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A B S T R A C T

Accurate pavement crack detection is important for routine maintenance of pavements and reduction of
possible traffic accidents. Most existing rule- or learning-based point-level approaches cannot achieve high
detection accuracy and efficiency owing to the disorderly arrangement, scattered intensities, diverse crack
structures, large data volumes, and complex annotation of mobile laser scanning (MLS) point clouds. To
address these issues, we developed SCL-GCN, a Stratified Contrastive Learning Graph Convolution Network
with a novel dual-branch architecture for MLS-point cloud-based pavement crack detection. First, a multi-scale
graph representation construction module was designed based on a stratification strategy. This module creates
strengthened spaces for the raw pavement point cloud and its downsampled subset, from which adjacency
matrices and initial representations are generated. The stratification strategy samples neighbors densely in the
raw point clouds and sparsely in the downsampled subset to form the neighborhood for each point, utilizing
long-range contexts to increase the effective receptive field while lowing the extra computation. Next, a graph
feature contrastive learning module is proposed to take advantage of stratified features. This module supervises
the learning process of the two branches to avoid learning bias caused by an imbalanced data distribution,
promoting convergence and improving performance. The experimental results show that the developed SCL-
GCN model outperforms state-of-the-art methods. With a training/testing ratio of only 1:6 and an overall
training time of less than 70 min, the average precision, recall, and 𝐹1-𝑠𝑐𝑜𝑟𝑒 of the SCL-GCN reached 75.7%,
75.1%, and 75.2%, respectively.
1. Introduction

Pavement cracking decreases the load-bearing capacity and wa-
ter resistance of pavements, accelerates the deterioration process of
roads, and poses a safety hazard to road users (Salman et al., 2013).
Transverse, longitudinal, and crocodile cracks are the three primary
forms of pavement cracking (Cubero-Fernandez et al., 2017). These
are mainly caused by excessive and repetitive stress, moisture, adverse
environmental conditions (such as freezing and thawing), and poor con-
struction quality (Liu et al., 2020). The constant traffic flow in urban
areas further exacerbates the formation of pavement cracks, as road
quality deteriorates over time owing to wear and tear. Pavements re-
quire regular inspection, assessment, maintenance, and repair to ensure
safety and extend their service life. Thus, one of the most important
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tasks to be conducted is detection of cracks in pavements (Hou et al.,
2021).

Pavement crack detection is generally based on manual inspection
and external sensors that utilize a variety of technologies, includ-
ing acoustic emission (Ohno and Ohtsu, 2010), infrared thermogra-
phy (Dabous et al., 2017), and ground-penetrating radar (Hong et al.,
2017). Manual visual inspection is still one of the most common meth-
ods of pavement crack detection owing to its high operability (Kang
et al., 2020). However, its low efficiency, high cost, intense subjectivity,
susceptibility to vehicular traffic, and specialized domain knowledge
make large-scale crack detection on road networks complex (Liu et al.,
2019). Other methods based on embedded or external sensors are
vulnerable to adverse environmental conditions such as changes in
temperature and humidity (Kang et al., 2020). Thus, there is an urgent
vailable online 14 March 2023
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need for an automated, efficient, non-contact approach for detecting
cracks (Liu et al., 2022).

Traditional and machine-learning computer vision algorithms have
been extensively studied for automatic detection of pavement cracks.
Traditional methods based on image processing fall into three main
categories: threshold segmentation (Oliveira and Correia, 2009; Peng
et al., 2015), edge detection (Lim et al., 2011, 2014), and region
growth (Gavilán et al., 2011; Zou et al., 2012). However, these methods
generally rely on prior knowledge or optimal thresholds, and are poorly
applicable to complex and changing urban roads. Such methods make
it difficult to reliably and precisely detect cracks with weak connections
or uneven geometric topologies.

The advent of machine learning, particularly deep learning, has
taken crack detection to a new level, learning high-level features and
significantly improving the quality of crack detection (Tong et al.,
2020). However, these image-based methods still struggle to provide
accurate results for pavement cracks because pavement images are
often obscured by light, shadows, dirt, and noise, making it difficult
to accurately capture the topography and texture details of the road.

With the development of three-dimensional (3D) data acquisition
techniques, MLS systems have been widely used to produce data that
contain accurate and reliable 3D coordinates, enabling efficient and
flexible pavement point cloud acquisition. Accordingly, several char-
acteristics of pavement point clouds are revealed: (1) the elevation and
intensity of cracks are usually lower than those of the surrounding
pavement points; (2) the point distribution and physical shape of cracks
are very irregular; and (3) the pavement is typically located on flat
terrain with equal or continuous elevation changes. Nevertheless, the
elevation and intensity variations between cracks and normal pavement
are not easily distinguishable owing to the effects of road wear and
pavement texture noise, making the detection of pavement crack points
challenging.

