = 0.632

N. Yang et al.
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Table 2
Descriptive analysis of soil heavy metal concentrations (unit: mg kg− 1).

Sample type Element Concentration range Mean Standard Deviation Skewness Kurtosis Coefficient ofVariation
(CV)

Bare Land Area Pb 17.800 ~ 79.900 36.569 14.106 1.205 1.258 0.386
Cu 17.400 ~ 43.100 28.868 5.414 0.582 0.574 0.188
Cd 0.072 ~ 3.308 0.254 0.402 6.683 48.219 1.584
Hg 0.014 ~ 0.242 0.069 0.048 1.337 1.651 0.693

Cropland Area Pb 17.500 ~ 61.000 36.535 10.448 0.604 0.421 0.286
Cu 18.100 ~ 38.800 28.903 5.769 0.278 0.627 0.146
Cd 0.105 ~ 0.898 0.285 0.246 1.638 3.503 0.527
Hg 0.019 ~ 0.587 0.091 0.403 4.794 31.713 0.790

Built-up Area Pb 20.200 ~ 167.000 48.516 24.830 2.167 6.792 0.512
Cu 18.000 ~ 475.700 34.442 51.677 8.523 73.665 1.500
Cd 0.121 ~ 0.802 0.259 0.127 1.923 4.772 0.492
Hg 0.018 ~ 0.978 0.097 0.120 5.788 40.152 1.231

Note: Natural background levels for soil elements in the A layer of Shaanxi Province (mg.kg− 1): Pb (21.4), Cu (21.4), Cd (0.094), and Hg (0.030); GB15618-2018
(PH>7.5) (mg.kg− 1): Pb (170), Cu (100), Cd (0.6), and Hg (3.4).

Fig. 3. Comparison of various kinds spectra in cropland area.

N. Yang et al.
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Fig. 4. Change curves of cosine similarity θ in various areas.

r

r r

Fig. 5. Significant correlation analysis of various spectra.
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derivation process for μ and k is given by
⎧
⎪⎨

⎪⎩

R1 = μe− k = 1

RN = μe− kN =
2
P

⇒

⎧
⎪⎨

⎪⎩

μ = (P/2)
1

N− 1

k =
ln(P/2)
N − 1

(8)

Thirdly, a certain quantity of variables, denoted as Ri × p, was chosen
out of the variable set in the preceding sampling period by adaptive
weighted sampling (ARS). Subsequently, PLS modeling was conducted,
and the cross-validation error (RMSECV) was acquired. The wavelength
subset that matched the minimal RMSECV was then recognized as the
final feature set.

2.3.4. Inversion and model evaluation of soil heavy metal concentration
PLSR, RF, SVM, and BPNN models were implemented to predict the

soil heavy metal content. Sample data was separated into training and
validation partitions with a split proportion of 3:1, employing a con-
centration gradient reduction technique. The model determination co-
efficient (R2), root mean square error (RMSE), and residual predictive
deviation (RPD) were metrics used to evaluate model accuracy. The
denominator of the traditional goodness of fit R2 is the sum of squares of
the dependent variable values. Adding another explanatory variable to
the model does not change the denominator but does affect the
numerator, this may appear to improve the model fit, but it can be
misleading (Yang et al., 2023). To address this issue, we use the adjusted
determination coefficient as given by Eqn. (9). We can see that the
adjusted determination coefficient normalizes the numerator and de-
nominator by their respective degrees of freedom. This effectively
compensates for the number of variables in the model. Since parameter
tuning is of great significance for model performance, the optimal
parameter combinations were obtained through iterative model training
using grid search and cross validation.

R2 = 1 −
∑n

i=1

(
yi − yp

)2
/
∑n

i=1
(yi − y)2 (9)

where n represents the samples amount, and yi and yp are the actual and
estimated concentrations, respectively; y indicates the average of the
actual observations.

