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Abstract— We propose a deep learning framework of semantic
position probability distribution for synthetic aperture radar
(SAR)-optical image matching, termed as SPPD. Unlike the
pixel-by-pixel searching matching method, a correspondence is
directly obtained by an outputted matching position probability
distribution. First, multiscale pyramidal features are created for
each pixel in the SAR and optical images by using two weight-
sharing ResNet-50 + feature pyramid network (FPN) networks.
The features containing high-level semantic information are then
embedded into the proposed image position attention module
to obtain the spatial position dependencies between two images.
Then, we present a loss function for semantic position matching to
optimize the network from both semantic information and pixel
alignment perspectives, converting the probability distribution
of semantic matching positions into a point-to-point matching
problem. In this article, the SAR and optical images are set
as the sensed and reference images. The effects of different
image sizes, training label types, and loss function weights on
matching accuracy are explored to obtain the optimal param-
eter settings for matching. The experimental results show that
the proposed method is insensitive to image deformation and
achieves cross-modal matching for SAR–optical images with high
accuracy compared with the best matching method on different
scene images, with several orders of magnitude faster inferences
time.

Index Terms— Image registration, position attention mecha-
nism, pyramidal feature, semantic matching, synthetic aperture
radar (SAR)-optical image.
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I. INTRODUCTION

S INCE the rapid development of sensor technology, various
kinds of imagery can be accessed. While, all kinds of

imagery have advantages and disadvantages, optical imagery
can usually provide rich information in texture, color, and
spectrum, but easily affected by cloud coverage, light, and
other atmospheric conditions. As the active remote sensing
technology, synthetic aperture radar (SAR) sensors are less
susceptible to weather and light conditions [1], [2]. However,
their imaging is usually in lower spatial resolution and affected
by speckle noise, resulting in poorer interpretation quality.
Therefore, fused these two modalities of imagery together
will provide complementary information to each other. Image
matching is the key technique to integrate these images to form
a combined representation of observed scenes [3]. However,
due to the heterogeneous representation of multimodal remote
sensing images, matching SAR and optical images remains
huge difficulties in term of lacking both heterogeneous pixel
intensity and spatial feature information representation for
solving the problem of feature invariance due to temporal
variations [4].

Currently, multimodal SAR–optical image matching can
be categorized into feature-based and area-based matching
methods [5], [6]. Feature-based methods firstly extract salient
features of the image, including points (Moravec and Harris
detector [7]), lines (edges and contours) and surface fea-
tures, and then measure their feature descriptions to obtain
correspondence [8]. Many feature-based methods have been
developed to detect and describe SAR images based on scale
invariant feature transformation algorithms. Li et al. [9] com-
bine the use of phase coherence to create the radiation change
insensitive feature transform (RIFT), which is shown to be less
sensitive to rotations and radiation differences across modes.
Most feature-based approaches can identify correspondences
between SAR and optical modes, and they are only applicable
to images that conform to specific radiometric constraints with
no geometric distortions.

Compared to feature-based methods, area-based methods
have the following advantages: 1) area-based methods avoid
feature detection and search for similarities with maximum
features [10] and 2) area-based methods allow searching for
initial geographic locations in remote sensing images within
small regions to obtain geo-corrected images with position
offsets of only a few pixels. Common similarity metrics
include sum of squared differences (SSD) [11], the normalized
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cross correlation (NCC) [8], [12], and mutual information (MI)
[13]. SSD and NCC calculate the similarity and correlation
of two images separately, which is vulnerable to nonlinear
radiometric differences in SAR optical images. Therefore,
neither method can effectively handle images with nonlinear
radiometric differences. MI is robust to multimodal images
and is widely used for remote sensing images and medical
image registration [14], [15]. However, MI is sensitive to
template distortion, while the pixel-by-pixel search for match-
ing positions makes the computational overhead very large,
which limits its application in remote sensing image matching.
However, these area-based methods are weak in dealing with
large geometric deformations, which is hard to enforce in
a wide range of remote sensing image scenarios. Recently,
Ye et al. [1] and [16] proposed a fast and robust matching
framework based on structure similarity, which significantly
outperform the intensity-based similarity metrics such as NCC
and MI. Such image framework makes a great breakthrough
to detect correspondences between multimodal remote sensing
images with significant radiometric differences.

Recently, data-driven deep learning matching methods per-
form advanced image abstraction to obtain keypoints and
feature descriptions, such as learning invariant feature trans-
formation (LIFT) [17], SuperPoint [18], deep local feature
(DELF) [19] methods, detection and description network
(D2-Net) [20], and Superglue [21]. These feature-based meth-
ods are difficult to apply to SAR optical images with nonlinear
radiometric differences where they struggle to achieve the
distinguishability of keypoints and feature descriptions [22],
[23]. To alleviate this limitation, many studies have developed
SAR–optical matching models with repeatable keypoints. For
example, MAP-Net [22] embeds SAR–optical image informa-
tion containing high-level semantic features into cross-modal
matching using self-attention, obtaining key features that are
distinguishable. Xiang et al. [24] proposed a stable feature
crossover-based keypoint detector as well as a cross-stage
partial twin network to quickly extract feature descriptors
containing deep and shallow features for SAR–optical image
matching.