There are three limitations in most existing point-cloud-based crack
detection methods: (1) disorganized point clouds cannot be simply
processed using algorithms designed for regular grid structures; most
studies require dimensionality or resolution reduction to transform
them into images or voxel structures, which invariably causes infor-
mation loss; (2) due to the flattened structure of pavements, existing
point-based methods tend to ignore the spatial correlation and adja-
cency between adjacent points, resulting in incomplete crack detection
for complex and large pavements; (3) point-based deep learning models
rely heavily on the amount and quality of manually annotated data,
require many parameters, and increase the computational cost as the
network complexity increases. Consequently, the applicability of these
approaches to different scenarios is limited.

In our previous study (Feng et al., 2022), CrackGCN proposed
a solution that combined a space-strengthened graph representation
with fine-grained contextual features. This was the first attempt to
combine a graph convolutional network (GCN) with point-based crack
detection to achieve superior performance with high efficiency and
low data dependency. However, CrackGCN only considers fixed-size
neighborhoods when constructing point features, ignoring the multi-
scale information contained in multi-scale neighborhoods. This leads
to incomplete results when CrackGCN addresses complex pavement
cracks. To address this issue, this study presents SCL-GCN, a Stratified
Contrastive Learning Graph Convolution Network. The SCL-GCN adopts
a stratified strategy for multi-scale feature construction, constructs a
dual-branch GCN architecture for multi-scale feature learning, and
supervises the two-branch learning process with a contrastive learning
mechanism. The main contributions of the SCL-GCN are summarized
as follows:

(1) We propose a novel dual-branch architecture based on a GCN
for semi-supervised detection of pavement cracks from MLS data.

(2) We adopt a unique stratification strategy to explore the multi-
2

resolution local relative position information and construct multi-scale t
features of the pavement point cloud, helping to expand the effec-
tive reception field and increase the detection reliability of pavement
cracks.

(3) We apply contrastive learning to supervise the training process
of the two branches, avoid learning bias caused by imbalanced data
distribution, and explore deeper features, promoting convergence and
improving the performance of crack detection.

2. Related work

2.1. Image-based methods

Traditional methods. Pavement cracks in images appear as ir-
egular stripes, making them difficult to detect due to their varying
ntensities, complex topologies, and low contrast or noisy backgrounds.
arious image processing techniques including threshold segmenta-

ion (Oliveira and Correia, 2009; Peng et al., 2015), edge detection (Lim
t al., 2011, 2014), and region growing (Gavilán et al., 2011; Zou et al.,
012) have been successfully applied to pavement crack-detection.
hreshold segmentation-based methods separate cracks from the back-
round by setting an appropriate pixel intensity threshold and dividing
he image pixels into classes. Oliveira and Correia (2009) proposed
n automatic crack-detection and classification framework that ben-
fited from dynamic thresholds to identify potential dark pixels and
enerated the entropy block matrix used for crack-pixel identification.
eng et al. (2015) developed a crack-detection approach consisting of
reformative Otsu thresholding algorithm and an improved adaptive

terative threshold algorithm. Edge detection-based methods detect the
dges of cracks by using edge detection operators. Lim et al. (2011,
014) adopted the Laplacian of the Gaussian algorithm to detect cracks
n high-resolution bridge deck images. Region-growing-based methods
epresent particular information within cracks by combining pixels
ith comparable features. Gavilán et al. (2011) designed a seed-based

egion growing algorithm that combined multi-directional non-minimal
uppression with symmetry checking for road crack detection. Crack-
ree derived a minimal spanning tree by selecting crack seeds in a
robability map and performing recursive tree edge pruning to detect
he desired cracks (Zou et al., 2012). However, for these methods,
roper parameter presetting or prior knowledge is critical to getting
ptimal performance without manual intervention, making them un-
uitable for complex and changing urban roads. Pavement cracks with
imited connectivity or irregular geometric topology are challenging to
dentify correctly and robustly.
Deep learning methods. In recent years, deep learning models

ave demonstrated impressive performance in terms of efficiency and
ccuracy in road hazard assessment owing to their excellent feature
earning capabilities. Cha et al. (2017) proposed a deep learning
odel based on a CNN for detecting cracks in concrete surfaces with-

ut the use of image processing techniques. To identify pavement
racks, Tong et al. (2020) used a non-destructive testing technology
ased on ground-penetrating radar and network in networks. Yang
t al. (2020) proposed a feature pyramid and a hierarchical boosting
etwork. Although the impressive results have been obtained using
hese image-based learning methods, their performance is highly de-
endent on external conditions; in other words, their high sensitivity
o shadows, noise, and stains adversely limits detection accuracy.