3. Results

3.1. Statistics toward soil heavy metal concentrations

The classification accuracy of GF-5AHSI imagery reached 98.826 %,
with a corresponding Kappa coefficient of 0.982. Samples were extrac-
ted from bare land, cropland, and built-up areas based on the classifi-
cation image, with sample counts of 74, 74, and 76, respectively. The
concentration statistical results in different areas are described in
Table 2. The mean concentration in each area exceeds the natural
background levels of soil heavy metals in A-layer in Shaanxi Province.
Moreover, the Cd content range has exceeded the standard of GB 15618-
2018 (Ministry of Ecology and Environment of the People’s Republic of
China, 2018), suggesting the presence of certain pollutants. Based on
skewness and kurtosis statistics, it can be observed that the data distri-
bution of the built-up area shows a strong right-skewed and relatively
concentrated phenomenon, which is speculated to be the enrichment of
heavy metals caused by human activities (Joanes and Gill, 1998;
Westfall, 2014). The coefficient of variation revealed that Cd in the bare
soil, Cu in the soil of the built-up area, and Hg in soils across the three
distinct areas all exhibited strong variability (CV > 65%) (Hu et al.,
2008), indicating that human activities have markedly affected the soil
heavy metal spread pattern within the region, consistent with the
characteristics discussed regarding skewness and kurtosis. The degree of
human influence on Pb and Cu in various areas was as follows: CV(Built-
up Area) > CV(Bare Land Area) > CV(Cropland Area). The consequence
of human activities on Cd in various areas followed this order: CV(Bare
Land Area) > CV(Cropland Area) > CV(Built-up Area), which was
opposite to that of Hg.

3.2. Calibration of GF-5 AHSI imagery with the DS algorithm

Evidently, taking cropland areas as an instance, the reflectance
spectra of the GF-5 AHSI image (Fig. 3(b)) exhibited lower reflectance
and were more coarse than the laboratory-measured spectrum (Fig. 3
(a)). However, distinct similarities in terms of shape, slope, and peak
positions have been observed between these two kinds of spectra. The
curves of cosine similarity θ in different areas, which vary with the size
of the spectral transfer subset, are shown in Fig. 4. It was observed that
the spectral subset sizes used to determine the DS transfer matrix are
Bare Land Area m51× p277, Cropland Area m58× p277, and Built-up Area
m64× p277, respectively. It was evident that the reflectivity of the cor-
rected image spectra (Fig. 3(c)) has been improved and exhibited

Fig. 6. Process of CARS feature selection.

N. Yang et al.
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smoother characteristics than the original image spectra (Fig. 3(b)).
Nine-point Savitzky-Golay convolution smoothing was verified and
employed. The results demonstrated that the corrected smoothed
spectra (Fig. 3(d)), not only preserved the detailed spectral characters at
550–700 nm and 1900–2000 nm, but also reduced the noise at
1000–1750 nm and 2250–2500 nm. The spectra of bare land areas and
built-up areas have also shown similar patterns to those in cropland
areas. Subsequent analysis in this study will be based on the corrected
smoothed images.

3.3. Spectral feature selection

The distribution of significantly correlated bands between heavy
metals and the DS-corrected GF-5 AHSI spectral bands is shown in Fig. 5
(a). Similar significant correlation bands were found for Cd and Cu in
built-up areas, which were primarily distributed at 472–535 nm,
1450–1797 nm, and 1991–2463 nmwith a low correlation of |r| < 0.5. It
can be observed that DS-corrected GF-5 AHSI image spectral bands
showed significant correlation with the concentration-dependent vari-
ables in cropland areas. However, only Cd in bare land areas has
exhibited a significant correlation with DS-corrected GF-5 AHSI image
spectral bands. Moreover, there are no significantly correlated bands
between Hg in the built-up area and DS-corrected GF-5 AHSI image
spectral bands. Consequently, it is challenging to attain accurate con-
centration estimation in various areas based on the significantly

correlated bands of DS-corrected GF-5 AHSI image spectral. The
maximum correlation coefficients between heavy metal content and 2D-
SSI across different areas were compared in Fig. 5(b), Fig. 5(c), and
Fig. 5(d). Clearly, except for SI and BI, the maximum correlations be-
tween the constructed 2D-SSI and heavy metal contents exceed those of
the DS-corrected GF-5 AHSI image spectral bands and heavy metal
contents. DI, DRI, NDI, RI, RNDI and PI have exhibited higher maximum
correlations with Cu compared to other metals in bare land areas, while
in cropland areas, except for PI, these 2D-SSI indices show the highest
correlations with Cd. The order of maximum correlation between heavy
metal contents and 2D-SSI in built-up areas was Cu > Cd > Pb > Hg.