Furthermore, to address the problem of keypoint nonre-
producibility, some studies have used deep neural networks
to generate candidate matching regions based on the local
features of patches, such as Goodness network [25], twin U-
Net with a fast Fourier transform (FFT) [26], HardNet [27],
pseudo-Siamese convolutional neural network (CNN) [28],
and Siamese network followed by a similarity measure layer
[29], [30]. These methods provide similarity matching regions
and patches-based feature descriptions for SAR–optical image
matching using deep neural network modeling. However, these
methods are time-consuming when estimating the similarity
between patches because of their sliding search strategy.
Furthermore, these methods do not determine the spatial
dependence of the pixels between the reference and sensed
image. The network framework needs to be retrained to fit the
matching scene when matching various regions, which limits
the applicability of these methods.

To solve the problem of time-consuming similarity matches,
Li et al. [31] proposed a semantic template matching

framework that maps the template and reference image to
the output prime position match as feature fusion to obtain
the correspondence between images without considering the
similarity between pixels. However, this mapping relationship
is a fit on a dataset, which requires retraining of the network
to accommodate the complex diversity of scenes in practical
applications.

In summary, using deep neural matching framework con-
ducts a SAR–optical imagery matching which mainly has two
issues.

1) The network model needs to be retrained due to
scene changes, which requires establishing the positional
dependency between two image pixels.

2) Obtaining matching similarities via a pixel-by-pixel
search strategy is time-consuming, necessitating
localization.

Therefore, to response the above problems, first, we proposed
a novel deep neural matching network that build multiscale
pyramidal feature for each pixel in SAR and optical by using
two weight-sharing ResNet-50 [32] + feature pyramid network
(FPN) [33] which resist local distortions. We present a position
attention module to obtain matching position dependencies
between features. Second, to reduce computational complexity,
we map the dependencies between image matching positions
and semantic position probability distributions. Finally, a loss
function based on a weighted average of the output posi-
tion probabilities is proposed to solve the matching location
problem by optimizing the network from both semantic and
matching position perspectives. The main contributions are
summarized as follows.

1) Pyramid geometric invariant feature extraction network:
This structure obtains multiscale feature information by
constructing a pyramidal feature for each local pixel to
deal with the geometric differences between SAR and
optical images.

2) SAR–optical image semantic position attention module:
The network captures the dependency between two
positions of the SAR–optical image. The position atten-
tion module aggregates the matching information from
the reference and sensed images, which is crucial to
obtain semantic position probability distributions of the
network.

3) A new loss function based on output position probability
distribution: This loss function performs a weighted
average for the output probability distribution, which
converts the position probability distribution boundary
alignment into a point-to-point matching problem, low-
ering the computational complexity.

The rest of the article is organized as follows. Section II
describes the pyramidal feature network structure and atten-
tion mechanisms. Section III presents the proposed method.
Section IV describes the training dataset and the pipeline pro-
cess for image registration. Section V details the effectiveness
of the proposed network. Section VI concludes the article.

II. RELATED WORKS

This section describes the background of position attention
mechanism.
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Fig. 1. Framework of the semantic position matching for SAR–optical images.

A. Position Attention Mechanism

The attention model (AM) [34] has become an important
concept in neural networks. AM, a weight allocation mecha-
nism, redistributes the otherwise equally distributed resources
based on the importance of the attention object. The fun-
damental concept is to use the original data to identify the
correlation between them and then highlight some of their
most important characteristics. Channel attention [35], self-
attention [36], and position attention [37] are some of the
different types of AM.

The position attention mechanism is used to capture the
dependencies between any two locations of the feature map.
Any particular feature is weighted by its similarity to other
features. Thus, any two existing positions with similar features
can contribute to each other’s lifting, regardless of the distance
between them.

Since the position attention module is proposed for all
the features at all positions of the same feature map, it will
fuse all the features at the obtained positions. However, our
goal is to establish the position dependence of the sensed
image on the reference image. This operation involves two
feature maps with different dimensions. Therefore, we have
redesigned a position attention module. The detailed design
of the position attention module in our framework will be
explained in Section III-C.

III. METHOD

A. Overall Framework Description

Fig. 1 shows the SPPD architecture which maps the proba-
bility distribution of semantic matching positions between the
SAR images on optical images. We first input the SAR and
optical images into the weight-sharing ResNet-50 + FPN to
generate the pyramid structure features. The weight sharing is
used to obtain cross-modal information for SAR and optical
images. ResNet-50 + FPN network structure is mainly used to
enable the network to model the complex geometric distortion
between SAR and optical images. The pyramidal features of
the SAR and optical images are then input to the position
attention module, and all the features obtained at the positions
are fused to generate a feature map with position dependencies

between the SAR and optical images. Finally, the upsampled
semantic position feature maps are coupled and fed into CNN
to output matching position probability distribution results.