.2. Point cloud-based methods

Traditional methods. Advances in 3D sensors have produced pave-
ent point clouds that provide the location and shape of cracks and are

nsensitive to changes in lighting or weather conditions. Research on
rack detection using point clouds has gained momentum. Guan et al.
2015) proposed ITVCrack, which use the inverse distance weighted
IDW) algorithm, iterative tensor voting, and morphological refinement

o distinguish crack curves in MLS pavements. Yu et al. (2014) utilized
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Fig. 1. Framework of the proposed SCL-GCN.
Otsu thresholding and Euclidean-based clustering to efficiently identify
the crack skeletons in MLS point clouds. Jiang et al. (2018) adopted
the plane triangulation modeling method to detect crack points for a
triangular irregular network dataset built using the IDW rasterization
method. Xu and Yang (2019) introduced a Gaussian filter to detect
cracks with the largest SNR distribution gradient, effectively optimiz-
ing pavement damage analysis accuracy. However, these approaches
struggle with detection of fine cracks or cracks with low connectivity
and suffer from low automation.

Deep learning methods. Deep learning has proven to be powerful
for 3D pattern recognition problems and has been successfully applied
to detect cracks in 3D pavements. Turkan et al. (2018) created an adapt-
able wavelet neural network model to automatically detect concrete
cracks; however, errors occurred with fine and shallow cracks. Zhang
et al. (2017) developed a CNN architecture, CrackNet, consisting of
five convolutional and fully connected layers with over one million
learnable parameters. CrackNet achieved high pixel accuracy but was
inefficient, and the static, non-learnable feature generator limited its
learning capability. Several CrackNet-based studied aimed at improving
learning capacity and efficiency were reported. CrackNet II (Zhang
et al., 2018) abandoned the feature generator in favor of a more
complex framework. CrackNet-V (Fei et al., 2020) adopted a smaller
filter and proposed a new shallow crack activation unit. Although
they outperform CrackNet in terms of efficiency and accuracy, the
improvements are limited and highly data-dependent. Furthermore,
the pixel-level results produced by these CrackNet-based models lack
detailed information on crack locations.

GCN-based methods. Some researchers have turned to graph con-
volutions for better feature representations and to explore architectures
that can achieve complete and precise crack detection results. Feng
et al. (2022) developed CrackGCN, using a novel space strengthen-
ing strategy and fine-designed graph-based features to detect crack
points from MLS data, achieving outstanding performance with high
efficiency and low data dependency. Ma and Li (2022) proposed SD-
GCN, a saliency-based dilated GCN architecture that uses two saliency
feature spaces and cylinder-based dilated graph convolutions to extract
cracks from the MLS data. Both CrackGCN and SD-GCN benefited from
spatial augmentation strategies to amplify the geometric structures of
pavement point clouds; however, they failed to consider long-range
neighborhoods and multi-scale features, resulting in incomplete results
with cracks in complex structures.

3. Method

Based on the assumption that connected nodes in the graph may
share the same label, we constructed a pavement point cloud containing
3

only some of the available labels as an undirected graph. For the input
pavement point cloud  =

{

𝑝1, 𝑝2,… , 𝑝𝑁
}

, where 𝑁 is the number
of points in  , each containing its spatial coordinates and intensity
information. For point 𝑝𝑖 ∈  , 𝑖 ∈ [1, 𝑁], and 𝑝𝑖 =

(

𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝐼𝑖
)

. The
corresponding raw pavement point cloud of  is 𝑜, where  is the
downsampled subset of 𝑜. Subsequently, we presented SCL-GCN, a
stratified contrastive learning graph convolution network to transform
the pavement crack detection task into a graph-based semi-supervised
binary classification problem, for pavement crack detection from MLS
point clouds. The SCL-GCN is illustrated in Fig. 1.

3.1. Overview

The proposed SCL-GCN consists of two modules: (1) a multi-scale
graph representation construction module, and (2) a graph feature
contrastive learning module. In the first module, we use the features
constructed in CrackGCN (Feng et al., 2022) as the vanilla repre-
sentation, and then obtain the stratified representation using a novel
pointwise stratification strategy on this basis. In the second module,
we designed a dual-branch graph convolution architecture to learn the
features of the vanilla and stratified versions separately. Then, we used
contrastive learning to supervise the dual-branch training process and
obtain an accurate and complete pavement crack detection result.

3.2. Multi-scale graph representation construction

This module consists of two progressive steps, aimed at completing
the adjacency relationship and feature construction of  and 𝑜. In
the first step, the adjacent relationships of the points in  and 𝑜
are determined separately during pavement space strengthening, which
can be represented by adjacency matrices  and 𝑜, respectively. The
second step is to construct multi-scale features, including vanilla and
stratified features, for the input pavement point clouds  . The vanilla
feature is denoted as 𝑣 ∈ R𝑁×𝐷𝑣 and the stratified feature as  𝑠 ∈
R𝑁×𝐷𝑠 , where 𝐷𝑣 and 𝐷𝑠 denote the feature channels.