The significant correlated 2D-SSI variables selected were subjected to
CARS feature selection. CARS feature screening contains four steps:
Firstly, the MC sampling method was employed to randomly divide the
samples into modeling and testing sets with the ratio of 8:2. Secondly,
the ratio of variable retention was determined by EDF. Thirdly, ARS was
adopted to remove variables forcefully. And finally iterate this process
cyclically and calculate the 10-fold RMSECV. The CARS iteration was set
to 100 times, and the 10-fold RMSECV was acquired. The CARS feature
selection details can be seen from an instance exhibited in Fig. 6. The
variable subset that matched the minimal RMSECV was then recognized
as the final feature set. The positions of the response bands for each 2D-
SSI and their correlation coefficients are illustrated in Fig. 7. It is indi-
cated that the distribution of response bands for 2D-SSI of heavy metals
was most dense and extensive in built-up areas, while it was relatively

Fig. 7. Distributions of response characteristic bands of 2D-SSI for soil heavy metals.

N. Yang et al.
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Table 3
Regression outcomes of PLSR, RF, SVM, and BPNN (unit: mg.kg− 1).

Soil heavy metals Spectral model R2C RMSEC RPDC R2V RMSEV RPDV

Bare Land Area_Pb RNDI_PLSR 0.738 5.548 1.925 0.544 6.665 1.741
DSRI_RF 0.682 8.455 1.827 0.428 9.143 1.470
DSRI_SVM 0.803 5.961 2.051 0.619 9.841 1.809
DI_BPNN 0.592 7.026 1.797 0.355 9.320 1.246

Cropland Area_Pb PI_PLSR 0.839 3.409 2.237 0.499 7.313 1.653
ARI_RF 0.729 5.089 1.919 0.417 8.629 1.423
DI_SVM 0.496 7.254 1.641 0.253 8.756 1.157
NDI_BPNN 0.666 2.004 1.817 0.439 2.601 1.335
SG_PLSR 0.743 5.657 1.938 0.443 7.156 1.524
SG_RF 0.655 6.245 1.817 0.379 9.254 1.302
SG_SVM 0.384 8.895 1.322 0.224 9.550 1.134
SG_BPNN 0.538 3.334 1.739 0.316 4.513 1.210

Built-up Area_Pb RNDI_PLSR 0.969 2.389 2.376 0.811 3.013 2.088
DSRI_RF 0.500 12.461 1.659 0.450 15.492 1.525
RI_SVM 0.939 7.734 2.324 0.871 8.478 2.248
RNDI_BPNN 0.764 1.691 1.963 0.639 2.089 1.816
SG_PLSR 0.560 13.551 1.783 0.507 14.486 1.701
SG_RF 0.425 16.388 1.457 0.380 16.517 1.317
SG_SVM 0.767 10.620 1.967 0.603 11.107 1.803
SG_BPNN 0.489 4.859 1.627 0.449 5.929 1.522

Bare Land Area_Cu RI_PLSR 0.912 2.686 2.315 0.788 5.157 1.971
NDI_RF 0.834 2.248 2.252 0.621 3.036 1.816
NDI_SVM 0.793 2.482 1.986 0.512 2.599 1.674
DI_BPNN 0.512 3.990 1.680 0.432 4.306 1.327

Cropland Area_Cu DSRI_PLSR 0.559 1.502 1.769 0.363 2.568 1.268
ARI_RF 0.778 2.039 1.968 0.461 3.619 1.553
DRI_SVM 0.418 4.290 1.426 0.313 4.979 1.207
DI_BPNN 0.452 3.960 1.541 0.355 4.080 1.239
SG_PLSR 0.420 3.621 1.432 0.309 4.691 1.202
SG_RF 0.639 3.309 1.817 0.382 3.896 1.312
SG_SVM 0.287 4.746 1.186 0.216 4.979 1.131
SG_BPNN 0.372 4.024 1.286 0.274 4.967 1.178