The matching position probability distribution characterizes
the probability that each pixel in the SAR image is located in
the reference image. However, the outputted semantic location
probability distribution is unordered, as shown in Fig. 1. It
fails to determine the probability of each pixel for certain
positions. Therefore, we propose a weighted average loss
function for output matching position probability distribution,
which involves computing the centroid of the output, changing
pixel matching to point matching, and greatly increasing
matching efficiency. The framework of ResNet-50 + FPN, the
proposed position attention mechanism, and the loss function
are described in detail below.

B. ResNet-50 + FPN Network

The first stage of our framework aims to perform
cross-modal feature extraction for SAR and optical images
by a weight sharing strategy to obtain multiscale high-level
semantic information. This is because FPN utilizes both
low-level features and high-level features, and the fused feature
is output separately. The combination of features from the
four layers of the FPN output forms a scale invariant fea-
ture transform (SIFT)-like [38] feature description. Therefore,
ResNet-50 and FPN structures are used to build features at
different levels (p1, p2, p3, p4) from each residual block.

The ResNet-50 + FPN network is illustrated in Fig. 2. The
structure can be divided into three parts.

1) A bottom-up residual network on the left: The input
first passes through a CNN with stride = 2, to reduce
the feature map size and improve the computational
efficiency in the position attention module. The feature
map is half of the original size for each residual block,
which constitutes a feature pyramid. Specifically, the
features of the residual structure of each stage are used
for the output. These bottom-up residual blocks are
denoted as Res-1, Res-2, Res-3, and Res-4, where the
output corresponds to the input of the left-hand structure.
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Fig. 2. Overall structure of ResNet-50 + FPN.

2) A top-down upsampling on the right: The top-down
process is performed using the interpolation upsampling,
which expands the feature map to twice the original size.
This allows the upsampled feature map to extend to the
dimensions same as the feature map of the next layer.

3) A connection structure between the middle features: The
connection structure is to fuse the result of upsampling
with the feature maps generated from the bottom-up.
The feature maps output from the residual module are
subjected to a 1 × 1 convolution and fused with the
upsampled feature maps to obtain richer features of
different layers. The 1×1 convolution aims to change the
number of channels, which is required to be the same
as the number of channels in the next layer. Then, a
3 × 3 convolution is used to eliminate the confounding
effect of the upsampling and obtain multiple new feature
maps (p1, p2, p3, p4).

C. Position Attention Module

The position attention module is mainly used to capture
the dependencies between any two positions of the SAR–
optical image. The position attention module is first proposed
by the semantic task to establish the element information in
the same channel. However, we need to establish the position
dependency of the sensed image on the reference image, which
is an operation on two feature maps. Therefore, we improve
a position attention module for semantic matching.

Fig. 3 depicts the proposed position attention module for
semantic matching. Let s and o be the feature maps of SAR
and optical images with sizes (c, h1, w1), (c, h2, w2). From
s and o, convolution layers are applied to obtain s1, s2, and
o1, o2, respectively. For s1, s2, o1, they are first reconstructed
to obtain feature maps of sizes (c, 1, n), (c, 1, n), and
(c, 1, N ), where n = h1 × w1 and N = h2 × w2. Then, the
transpose of s1 is multiplied with o1 and the SoftMax operation
is applied to obtain the spatial attention map A(N , n). Finally,
A is multiplied by s2 and reconstructed as (c, h2, w2), where
the result is multiplied by a scale factor and then added to
the feature map o2 to obtain the final output feature map. The

Fig. 3. Diagram of the of position attention module, where s and o denote
the semantic feature maps of SAR–optical images with sizes (c, h1, w1),
(c, h2, w2).

computational procedure can be described as follows:

A(N , n)i, j = SoftMax

 exp
(

si
1 · o j

1

)
∑N

i=1 exp
(

si
1 · o j

1

)
 (1)

where A(N , n) measures the influence of position i on posi-
tion j . The more similar the feature representations of two
locations are, the more they contribute to the correlation
between them

E j = α

N∑
i=1

(
A(N , n)i, j si

2

)
+ o j

2 (2)

where α is a learned weight and initialized to 0. The result
E for each position is a weighted sum of the features and
optical image features of all positions of the SAR. Therefore,
E has a global semantic position relationship. Similar semantic
features realize the response for each other’s positions, thus
enhancing the matching of similar features and semantic
consistency.

D. Loss Function

Since the output position probability distributions are
unordered, they cannot be used to determine the coordinates
and matching probabilities for the pixels. Furthermore, the
final matching result cannot be based on the correspondence
of a particular one-pixel probability value in the SAR image.
Therefore, we compute the centroid of the output, which is
the weighted average of the feature map.

Fig. 4 shows the geometric center and centroid of the affine
transformed template. In Fig. 4(a), S is affine transformed to
generate S′, where the centroid of S and S′ denote the same
position pixel values. Intuitively, the centroid and center pixel
of S, S′ coincide after affine transformation. This means that
the centroid coordinates of the output feature map are the
matching positions of the template center pixels, which is used
to replace all pixels matching with centroid matching.