3.2.1. Pavement space strengthening
Due to the low distinguishability in the spatial geometry and topo-

logical structure of pavement point clouds, we used the space
strengthening-strategy proposed by Feng et al. (2022) to map the point
clouds into the strengthened feature space, enhance the compactness
within classes, and mitigate the imbalance between classes according to
the intensity of the pavement point clouds. During space strengthening,
 and 𝑜 are converted into strengthened feature spaces  and 𝑜,
respectively. For example, for ∀𝑝 ∈  , 𝑝 =

(

𝑥 , 𝑦 , 𝑧 , 𝐼
)

, which is
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖
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Fig. 2. The proposed stratify strategy.

transformed into 𝑞𝑖 ∈ , where 𝑞𝑖 =
(

𝑥𝑖, 𝑦𝑖,(𝐼𝑖), 𝑧𝑖
)

. The formula for
(⋅) is:

(𝐼𝑖) = csc
(

1
1 + 𝑒𝐼𝑖

)

(1)

where 𝑐𝑠𝑐(⋅) is the cosecant function.
A fixed-radius nearest neighbor (fr-NN) search algorithm with ra-

dius 𝑅 was used to determine the neighborhood of each point in the
corresponding strengthened space. The space-strengthened adjacency
matrix of  is denoted as  =

{

1,… ,𝑁
}

. Specifically, for 𝑖 ∈ ,
𝑖 =

{

𝑎𝑖1,… , 𝑎𝑖𝑛
}

, where 𝑎𝑖𝑗 ∈ 𝑖 represents the adjacent relationship
of points 𝑞𝑖, 𝑞𝑗 ∈ , which can be calculated as:

𝑎𝑖𝑗 =

{

1, ‖

‖

‖

𝑞𝑖, 𝑞𝑗
‖

‖

‖2
≤ 𝑅

0, 𝑒𝑙𝑠𝑒
(2)

where ‖⋅‖2 calculates the Euclidean distance between 𝑞𝑖 and 𝑞𝑗 , with
𝑎𝑖𝑗 = 1 indicating that 𝑞𝑖 and 𝑞𝑗 are adjacent to each other. Accordingly,
the space-strengthened adjacency matrix of 𝑜 is denoted as 𝑜, which
can be calculated in the same manner as .

3.2.2. Multi-scale feature construction
The features generated from the vanilla and stratified versions

construct multi-scale features. The vanilla version focuses on the local
contextual information for each point in the input pavement point
cloud. As 3D points have a more complex discrete structure than 2D
regular pixels, the determination of XYZ positions is challenging. Thus,
the stratified version, aims to explore features over long distances while
better using each point’s spatial position.

Vanilla features. We follow the feature construction strategy of
Feng et al. (2022) to obtain the vanilla features 𝑣 in . Denoting the
feature matrix of  as 𝑣 =

{

𝑣
1 ,…𝑣

𝑁
}

, 𝑣
𝑖 ∈ R1×𝐷𝑣 represents the

feature vector of 𝑞𝑖 ∈ . According to Feng et al. (2022), 𝑣
𝑖 consists of

16 channels (𝐷𝑣 = 16), which can be expressed as:

𝑣
𝑖 =

(

𝑥𝑖, 𝑦𝑖,(𝐼𝑖),𝑣
𝑚𝑓𝑠𝑑

(

𝑞𝑖
)

, 𝑍𝑙𝑜𝑐
𝑖 , 𝐼 𝑙𝑜𝑐𝑖 , 𝐷𝑙𝑜𝑐

𝑖

)

(3)

where 𝑣
𝑚𝑓𝑠𝑑

(

𝑞𝑖
)

, 𝑍𝑙𝑜𝑐
𝑖 , 𝐼 𝑙𝑜𝑐𝑖 , and 𝐷𝑙𝑜𝑐

𝑖 calculate the number of points,
elevation context features, intensity context features, and local distri-
bution features in the neighborhood of 𝑞𝑖, respectively. Thus, in the
proposed SCL-GCN, the channel of the vanilla feature is 16, 𝑣 ∈
R𝑁×16.

Stratified features. For the vanilla features, each point focuses only
on a fixed-size neighborhood, and no relative position can be used.
As a result, models trained with vanilla features fail to capture multi-
resolution contextual correlation and relative point locations, resulting
in models that suffer from a limited effective receptive field, leading to
incorrect predictions with complex cracks.

However, our previous study (Feng et al., 2022) showed that simply
4

increasing the neighborhood size of each point in the downsampled
pavement point cloud did not improve the model performance. In
addition, using the raw (unsampled) pavement point cloud as input
while enriching the local feature representation of each point dramat-
ically increases the storage and computational costs. Inspired by Lai
et al. (2022), we used a stratified strategy for multi-scale neighborhood
sampling from the downsampled road pavement  and the raw road
pavement 𝑜 to efficiently collect a multi-resolution background. The
proposed stratify strategy is shown in Fig. 2.