Built-up Area_Cu RI_PLSR 0.999 1.133 2.433 0.673 2.344 1.818
RI_RF 0.837 2.222 2.238 0.430 3.744 1.470
DRI_SVM 0.838 2.296 2.239 0.433 2.674 1.328
RI_BPNN 1.000 0.068 2.433 0.883 0.202 2.272
SG_PLSR 0.819 1.582 2.132 0.546 3.382 1.744
SG_RF 0.650 3.620 1.818 0.367 4.826 1.279
SG_SVM 0.672 2.510 1.780 0.408 4.543 1.306
SG_BPNN 0.897 1.325 2.299 0.696 1.898 1.819

Bare Land Area_Cd ARI_PLSR 0.984 0.031 2.426 0.709 0.262 1.851
DRI_RF 0.959 0.042 2.351 0.673 0.366 1.818
NDI_SVM 0.665 0.082 1.816 0.503 0.086 1.665
DSRI_BPNN 0.808 0.195 2.083 0.610 0.277 1.802
SG_PLSR 0.404 0.073 1.308 0.351 0.410 1.262
SG_RF 0.368 0.097 1.302 0.314 0.438 1.208
SG_SVM 0.139 0.405 1.078 0.072 0.439 1.038
SG_BPNN 0.215 0.319 1.129 0.204 0.445 1.121

Cropland Area_Cd BI_PLSR 0.879 0.231 2.254 0.367 0.570 1.298
ARI_RF 0.778 0.127 1.965 0.589 0.130 1.788
RI_SVM 0.358 0.130 1.248 0.304 0.209 1.199
ARI_BPNN 0.586 1.736 1.785 0.452 1.997 1.531
SG_PLSR 0.448 0.330 1.536 0.341 0.578 1.249
SG_RF 0.637 0.189 1.809 0.523 0.208 1.698
SG_SVM 0.321 0.147 1.214 0.225 0.293 1.135
SG_BPNN 0.501 1.975 1.618 0.393 2.375 1.376

Built-up Area_Cd DSRI_PLSR 0.963 0.071 2.376 0.834 0.225 2.252
DSRI_RF 0.546 0.094 1.748 0.443 0.096 1.524
ARI_SVM 0.998 0.007 2.427 0.775 0.050 1.964
RI_BPNN 0.954 0.030 2.327 0.790 0.064 1.979
SG_PLSR 0.898 0.120 2.255 0.693 0.267 1.836
SG_RF 0.511 0.114 1.679 0.321 0.142 1.214
SG_SVM 0.776 0.059 1.965 0.577 0.086 1.777
SG_BPNN 0.822 0.046 2.138 0.616 0.069 1.804

Bare Land Area_Hg ARI_PLSR 0.625 0.084 1.816 0.414 0.112 1.419
ARI_RF 0.704 0.023 1.838 0.415 0.034 1.420
DRI_SVM 0.328 0.025 1.220 0.252 0.042 1.156
ARI_BPNN 0.789 0.023 2.177 0.418 0.038 1.311

(continued on next page)
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sparse in bare land and cropland areas. The response features of various
2D-SSI for Pb in bare land areas were formed by the band combination of
1450–2440 nm and 2000–2400 nm. DSRI and RI provided more features
for Pb in cropland areas, with the main distribution range of 403–416
nm and 493–698 nm, while only a few features were distributed in the
far-infrared bands. DI has indicated the most features for Pb in the built-
up area, which almost covers the feature space between 400–2463 nm
and 1450–2395 nm. DI and DSRI have provided the most features for Cu
in bare land areas, while DRI offered the most extensive features for Cu
in cropland areas, which were mainly distributed in the feature space
between 724–1789 nm and 2244–2463 nm. The observation was aligned
with the findings of Zhang et al. (2022). BI has the most selected features
for Cu in the built-up area, followed by DI, RNDI, NDI, and SI. DSRI and
ARI offered relatively abundant features for Cd in bare land areas, and
these features were mainly concentrated in the spaces, between
425–1999 nm and 1991–2446 nm, as well as 420–805 nm and
1569–2454 nm. DRI and RI exhibit relatively most characteristics of Cd
in cropland areas. The most abundant feature for Cd corresponded to SI,
mainly distributed in the feature spaces within the spectral ranges of
403–1241 nm and 1300–2463 nm, as well as 1300–1789 nm and
1982–2463 nm, primarily associated with the adsorption effect of
organic compounds containing Cd (Shi et al., 2014). Features selected
for Hg in bare land and cropland areas were relatively few and scattered,
whereas PI and DSRI corresponded to the greatest number of charac-
teristics for Hg in built-up areas. The subsequent spectral model inver-
sion and analysis were both based on the spectral features presented in
Fig. 7. The number of features in the variable set selected by CARS ac-
counts for less than 13 % of the total variables, which dramatically re-
duces the computational complexity of subsequent modeling.
Nonetheless, an assessment of its effectiveness is still required.