A loss function is proposed to calculate the centroid position
loss while considering the semantic loss between label and
output, as shown in Fig. 4(b). The centroid position loss guides
the output to correspond at the center point, and the semantic
loss function optimizes the matching position of each pixel in
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Fig. 4. Illustration of the loss function. (a) Geometric center coinciding with
the centroid. (b) Loss function.

the sensed images. The formula of the feature map centroid
and the loss function calculation process are as follows:

C I J =

P∑
i

w∑
j

P ′

i j (3)

where P ′
i j is the semantic position probability value of pixel

(i, j)

C I =

w∑
i

w∑
j

i · P ′

i j CJ =

w∑
i

w∑
j

j · P ′

i j (4)

where C I and CJ represent the weights of all output positions
in i and j coordinates, respectively. The centroid position
coordinates of C ′

i j are calculated as follows:

x =
C I

C I J
, y =

CJ

C I J
. (5)

The position loss function L p is calculated as follows:

L p = (x − xtrue)
2
+ (y − ytrue)

2 (6)

where xtrue and ytrue denote the true coordinate position of the
template centroid in the reference image.

During training, the truth label is the position of each pixel
in the sensed image that corresponds to the reference image.
The semantic loss function Ls is defined as the cross-entropy
loss between the position dependence matching probability p
and the true label, which is defined as

Ls =
1
N

∑
i

−
[
yi · log(pi ) + (1 − yi ) · log(1 − pi )

]
(7)

where N is the number of matched images in a batch during
training, y is the ground-truth label of the sensed image
in sample i that matches the reference image, with match
denoted as 1 and mismatch denoted as 0, and p denotes the
matching position probability that the network architecture
predicts sample i to be a match.

The final loss is described as

L = αL p + βLs (8)

where α and β are the weights of two loss functions, and
α + β = 1.

Fig. 5. Example to illustrate the dataset generation. (a) SAR image.
(b) Optical image. (c) Warped image. (d)–(f) Three types of training labels.

IV. DATASETS AND WORKFLOWS

A. Datasets

To train the SPPD, SAR–optical image datasets are required.
We use the SAR–intensity, PS-RGB from the SpaceNet [39]
dataset for training, validating, and testing the network model.
The SAR data come from Capella Space’s X-band quadrupole
sensor mounted on the aircraft. Optical imagery was acquired
by Maxar WorldView-2 with a spatial resolution of 0.5 m.
This imagery includes panchromatic bands, panchromatically
sharpened RGB, and RGBNIR data, all with a resolution
of 0.5 m.

Fig. 5 depicts the process of creating SAR–optical images
and labels for training, and Figs. 5(a) and (b) are SAR and
optical images, with pixel alignment. The optical image is first
warped using a random affine transformation matrix, where
the transformed image is the reference image in Fig. 5(c).
The matching semantic labels with corresponding relationships
are then generated based on the affine transformation relation-
ship between the SAR–optical images, and randomly cropped
image patches (red border) from Fig. 5(a) and (c) are used as
training data.

In addition, we generate three types of labels separately,
as shown in Fig. 5(d)–(f).

1) Equivariant label: From the outside to the inside, the
padding values of each row and column present an
equal-variance arrangement. For example, we set the
template width to w, and the padding sequence will be
(1/0.5w), (2/0.5w), (3/0.5w), . . . , (i/0.5w), where i is
0.5w and only the centroid matching probability value
is 1.0.

2) Stepwise label: From outside to inside, multiple rows
are filled with the same value, and each step filling
presents an equal arrangement. For example, let the
template width be w, the sequence of padding is (1/n),
(2/n), . . . , 1, where n denotes the number of steps.

3) 0-1 label: They are filled with 1.0. These three types of
labels are used to assign different confidence values to
the pixels surrounding the matching points, which are
then compared for validity.
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Fig. 6. Example of large image matching to obtain matching correspondence
points. (a) SAR image. (b) Optical images. The dataset utilizes a unique
combination of SAR imagery (0.5 m) from Capella Space and electro-optical
imagery (0.5 m) from the Maxar WorldView-2 satellite.

B. Training and Matching

We crop the data in SpaceNet to generate 250,000 pairs of
training data. In this article, the experiments are run on an
AMAX workstation with Ubuntu 18.04 LTS and RTX3090Ti
GPU and 128 GB RAM, where the initial learning rate is
0.0001 and the model is trained for ten epochs. We adopt
the Adam optimizer, which is an adaptive learning rate opti-
mization algorithm. The weight combination (α, β) of the loss
function is set to (0.3, 0.7). In the registration step, we crop the
SAR image to obtain the sensed image. The trained network
uses the reference and sensed image as image pairs to predict
the position of a correspondence between the two images. We
use sliding-based clipping on the SAR and optical image to
obtain the set of matching points, based on the need for overall
image registration.