First, for each point 𝑞𝑖 ∈ , its sparse neighborhood 𝑠𝑝𝑎𝑟𝑠𝑒
𝑖 is found

in  according to the size of the sparse cube 𝑠𝑝𝑎𝑟𝑠𝑒
𝑐𝑢𝑏𝑒 . The corresponding

dense neighborhood 𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 is then found in 𝑜 using a smaller dense

cube size 𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 .

Next, the relative positions of 𝑞𝑖 in the sparse and dense cubes are
calculated as follows:

𝑃 𝑠𝑝𝑎𝑟𝑠𝑒
𝑖 = 𝑞𝑖 ⊖𝑠𝑝𝑎𝑟𝑠𝑒

𝑖 (4)

𝑃 𝑑𝑒𝑛𝑠𝑒
𝑖 = 𝑞𝑖 ⊖𝑑𝑒𝑛𝑠𝑒

𝑖 (5)

where ⊖ calculates the element-wise subtraction.
The stratified features  𝑠

𝑖 ∈ R1×𝐷𝑟 of 𝑞𝑖 are obtained by concate-
nating the vanilla features 𝑣

𝑖 and the relative positions as follows:

 𝑠
𝑖 = 𝑣

𝑖 ⊕ 𝑅𝑃
𝑖 (6)

where ⊕ indicates the concatenation operation, and 𝑅𝑃
𝑖 = 𝑃 𝑠𝑝𝑎𝑟𝑠𝑒

𝑖 ⊕
𝑃 𝑑𝑒𝑛𝑠𝑒
𝑖 . As the 𝑅𝑃

𝑖 consists of two three-dimensional coordinates,
𝐷𝑟 = 6. Thus, the channels of the stratified features in this study were
22 and  𝑠 ∈ R𝑁×22.

Using the stratification strategy with multi-scale neighborhood sam-
pling, the stratified features can effectively aggregate multi-resolution
contexts based on relative location information, significantly expanding
the effective receptive field of the model.

3.3. Graph feature contrastive learning

The proposed SCL-GCN contained two GCN branches and a con-
trastive learning mechanism. The two branches had the same archi-
tecture, and were trained with different inputs. A contrastive learning
mechanism was used to supervise the training processes of the two
branches.

In this study, we used ChebyNet (Defferrard et al., 2016) as the
basic network of the two GCN branches. The two branches input the
same adjacency matrix  ∈ R𝑁×𝑁 , but differed in their features.
The first branch that input  𝑠 was denoted as a stratified branch; the
second branch that input 𝑣 was denoted as the vanilla branch. The
architecture of the SCL-GCN is shown in Fig. 1.

3.3.1. Dual-branch graph convolution networks
In the GCN, the generalized formulation of the convolution result

of the 𝑙𝑡ℎ layer is 𝑍(𝑙+1), and can be written as:

𝑍(𝑙+1) = ̃− 1
2 ̃̃− 1

2 𝑍(𝑙)𝛩(𝑙) (7)

where 𝛩(𝑙) is the filter parameter matrix of the 𝑙𝑡ℎ layer. According to
Eq. (2),  is a symmetric matrix. The degree matrix of  is , with
𝑖𝑖 =

∑

𝑗𝑖𝑗 . 𝑁 denotes the identity matrix, define ̃ =  + 𝑁 . The
degree matrix of ̃ is ̃, with ̃𝑖𝑖 =

∑

𝑗̃𝑖𝑗 .
Denoting 𝑍(𝐿)

𝑣 and 𝑍(𝐿)
𝑠 as the final convolution results of the vanilla

and stratified branch, we obtain

𝑍(𝐿)
∗ =

(

̃− 1
2 ̃̃− 1

2
)(𝐿−1)

∗𝛩 (8)

where ∗= 𝑣 in the vanilla branch, and ∗= 𝑠 in the stratified branch. The
final filter parameter matrix 𝛩 is the product of the filter parameter
matrices of all previous layers and is defined as 𝛩 ≜ 𝛩𝐿−1𝛩𝐿−2 ⋯𝛩0.
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𝑅

3.3.2. Contrastive learning
Vanilla and stratified features have different emphases during the

GCN training. Vanilla features provide descriptive local contextual
features, whereas stratified features supply multi-scale and long-range
relative positions. We applied a contrastive learning mechanism to
supervise the dual-branch training process to take full advantage of the
vanilla and stratified features. The contrastive learning mechanism cal-
culates the contrastive loss between the vanilla and stratified branches,
and rewards or penalizes the vanilla branch learnable loss accordingly.
This aims to cluster similar features learned in both branches together
in the feature space, while keeping the different features separated.