3.4. Modeling evaluation

The 2D-SSI and calibrated SG feature variables were separately
introduced into the PLSR, RF, SVM, and BPNN regression prediction
models. Statistics information of the calibration SG spectral model and
the optimal 2D-SSImodel for different heavy metals within various areas
is shown in Table 3. It can be observed that, under the same predictive
model criteria, the R2C and R2V of the optimal 2D-SSI models for each
heavy metal in the same area are both greater than the corresponding
calibrated SG spectral models, demonstrating the potential prospects of
the 2D-SSI model for predicting heavy metal content. For each heavy
metal, the range of increase in R2V when comparing the optimal 2D-SSI
model to the corresponding calibrated SG model was Pb [0.074, 0.409],
Cu [0.080, 0.187], Cd [0.035, 0.593], and Hg [0.172, 0.396]. In partic-
ular, compared to the corresponding calibration SG models, the optimal
2D-SSImodels for Pb BPNN and Hg RF in cropland areas show increases
of 0.128 and 0.232 in R2C, and corresponding increases of 0.123 and
0.139 in R2V. For Cd in bare land areas, the optimal 2D-SSI model
compared to the corresponding calibrated SG model showed an increase

in R2C ranging from 0.526 to 0.593 and in R2V ranging from 0.358 to
0.431. The ranking of the occurrence frequency of the optimal models
corresponding to 2D-SSI was as follows: ARI(12) > DSRI(8) > RI(7) >
DRI(6) > DI(5) > RNDI(4) = NDI(4) > PI(1) = B1, indicating the feasi-
bility of estimating heavy metal content with 2D-SSI, except for SI.
Models based on DSRI(3) and RNDI(3) have shown good performance on
the training set for Pb, achieving R2C values in the range of
[0.500, 0.970], while RI(4) exhibited strong generalization performance
for Cu prediction with R2V in the range of [0.430, 0.883]. For the optimal
models of Cd and Hg, ARI appeared most frequently, with 4 and 6 oc-
currences, respectively, demonstrating the good applicability of ARI for
predicting trace elements Cd and Hg. The R2C values of the Pb models
based on different optimal 2D-SSI features all reached 0.5; however,
only the PLSR model was found to be relatively superior to other models
in estimating Pb concentration, with its R2V values also reaching 0.5. The
training accuracy R2C of Cu models for bare land and built-up areas both
achieved 0.512, surpassing that of cropland areas. Additionally, the R2V
values of predictive models for Cu in bare land areas also achieved an
accuracy of 0.512, except for the BPNN model. The PLSR and BPNN
models based on RI for Cu inversion, as well as the SVM model based on
ARI for Cd prediction, which the R2C all achieved 1 in built-up areas.
Although over-fitting was present, the corresponding validation accu-
racy R2V values were all greater than 0.65, demonstrating optimistic
model predictive ability. For Cd prediction, except for the SVMmodel in
cropland areas, the training accuracy range of the other models was
[0.546,1]. However, only models in bare land areas have demonstrated
outstanding Cd prediction capability on the validation set, with R2V in the
range of [0.503,0.709]. Except for the RF model, Cd inversion models in
built-up areas were all achieved training set accuracy of R2C = 0.954 and
validation set accuracy of R2V = 0.775, demonstrating better predictive
capability compared to those in bare land areas. The training set per-
formance R2C for Hg in cropland and built-up areas fell within the range
of [0.514,0.959], while only the PLSR and BPNN models in built-up
areas performed well on the validation set, with R2V of 0.67 and 0.91,
respectively. Accuracy of the optimal indicator models for heavy metals
in various areas of soil is illustrated in Fig. 8 and the distribution of
corresponding optimal band combinations is listed in Table 4. It can be
observed that for the same heavy metal in different sample areas, there
exists a certain degree of overlapping in the optimalband combinations
of 2D-SSI, thereby highlighting the response characteristic bands of the
heavy metals. Prediction models performed better in built-up areas than
those in bare land and cropland areas. The prediction performance of
optimal models in bare land areas, aside from Hg, was superior to that of
cropland areas.