Fig. 6 depicts the process of SAR and optical image
cropping to generate the sensed and reference image pairs,
where Figs. 6(a) and (b) are the SAR and optical images.
Depending on the size of the network, the SAR and optical
images are cropped according to their respective sizes to obtain
T11, T12, . . . , Ti j , as the sensed image, and R1, . . . , Rn . Each
Ti j from Fig. 6(a) and each Rn from Fig. 6(b) are used as
corresponding input pairs to obtain the matching points. For
the obtained set of matching points, we use the random sample
consensus algorithm (RANSAC) to globally constrain the false
matches. RANSAC eliminates the erroneous matches from a
set of obtained point set data by a random sampling and voting
scheme.

V. EXPERIMENT

In this section, we first evaluate the effect of SAR image
size on image matching accuracy. Compared with the existing
methods, the matching performance of the network and its
effectiveness on SAR–optical image matching are evaluated.
Then, the overall performance of the entire pipeline in a
larger test scenario is evaluated. Finally, a network module and
loss function ablation studies are performed to motivate the
selection of our network structure and loss function weights.

A. Selection of Template Size

There is a wide range of patch correlation between the ref-
erence and sensed images, necessitating further research into

what types of semantic information may be used to identify
the matching relationship between images. Specifically, the
effect of the sensed image size on the matching accuracy
was investigated. We expect to choose a smaller size of SAR
images when possible to improve the computational efficiency
while providing more freedom for the reference image. Let the
size of the reference image be w×w, while the minimum size
of the SAR image is 1 × 1 pixel and the maximum is w × w

pixels. However, using a pixel as a matching template cannot
provide more semantic information, leading to wrong corre-
spondence. A suitable SAR image size needs to be selected
while ensuring matching accuracy. We experimented with
reference image with sizes of 256×256 pixels and SAR image
size 48, 64, 96, 128 pixels to evaluate the effect of the SAR
image size on the matching accuracy. Moreover, the model’s
training hyperparameters are kept consistent, including batch
size, epoch number, and learning rate. The L2 error of the
matching position is used to evaluate the effect of SAR image
size on matching accuracy

L2 =

√(
x p

i − x t
i

)2
+

(
y p

i − yt
i

)2 (9)

where (x p
i , y p

i ) is the centroid of prediction and (x t
i , yt

i ) is the
true matching position.

Fig. 7 depicts the L2 errors of the validation data on
the equivariant, stepwise, and 0-1 labels with different sizes
of SAR images during the training process. The first three
columns show the L2 errors of equivariant, stepwise, and 0-1
labels on the validation dataset at 0–300 epoch with image
sizes of 48, 64, 96, 128 pixels. The last column shows the
average L2 errors of the three labels with different SAR
image sizes, where Equ, Ste, and Zer are abbreviations for
equivariant, stepwise, and 0-1 labels. The L2 error trend of the
validation data is consistent. They gradually decrease as the
size of the SAR image grows larger, eventually stabilizing in
a range of values. Their L2 errors on the three types of labels
are almost the same as those of the 96×96 pixels size image as
a whole, when the SAR image size increases from 96 × 96 to
128×128 pixels. Therefore, to improve the matching accuracy
and computational efficiency simultaneously, we chose 96 ×

96 pixels as SAR image size in the subsequent experiments.
In addition, we compared the overall accuracy of the three
types of labels on the validation dataset. The last one in
Fig. 7 shows the overall matching performance of the three
labels, where the L2 error of the 0-1 label is lower than that
of the equivariant and stepwise labels. For different scenes,
the models trained using the three different labels may have
varying matching performances. Therefore, in Section V-F,
we detail the matching responses of the models trained on
the three types of labels.

B. Matching Performance

Since the matching accuracy plays a crucial role in the
overall image registration, we evaluated the performance of
our method relative to the state-of-the-art methods. We com-
pared SPPD with NCC, best buddies similarity (BBS) [40],
deformable diversity similarity (DDIS) [41], MI and HOPC,
where our method uses 0-1 labels with (α, β) = (0.3, 0.7).
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Fig. 7. L2 errors of the validation dataset with different SAR image sizes on three types of labels. (a) Equivariant label. (b) Stepwise label. (c) 0-1 label.

Fig. 8. Matching performance comparison by matching success rate. (a) IoU. (b) L2.

We evaluated the proposed method on a test dataset and
used the intersection over union (IoU) of template matching,
matching accuracy with different pixel thresholds, average
L2 error and average processing speed (sec/sample) as eval-
uation metrics. The performance of the proposed and all
compared methods is shown in Fig. 8. The first two graphs
show the matching success rate with different IoU and dif-
ferent pixel thresholds, respectively. The last graph shows the
average L2 error of matching on the dataset and the average
consumption time of data processing on CPU, GPU, where
“-” means data processing cannot be implemented on GPU.
It can be seen that the performance of SPPD is better than
the compared methods. The success rate curves at different
IoU thresholds are overall higher than those of the compared
methods. The average L2 error of SPPD in the test dataset is
3.2, which is significantly lower than NCC (9.1), BBS (6.5),
DDIS (5.6), MI (5.0), and HOPC (4.7).