We denote the loss function of the vanilla and stratified branches
as 𝑣 and 𝑠, respectively. Accordingly, the corresponding loss can be
calculated as:

∗ = −
∑

𝑚=1
𝑌𝑚 ln

(

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑍(𝐿)
∗

)

𝑚

)

(9)

where  is the number of categories( = 2), in the pavement crack-
detection used in this study. 𝑌 =

{

𝑌1, 𝑌2
}𝑇 is the ground truth in a

one-hot form. Thus, the loss function can be further written as:

∗ = −𝑌1 ln
(

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑍(𝐿)
∗

)

1

)

− 𝑌2 ln
(

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑍(𝐿)
∗

)

2

)

(10)

where
(

𝑍(𝐿)
∗

)

1
is the convolution result of the ‘‘crack’’ category and

(

𝑍(𝐿)
∗

)

2
is the convolution result of the ‘‘non-crack’’ category. The

initial output 𝑍(0) = ∗, where ∗= 𝑣 in the vanilla branch, and ∗= 𝑠
in the stratified branch.

The contrastive loss is denoted as 𝐿1, the learnable loss of the
vanilla branch is rewarded or penalized accordingly, calculated as:

𝐿1 = ‖

‖

𝑣,𝑠
‖

‖𝐿1 (11)

where ‖

‖

𝑣,𝑠
‖

‖𝐿1 calculate the least absolute error between 𝑣 and 𝑠.
Thus, the final loss of the proposed SCL-GCN is denoted as 𝑐 , where
𝑐 = 𝑠 + 𝐿1.

4. Experiments

This section presents the experimental data, evaluation metrics, and
implementation details and further assesses and analyzes the perfor-
mance of the SCL-GCN. Sections Section 4.1, 4.2, and 4.3 describe
the experimental data, evaluation metrics, and implementation details,
respectively. Section 4.4 determines the optimal parameter combina-
tion. Section 4.5 evaluates the performance of the SCL-GCN using point
clouds. Section 4.6 presents a comparative study of the developed
models. Ablation experiments are performed in Section 4.7 to validate
the efficacy of the SCL-GCN components. Section 4.8 analyzes the
computational efficiency.

4.1. Experimental data

The experimental data for this study were selected from the pave-
ment point cloud dataset (Feng et al., 2022), which was collected
from the Qinghai-Tibet highway using a mapping-grade MLS system
in September 2015. As the longest (1937 km) and highest (5232 m)
asphalt road in the world, the different sections of the Qinghai-Tibet
highway are subject to a variety of severe weather, freeze-thaw, and
terrain changes. Thus, regular, timely, and comprehensive maintenance
of the Qinghai-Tibet highway is far more challenging than for roads in
urban and plain areas.

The mapping-grade MLS system, RIEGL VMX-450 was used for
data acquisition, consisting of two high-end VQ-450 scanners, four
high-resolution cameras, and an inertial navigation unit. During data
collection, the RIEGL VMX-450 was mounted on top of a Buick MPV.
With a maximum scanning speed of 400 lines/second and an effective
range of 800 m, the RIEGL VMX-450 can deliver 1,100,000 measure-
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ments/second. The average driving speed during data collection was
Table 1
Parameter setting of SCL-GCN.

Parameters Value

Learning rate 0.01
Units in layer 𝑙 2
Dropout rate 0.5
Branch loss 𝐿2 loss
Weight for 𝐿2 loss 5 × 10−4

Chebyshev polynomial degree 3
Contrastive loss 𝐿1 loss
Minimum downsampling distance 𝑠𝑑 0.05 m
Radius scale 𝑇 3
Fr-NN radius parameter 𝑡 2
Sparse cube size 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 0.3 m
Dense cube size 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 0.1 m

approximately 80 km/h, ensuring millimeter-level resolution of the
collected pavement point clouds.

The experimental data comprised 115 pavement point cloud seg-
ments with an average of 200,000 points, measuring 8 meters in width
and 10 meters in length. In addition, each segment was manually an-
notated as ‘‘crack’’ or ‘‘non-crack’’ point by point, with an approximate
ratio of 2:8. The experimental data were split into Dataset-I (80 pieces)
and Dataset-II (35 pieces). Dataset-II was divided into part1, part2, and
part3 subsets, according to the increasing order of 𝑋 and 𝑌 coordinates.
Part1 contained the first 10% of points, part2 contained the last 60%,
and part3 contained the remaining points.

During data pre-processing, we downsampled each pavement seg-
ment with the minimum downsampling distance 𝑠𝑑 to obtain an aligned
point cloud, for two main reasons: (1) the ‘‘X-type’’ scanning mode of
the two VQ-450s makes the initially acquired pavement point clouds
appear in a grid-like arrangement, and (2) the GCN has a strict limita-
tion on the maximum number of input points. Thus, we used downsam-
pling to facilitate subsequent operations, decreasing the computational
complexity of the proposed model.