3.5. Mapping of heavy metal concentrations

The concentration distribution of soil heavy metal in bare land and
cropland areas was mapped with the optimal 2D-SSI prediction models

Table 3 (continued )

Soil heavy metals Spectral model R2C RMSEC RPDC R2V RMSEV RPDV

Cropland Area_Hg DRI_PLSR 0.514 0.090 1.712 0.389 0.149 1.368
DI_RF 0.821 0.019 2.164 0.614 0.028 1.804
ARI_SVM 0.689 0.023 1.832 0.355 0.034 1.246
DSRI_BPNN 0.685 0.021 1.830 0.415 0.034 1.420
SG_PLSR 0.342 0.188 1.233 0.291 0.360 1.189
SG_RF 0.589 0.036 1.805 0.475 0.041 1.596
SG_SVM 0.293 0.348 1.191 0.266 0.489 1.168
SG_BPNN 0.424 0.044 1.453 0.345 0.062 1.214

Built-up Area_Hg DRI_PLSR 0.959 0.033 2.327 0.907 0.068 2.310
RNDI_RF 0.682 0.047 1.828 0.377 0.080 1.317
ARI_SVM 0.887 0.033 2.275 0.484 0.045 1.622
ARI_BPNN 0.740 0.034 1.963 0.674 0.069 1.820

N. Yang et al.



International Journal of Applied Earth Observation and Geoinformation 132 (2024) 104079

11

Fig. 8. Model effect of the optimal inversion from different areas.
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founded upon corrected GF-5 AHSI imagery (Fig. 9). Concentrations of
Pb and Cu were evidently higher than those of Cd and Hg. The content
distribution of Pb was relatively high and exhibited significant spatial
heterogeneity, while Cu was at lower concentration levels with a rela-
tively uniform distribution. The eastern portion was primarily home to
the high concentration dispersion of Cd, with the exception of a few
isolated high values in the western portion. Regarding Hg, the high
concentration zone was primarily found in the western portion, in spite
of local high values in the northeast. According to the soil heavy metal
background values in Shaanxi Province, the spatial proportion of heavy
metals exceeding background values ranked as follows: Cu (98.208 %)
> Cd (95.265 %) > Pb (65.914 %) > Hg (21.969 %). The concentration
of Hg was found to be within the normal range with regard to the
GB15618-2018 standard. The areas where Pb and Cu exceeded the
standard limits accounted for 0.01 % of the entire study area, while
those surpassing the Cd limit represented 6.861 %. Pairwise correlation
analysis was performed on the areas with heavymetal content exceeding

background values. The findings depicted in Table 5 implied the simi-
larities and homogeneity in the distribution occurrence across these
areas.