SPPD took an average time of 1.71 s to process an image
match on the CPU. This performance surpassed the average
time taken by other methods such as NCC, BBS, DDIS, MI,
and HOPC. Distinct from these methods, SPPD employs a
weighted semantic position probability feature map to derive
the primary match as the result, which significantly enhances
the matching efficiency. The inherent design mechanism of
SPPD allows for acceleration using GPU, thereby further
boosting its matching speed. Additionally, we evaluated the
complexity of SPPD using two metrics: the size of the model
parameters and the number of floating point operations per
second (FLOPs). Our findings indicate that the SPPD has a
parameter size of 170 MB and a computational requirement
of 8 GFLOPs. This data further underscore the efficiency and
practicality of SPPD in image matching tasks.

Fig. 9 provides the qualitative matching results of SPPD
in some typical scenes, where the deep red color represents
the region as the matching position. The results showed that
SPPD produced more accurate matches. The output of the
comparison method ideally has a response at only one pixel
or one region on the feature map. However, for the other
methods, the response is obtained at different positions in
the generated feature map and far from the correct matching
point.

C. Overall Matching Performance

In Section IV-B, the effectiveness of SPPD is assessed.
For a comprehensive evaluation of SPPD’s registration perfor-
mance on entire images, correspondence was established on
large-scale remote sensing images. Four pairs of substantial
SAR and optical images from the SpaceNet dataset were
chosen. These images predominantly capture urban scenes,
as depicted in Figs. 10–13, with dimensions of 1796 ×

1146 pixels. Keypoints were manually identified to ascertain
the correspondence between the images. The four pairs of
images are denoted by I1, I2, I3, and I4.

The proposed framework identifies correspondence points
from a given matching template. While theoretically possible
to crop a template for each pixel in the reference image
to determine the correspondence, such an approach would
lead to computational redundancy. For a consistent compar-
ison, the image has been segmented based on the grid size
of the matching template (96 × 96 pixels). The RANSAC
method is employed to eliminate incorrect matching points.
The performance of SPPD is evaluated against other methods
including SIFT, Affine-SIFT, PSO-SIFT, SAR-SIFT, RIFT, and
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Fig. 9. Qualitative matching performance of a typical scene image. (Left to right) Cropped sensed images, and matching results on the reference image
(with colors representing different methods).

Fig. 10. Qualitative matching results for the I1. (a) SAR image. (b) Optical image. (c) Checkerboard mosaicked image.

HOPC. Evaluation metrics include the mean average precision
with a 2-pixel threshold (mAP) and the average L2 error
across all matching points. For methods such as SIFT, SAR-
SIFT, and PSO-SIFT, matching is conducted based on the
Euclidean distance ratio between the nearest and the second
nearest neighbors of the respective features. Ratios of 0.6, 0.7,
0.8, and 0.9 are tested, and the lowest L2 error is chosen
for further comparison. Results from the online algorithm
application are adopted for Affine-SIFT. For RIFT, parameters
and algorithms provided in [9] are utilized. Lastly, the Harris
detection algorithm is employed to identify corner points for
HOPC matching.

Table I shows the matching results for the four pairs of
large size images. A larger mAP and smaller L2 indicate
higher matching performance. As can be seen from Table I,
SPPD achieves the lowest L2 of 3.162, 3.361, 3.034, 3.217.
The results show that the overall matching performance of
SPPD outperforms other comparative methods in all image
pairs. SIFT and Affine-SIFT, with an mAP of 0, have the
worst accuracy, which may be due to the low repeatability of
keypoints due to the radiometric differences between SAR and
optical images. The PSO-SIFT method applies multiple con-
straints and has a lower L2 than SIFT, but the overall matching
results are not satisfactory. The detector used in SAR-SIFT is
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Fig. 11. Qualitative matching results for the I2. (a) SAR image. (b) Optical image. (c) Checkerboard mosaicked image.

Fig. 12. Qualitative matching results for the I3. (a) SAR image. (b) Optical image. (c) Checkerboard mosaicked image.

Fig. 13. Qualitative matching results for the I4. (a) SAR image. (b) Optical image. (c) Checkerboard mosaicked image.

TABLE I
MATCHING PERFORMANCE ON I1, I2, I3, I4 . THE SYMBOL “-” REPRESENTS THE SEVER MISREGISTRATION

too sensitive to nonlinear radiation differences, resulting in low
matching performance accuracy. HOPC obtains high matching
accuracy on I1, and a decrease in accuracy can be seen on
I2, I3, I4, which may be due to the large deformation. The
matching accuracy and precision of RIFT on I1, I2, I3, and
I4 are better than SIFT, Affine-SIFT, PSO-SIFT, SAR-SIFT,

and HOPC. Overall, the accuracy and precision of SPPD are
higher than that of RIFT.

The qualitative evaluation results of SPPD are illustrated in
the tessellated mosaic images as in Figs. 10–13, where green
and yellow indicate 3, 5-pixel errors and red indicates mis-
matching. For the tessellated mosaic images, the edges of their
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TABLE II
NETWORK CONFIGURATION USED IN THE ABLATION STUDY

TABLE III
MATCHING PERFORMANCE OF THE CORRESPONDENCE NETWORK

features were continuous and the overall area overlapped very
well in our results. The results above provide both quantitative
and qualitative evaluations of the effectiveness of SPPD in
large-scene remote sensing images.