4.2. Evaluation metrics

In this study, metrics including precision (𝑃𝑟𝑒), recall (𝑅𝑒𝑐), and
𝐹1-𝑠𝑐𝑜𝑟𝑒 were used to quantitatively evaluate the performance of the
proposed SCL-GCN. These metrics are expressed as follows:

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(12)

𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(13)

𝐹1-𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒 × 𝑅𝑒𝑐
𝑃 𝑟𝑒 + 𝑅𝑒𝑐

(14)

where TP, FP, and FN represent the corresponding detected point
numbers of the true-positive, false-positive, and false-negative points,
respectively. 𝑃𝑟𝑒 calculates the percentage of properly predicted pave-
ment cracks to assess the validity of the model. 𝑅𝑒𝑐 measures the
number of correct positive crack points among all crack points to
assess the completeness of the crack detection results. The 𝐹1-𝑠𝑐𝑜𝑟𝑒 is
a function of 𝑃𝑟𝑒 and 𝑅𝑒𝑐 and measures the overall performance.

4.3. Implementation details

The implementation environment of SCL-GCN is based on Python
3.8.8, Pytorch 1.10.0, Ubuntu 20.04.1, Intel (R) Core (TM) i7-10700K
8-core CPU @ 3.80 GHz, Nvidia RTX 3090 and 64 GB RAM. In addition,
each branch of SCL-GCN consists of a 2-layer ChebyNet. The hyperpa-
rameters involved in SCL-GCN are optimized in Section 4.4 and listed
in Table 1. The proposed SCL-GCN model was trained with part1 of
Dataset-II, tested with part2 of Dataset-II, and validated with part3 of
Dataset-II.
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Fig. 3. 𝐹1-𝑠𝑐𝑜𝑟𝑒 (%) of models with different 𝑡 values and cube size combinations (𝑠𝑝𝑎𝑟𝑠𝑒
𝑐𝑢𝑏𝑒 , 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 ) (𝑚).
Table 2
𝐹1-𝑠𝑐𝑜𝑟𝑒 (%) for models with different loss functions and stratified cube sizes when 𝑡 = 2.

(𝑆𝑤𝑖𝑛, 𝑆𝑠𝑚𝑎𝑙𝑙
𝑤𝑖𝑛 ) (m) CrackGCN (SF) SCL-GCN (KL) SCL-GCN (L1) SCL-GCN (L2)

(0.10, 0.05) 70.8 73.8 73.9 74.0
(0.15, 0.05) 71.9 73.5 74.4 73.9
(0.15, 0.10) 71.5 73.1 73.3 72.7
(0.20, 0.05) 66.5 70.0 69.7 70.0
(0.20, 0.10) 71.5 74.6 74.7 74.4
(0.20, 0.15) 69.5 74.4 74.5 74.4
(0.25, 0.05) 63.2 74.4 74.2 74.1
(0.25, 0.10) 71.0 74.0 74.1 73.9
(0.25, 0.15) 70.7 74.2 74.2 73.9
(0.25, 0.20) 71.2 74.3 74.3 74.0
(0.30, 0.05) 71.6 74.1 74.2 74.0
(0.30, 0.10) 72.8 75.2 75.2 74.9
(0.30, 0.15) 71.4 74.0 74.1 73.9
(0.30, 0.20) 71.2 75.2 74.9 74.7
(0.30, 0.25) 72.2 74.0 73.9 73.9
Avg. 70.5 73.9 74.0 73.8
4.4. Parameter optimization

SCL-GCN has several important parameters: the sparse cube size
𝑠𝑝𝑎𝑟𝑠𝑒
𝑐𝑢𝑏𝑒 , dense cube size 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 , and fr-NN search radius 𝑅. They have
varying effects on the model, 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 and 𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 determine the descrip-

tiveness of the multi-scale features constructed by the stratification
strategy, whereas 𝑅 affects the receptive field of the convolutions.
Generally, the larger the 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 and 𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 , the more comprehensive

the point distribution information represented in feature construction.
A larger 𝑅 results in a wider convolutional receptive field; the loss
function used for the contrastive learning module affects the descriptive
ability of the feature.

We investigated the influence of these parameters on experimen-
tal data to determine the optimal combination of parameters. Crack-
GCN (SF) represents CrackGCN with stratified features as inputs, wher-
eas SCL-GCN (KL), SCL-GCN (L1), and SCL-GCN (L2) represent models
using Kullback–Leibler divergence (KL), mean absolute error (L1), and
mean squared error (L2) as contrastive loss functions, respectively.

Fr-NN radius 𝑅. The fr-NN search radius 𝑅 = 𝑡×𝑠𝑑×
√

3×𝑇 , where
𝑠𝑑 = 0.05 m is the minimum downsampling distance, and 𝑇 = 3 is the
6

optimal fr-NN search radius scale for CrackGCN. Thus, 𝑅 varied with 𝑡.
We set the ranges of 𝑡 to [1, 2, 3, 4, 5, 6] to test the effect of different
radii. Table 3 presents the quantity results for the different models with
different 𝑡 and cube-size combinations. Fig. 3 shows the corresponding
visualization results, with subplots representing the performance of the
models with different contrastive loss functions. With the same 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒
and 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 , the 𝐹1-𝑠𝑐𝑜𝑟𝑒𝑠 of the different models are different, indicating
that the value of 𝑡 influences the performance of the SCL-GCN. From the
first row of each subplot in Fig. 3, it is observed that the best results
occur when 𝑡 = 2.