4. Discussion

4.1. The reliability of the spectral feature

The DS image spectral calibration has improved overall spectral
accuracy by reducing the impact of external environmental interference
on image spectra, a fact confirmed by earlier investigations (Ji et al.,
2015a; Ji et al., 2015b). The calibrated spectra of GF-5 imagery (Fig. 3
(c)) exhibited greater consistency with the pertinent laboratory spectra
(Fig. 3(a)), thereby providing substantial support for ongoing large-scale
heavy metal concentration prediction (Zou et al., 2020). Furthermore,
the features expanded by the constructed 2D-SSI were refined and
differentiated. It has been confirmed that soil organic matter influences
the wavelengths of features for Cu and Cd mentioned above (Zhang
et al., 2022). Additionally, the extracted spectral data from various land-
use/land-cover areas were plotted and fitted to soil lines to assess the
quality of image spectra (Fig. 10). The results revealed that the spectral
data from the bare land area best represented the soil line relationship
corresponding to bare soil (R2 = 0.675), followed by the spectral data
from the built-up area (R2 = 0.632) and cropland area (R2 = 0.581). It
suggested that the soil spectra from the three types of areas, influenced
by mixed pixels, all contain information originating from sources other
than bare soil. Due to interference from vegetation and other factors, the
spectral data from cropland areas contain less information related to
bare soil. However, the spectral data from all three areas closely
resemble the spectral characteristics of bare soil with R2 ≥ 0.581.

Table 4
Distributions of the optimal band combinations corresponding to the best
models for soil heavy metals.

Soil Heavy
Metals

Ri Rj Spectral
index

Pb 1450–2440 nm 2000–2400 nm DSRI
Cu 429–476 nm

\1460–2185 nm
818–1258 nm
\2008–2395 nm

RI

Cd 609–1342 nm
\1545–2454 nm

420–1772 nm
\472–981 nm

ARI

Hg 1452–2463 nm 2130–2463 nm ARI

Pb 476–519 nm 1460–1511 nm PI
Cu 1047–1106 nm 733–775 nm ARI
Cd 844–916 nm 754–810 nm ARI
Hg 423–455 nm

\2345–2454 nm
429–489 nm
\2210–2345 nm

DI

Built-up
Area

Pb 403–1199 nm
\1460–2463 nm

407–1679 nm
\2041–2437 nm

RI

Cu 403–1780 nm
\2016–2463 nm

416–1325 nm
\711–1789 nm

RI

Cd 822–1342 nm
\1486–2454 nm

750–1325 nm
\1199–2463 nm

DSRI

Hg 429–540 nm
\2404–2446 nm

2016–2463 nm
\741–788 nm

DRI

Fig. 9. Spatial distribution of soil heavy metal concentrations.

Table 5
Spatial correlation (r) of distribution of heavy metal content beyond background
value.

Element Pb Cu Cd Hg

Pb 1 0.717 0.683 0.299
Cu 1 0.965 0.381
Cd 1 0.385
Hg 1
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Finally, features were plotted in the two-dimensional spectral feature
space (Fig. 7) to facilitate a clearer analysis of the composition of the
spectral response characteristic band. Pb, being a strictly regulated
heavy metal, exhibited spectral features closer to the ultraviolet wave-
length, making its features more prominent in this range. This explains
why Pb has characteristic bands between 400 nm and 700 nm, while the
spectral wavelength range of 2000 nm to 2463 nm represents features
related to other heavy metals (Tan et al., 2021).

4.2. Spatial characteristics of heavy metal contamination

The concentration distributions have exceeded the background
levels of soil heavy metals, showing local anomalies (Fig. 9). To our

knowledge, the distribution pattern is influenced not only by natural
factors such as topographical features, meteorological parameters, soil
characteristics, and geochemical processes but also by anthropogenic
variables as industrial emissions, agricultural fertilization, and con-
struction operations (Arif et al., 2022). The correlation coefficients for
the super-background spread pattern of Pb, Cu, and Cd are all greater
than 0.68, indicating similar enrichment patterns for these metals. The
interest regions with high concentrations were marked with blue rect-
angles and labeled with red letters A to E (Fig. 11) on the distribution
map for further analysis and interpretation. Pb and Cd exhibited
abnormal pollution in areas A and E, both of which were located at the
intersection of traffic arteries and residential areas, and it was specu-
lated that the accumulation was attributed to transportation and other

Fig. 10. Soil line analysis in different areas.