D. Ablation Study

1) Network Configuration: An ablation study was per-
formed to compare the performance of adding various network
architectures. Since the position attention module is cen-
tral to building the semantic position probability distribution
used for image matching, we combined in different ways
the position attention module, multilayer CNN as the base
network (Pos AttenS), ResNet-50, FPN, centroid location,
and semantic loss function. In Table II, the use of a specific
network, centroid position (Pos-loss) or semantic loss (Sem-
loss) function, is indicated by a yes (Y) or no (N).

The networks were trained according to Section IV. All
networks were trained on the same training data. We evaluated
the performance based on the mean and standard deviation
of the L2 between matching positions, and the matching
accuracy with 2-pixel thresholds (mAP). The ablation models
are described in Table II.

Table III shows that Pos AttenS RF has a greater average
matching accuracy than Pos AttenS R, which is due to FPN’s
ability to boost information fusion between distinct residual
blocks. The addition of the loss function based on centroid
position achieved a significant improvement in the matching
accuracy.

Furthermore, simultaneously using the semantic and cen-
troid position loss functions achieved the best result. There-
fore, the Pos AttenS RFC was selected as our matching
framework, and all further experiments were conducted used
this setup.

2) Position Attention Module: We experimented with
the positional attention module using the following state-
of-the-art semantic segmentation networks (PSPNet [42],

TABLE IV
MATCHING RESULTS ON THE STATE-OF-THE-ART SEMANTIC SEGMENTA-

TION NETWORKS

Fig. 14. Illustration of production for sensed and reference images that can
be input to the semantic segmentation network.

DeepLabV3 [43], PSANet [42], DeepLabV3+ [44], UPerNet
[45], NonLocal Net [46], EncNet [47], DANet [37], DANet
[37], FastFCN [48], Fast-SCNN [49], CGNet [50], BiSeNetV2
[51], STDC [52], STDC [52], SETR [53], DPT [54], DPT [54],
Segmenter [55], and SegFormer [56]) to train the datasets,
verifying the effectiveness of the position attention module.
The basic idea behind the SPPD structure was to use two
weight-sharing ResNet-50 + FPN architectures to construct
pyramidal features for both the reference and sensed images,
and then used the position attention mechanism to establish
position dependencies between two images. To use the current
segmentation network, we complemented the input sensed
images by 0 to form the same size as the reference image.
Then, they were joined together to obtain the size of (W , H , 2)
and input to the semantic segmentation network, as shown in
Fig. 14. All other parameters were kept consistent, where the
training labels were 0-1 labels and the loss functions were
semantic and centroid position loss functions. The detailed
experimental results are shown in Table IV.

As can be seen from Table IV, the average L2 scores
between matched positions of the semantic segmentation
frameworks are overall lower than that of our proposed
method. The average matching accuracy at 2-pixel thresholds
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Fig. 15. Qualitative comparison of heat maps generated by different weight combinations of the loss function on the three training labels.

is less than 2.0%. These semantic segmentation algorithms rely
solely on a data-driven fit from input to output, focusing on the
training dataset instead of image correspondence. In contrast,
SPPD creates a matching model based on the pixel align-
ment relationship by mapping matching position probabilities
between two images. Thus, the position attention module
achieves high matching accuracy, illustrating its effectiveness.

E. Parameter Analysis

To further describe the design of the loss function in
Section III, we conducted a hyperparameter search on the
loss function to compare the performance of the semantic and
centroid position loss functions for determining the matching
results. The semantic and centroid position loss functions
were tested separately in Section V-D. The total matching
accuracy when utilizing semantic or centroid location loss
functions alone is lower than when combining both loss
functions, as evidenced by the experimental findings. This is
because the semantic loss function leads the network output
to suit the labels, whereas the centroid position loss function
maximizes matching from a single point without having to
fit the training labels completely. Combining the two loss
functions can further improve the matching accuracy because
the semantic loss function can guide the network output to fit
the labels, while the centroid position loss function can offset
some of the pixel-independent bias due to radiation differences
between the SAR and optical images.

We assigned different weights (α, β) to the two loss func-
tions, and experimented on the three labels. The matching
accuracy of the network with different combinations is detailed
in Table V. The highest matching accuracy for the stepwise
and 0-1 labels is obtained on the combination (0.3, 0.7),
whereas the best matching accuracy for the equivariant label
is found on the combination (0.1, 0.9).

TABLE V
L2 ERROR WITH (α, β) COMBINATIONS BETWEEN LOSS FUNCTIONS

The response of each label represents the correspondence
of the semantic position probabilities of the sensed image in a
reference image, which may contain some small groups of
pixels in a neighborhood. These pixels would theoretically
not exist until the network is fully trained. The heat maps of
the three labels with different weight combinations are shown
in Fig. 15, where the deeper color denotes the value of the
region closer to 1.0 and the cross mark represents the centroid
position of the matched result. The plots reveal that none of the
generated feature maps are identical to the labels, and instead
have activated responses around the centroid position centered
at the labels. The extent and placement of these output results’
responses are irregular, with a shape that differs significantly
from that of a regular geometric quadrilateral. There is no
way to identify that location as the centroid. This means that
by containing the centroid position loss function in the deep
learning network, the features are semantically abstracted at a
high level.

More specifically, the weights (α, β) = (0.1, 0.9) mainly
emphasize semantic information. The resulting feature maps
are close to the labels. However, the accuracy of the matching
results for the centroid position is lower than the combination
(0.3, 0.7). Similarly, for the combination (α, β) = (0.9, 0.1),
the overall matching accuracy is also less than that of the
combination (0.3, 0.7). The original intention for designing
the network is to find a dependency or match for each pixel
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Fig. 16. Quantitative matching results on the three training labels with different weight combinations of the loss function. (First row) Matching average
L2 error. (Second row) Matching success rate at 3-pixel error.

Fig. 17. Matching results for typical scenes on the three training labels.

of the sensed image based on the reference image. However,
due to the nonlinear radiometric variations between the SAR
and optical images, an exact match for each pixel on the
reference image is impossible to achieve. Therefore, adjusting
the weights (α, β) of the semantic position dependence and
the centroid position loss function during training enable the
network to obtain an accurate matching.

F. Training Label Analysis

The optimal loss function weight combinations for the
equivariant labels were found to be (0.1, 0.9) and (0.3, 0.7)

for the stepwise and 0-1 labels in Section V-E. The SpaceNet
dataset contains a variety of feature scenes, including urban,
suburban, roads, vegetation, ports, factories, and agricultural

Authorized licensed use limited to: Jonathan Li. Downloaded on November 23,2023 at 13:41:07 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: SAR–OPTICAL IMAGE MATCHING WITH SEMANTIC POSITION PROBABILITY DISTRIBUTION 5111315

areas. They exhibit different intensity values and texture
structures on optical and SAR images. Thus, we evaluate the
matching accuracy of the three types of labels on different
feature scenes. We count the overall division of the features
in the SpaceNet dataset, according to the percentage of the
stitched features compared to the total number of pixels. The
percentages of urban buildings, suburban buildings, roads, veg-
etation, ports, factories, and agriculture are 20.60%, 22.90%,
7.60%, 23.40%, 5.10%, 6.40%, and 14.00%, respectively. For
a fair comparison, we select the same number of feature scenes
on the whole dataset for training and comparison. L2 error
is used as an evaluation metric. Fig. 16 shows the matching
results for each scene with different combinations of loss
function weights for the three types of labels.

The results show that the 0-1 labels with the combination
(0.3, 0.7) achieve the highest matching accuracy and precision
for suburban and urban buildings, which is similar to the
results obtained in Section V-E. The matching precision and
accuracy are higher in road scenes than in other scenes, with
the stepwise label with the combination (0.5, 0.5) achieving
the highest matching precision and the equivariant label with
the combination (0.9, 0.1) achieving the highest accuracy. This
could be because the roads have a more pronounced texture
structure and do not suffer from geometric distortion induced
by the SAR–optical imaging shooting angle, allowing our net-
work to achieve better matching accuracy and precision. It also
demonstrates that the equivariant labels with the combination
(0.9, 0.1) are primarily intended to boost centroid position
dependent probability and improve centroid position matching
accuracy.

Moreover, the overall accuracy and precision of their match-
ing results are the lowest in the matching of vegetation
scenes. The intensity values of the SAR images show that
there are no distinguishable features in the vegetation, which
degrades the overall performance. Considering the context in
the vegetation, a larger scale, increasing the size of the SAR
image, is also required to obtain a higher matching accuracy.
Furthermore, the port, factory, and agricultural scenes, all of
which have considerable texture differences. They achieve
better matching accuracy and precision with 0-1 labels. The
qualitative comparison results are shown in Fig. 17, where the
deeper color represents the matching position of the response
and the green cross indicates the matching centroid position.

VI. CONCLUSION

In this article, we proposed a deep neural network model
for solving current SAR and optical image registration. First,
a weight-sharing ResNet-50 + FPN was utilized to create
a pyramidal feature structure for SAR and optical images,
thereby providing multiscale features. Second, those features
containing high-level semantic information were inserted into
our proposed position attention module to obtain spatial posi-
tion dependencies between the two images. Different from the
pixel-by-pixel search matching method, each pixel position
of SAR imagery was mapped onto the optical image to
obtain the matching position probability distribution in this
network. The matching probability position weighted average
loss function transformed the semantic position probability

distribution alignment into a point-to-point matching problem,
consequently improving the matching accuracy. Moreover,
we designed three types of training labels to compare their
impact on matching accuracy. The proposed method out-
performed state-of-the-art methods of SAR–optical images
matching with various different scale scenes, which demon-
strated its effectiveness in multimodal remote sensing image
registration. This method could offer a new solution for
the multimodal imagery registration challenges faced by the
remote sensing community.
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