Fig. 11. Local enlarged view of interest regions with high concentrations of soil heavy metals.
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human activities. Due to the demolition and reconstruction of aban-
doned houses in residential areas, as well as the random accumulation of
construction waste and dust, Pb, Cd, and Hg accumulated around area B,
resulting in concentrations exceeding the soil heavy metal background
values of Shaanxi Province. Similar abnormal distributions of Cu and Cd
pollution were observed in areas C and D, which are formed by the
sedimentary belt on both sides of the river and the highway. This is
speculated to be caused by factors such as vehicle exhaust emissions,
traffic dust, and sedimentation of river transport. The distribution
pattern of Cu and Cd above background values was correlated with r =

0.965, indicating a similarity and homogeneity in the aggregation of Cd
and Cu. Overall, soil contamination within the study area was closely
associated with human activities, with vehicle exhaust emissions, traffic
dust, and the demolition and reconstruction of abandoned houses
identified as the dominant contributing factors.

4.3. Uncertainty and prospect of the inversion strategy

Although we have proposed an soil heavy metal content inversion
method guided by satellite images in accordance with spectral correc-
tion and data mining, the fact that spectral characteristics of soil may be
influenced by factors such as dampness, structure, shade, and surface
coarseness should not be ignored (Lin et al., 2022). On the other hand,
the laboratory spectral data were acquired with a 30◦angle halogen
lamp as the light source, which is consistent with most previous studies,
but differs from the solar altitude angle during the acquisition and
observation of GF-5 satellite imagery. All of these factors are vital for
optical calibration of remote sensing data, however, our consideration of
these factors may not be comprehensive enough. The correlation be-
tween the DS-corrected spectra and dependent variables of concentra-
tion has all reached a significant level, and the correlation has been
significantly improved compared to the original bands. However, any
method based on hyperspectral images for estimating soil physical and
chemical parameters requires careful analysis and validation specific to
the conditions (Ge et al., 2022). SVM algorithm used for hyperspectral
image classification is limited by the challenges of manual data anno-
tation and highly correlated spectral features. Additionally, it is difficult
to implement with large-scale training samples, and the classification
results are prone to salt-and-pepper noise. Therefore, improved network
intelligent classification approaches such as unified multiscale learning
(UML) framework (Wang et al., 2022) and capsule-vectored neural
network (CVNN) (Wang et al., 2023) are preferred for future research to
address the issues of insufficient feature representation and poor clas-
sification performance with limited labeled samples inherent in tradi-
tional models. The performance evaluation of models claimed that the
PLSR, RF, SVM, and BPNN models exhibited varying regional applica-
bility for estimating soil heavy metal content. The use of a small-scale
training dataset may bring about model over-fitting (Xin et al., 2020),
as evidenced by the PLSR and BPNN models based on RI for Cu, as well
as the SVM inversion model based on ARI for Cd in the built-up area.
Therefore, quantitatively characterizing the association regarding image
spectra and pure soil signal is crucial for further improving the precision
and robustness of the model.

5. Conclusions

The study specifically produced an efficient approach for predicting
soil heavy metal concentrations by constructing 2D-SSI from the DS-
corrected GF-5 imagery. The complete workflow and methods used in
this study have been thoroughly described, and the principal findings
are as follows:

(1) The correlation has been enhanced by the constructed 2D-SSI
feature variables, and the feature selection approach of the signifi-
cant correlation method coupled with the CARS algorithm has been
validated as straightforward and productive, which performed

dimensional reduction and enhanced the interpretability of model
features.
(2) The DS algorithm has proven to be practicable and dependable
for GF-5 AHSI imagery calibration, thereby enhancing the estimation
accuracy. Models based on the 2D-SSI have demonstrated excellent
performance with the R2V intervals of [0.253, 0.871], [0.313, 0.883],
[0.304, 0.834], and [0.252, 0.907], respectively, for Pb, Cu,Cd, and
Hg. The distribution pattern is generally compatible with the find-
ings of actual observations. This approach can effectively portray soil
heavy metal concentrations across expansive spatial scales.
(3) Human activities such as vehicle exhaust emissions, demolition
and reconstruction of abandoned houses, and dust from trans-
portation were suspected as the predominant pollution sources. This
information may serve as a reference for issuing warnings in polluted
areas.

There were limitations in analyzing the factors influencing the
spatial distribution of soil heavy metals. The research focused primarily
on human factors, neglecting the impacts of geochemistry, crops, and
even seasonal fluctuations in heavy metal transformation and trans-
portation. Therefore, further investigation should delve into these fac-
tors for a more comprehensive understanding.
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