Contrastive loss function. We set 𝑡 = 2 to fix the fr-NN radius,
and further explored the influence of different contrastive loss functions
with different cube-size combinations. As shown in Table 2, when 𝑡 = 2,
SCL-CGN (L1) achieves the 10 best results of the 15 combinations of
𝑠𝑝𝑎𝑟𝑠𝑒
𝑐𝑢𝑏𝑒 and 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 , and obtain the best average 𝐹1-𝑠𝑐𝑜𝑟𝑒 compared to
other models.

Sampling cube sizes. Stratified cubes can provide multi-scale fea-
tures that enlarge the respective network fields. However, determining
the appropriate cubic size requires considerable time and effort. A cubic
size that is too small cannot provide sufficient neighboring points to
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Table 3
𝐹1-𝑠𝑐𝑜𝑟𝑒 (%) of models with different 𝑡 and cube size combinations (𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 , 𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 ) (𝑚).

crackGCN (SF)

t (0
.1

0,
0.

05
)

(0
.1

5,
0.

05
)

(0
.1

5,
0.

10
)

(0
.2

0,
0.

05
)

(0
.2

0,
0.

10
)

(0
.2

0,
0.

15
)

(0
.2

5,
0.

05
)

(0
.2

5,
0.

10
)

(0
.2

5,
0.

15
)

(0
.2

5,
0.

20
)

(0
.3

0,
0.

05
)

(0
.3

0,
0.

10
)

(0
.3

0,
0.

15
)

(0
.3

0,
0.

20
)

(0
.3

0,
0.

25
)

1 69.0 69.4 69.9 68.8 70.7 69.2 69.2 71.1 67.5 68.6 69.7 70.8 69.7 69.5 69.1
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2 73.8 73.5 73.1 70.0 74.6 74.4 74.4 74.0 74.2 74.3 74.1 75.2 74.0 75.2 74.0
3 72.0 72.6 72.2 72.3 72.2 72.4 72.3 66.9 64.4 64.6 71.9 72.8 71.9 72.3 63.8
4 65.9 67.7 67.8 67.3 69.2 68.2 69.1 69.2 69.6 69.6 68.8 68.6 68.8 69.0 68.8
5 39.1 48.7 40.0 40.0 40.2 48.0 51.5 46.4 41.7 41.0 31.8 30.1 56.9 64.2 56.6
6 37.9 31.2 31.7 35.2 33.2 34.9 37.0 36.0 41.8 42.5 47.5 36.3 38.3 43.7 42.5
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2 73.9 74.4 73.3 69.7 74.7 74.5 74.2 74.1 74.2 74.3 74.2 75.2 74.1 74.9 73.9
3 72.1 72.4 72.3 72.2 72.2 72.1 72.2 70.6 72.2 72.6 71.9 72.8 71.7 72.5 63.8
4 66.8 67.2 68.2 67.3 69.6 68.7 69.2 69.6 69.3 69.4 68.6 68.3 68.7 69.0 68.8
5 35.6 47.9 40.0 39.0 40.1 51.9 49.4 41.1 40.1 40.8 50.4 52.3 55.6 64.6 55.7
6 27.8 33.2 31.0 34.4 31.7 36.4 35.3 34.8 40.5 40.3 48.3 35.0 38.7 42.0 40.7
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3 72.1 72.3 72.2 72.4 72.4 72.3 72.4 69.1 72.4 64.5 71.8 72.8 72.0 72.7 63.8
4 66.6 67.7 68.4 66.6 68.7 69.1 69.2 69.8 69.8 69.6 69.4 69.2 68.8 69.0 68.9
5 38.4 48.4 40.0 40.2 40.5 54.5 49.4 41.1 41.7 41.7 53.4 53.6 52.8 63.7 52.9
6 37.5 30.7 30.6 32.6 31.5 33.6 35.7 32.6 39.5 42.3 44.5 31.3 39.3 46.4 43.6
capture local spatial geometric information. In contrast, a large cubic
size results in redundant or invalid information, degrading accuracy
and efficiency. We set the range of the sparse cube sizes 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 to [0.10,
0.15, 0.20, 0.25, 0.30] and the dense cube sizes 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 to [0.05, 0.10,
0.15, 0.20, 0.25] in meters. The combination of 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 and 𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 is

denoted as (𝑠𝑝𝑎𝑟𝑠𝑒
𝑐𝑢𝑏𝑒 , 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 ). We fixed the value of 𝑡 = 2 to explore the
effect of different cube size combinations of the SCL-GCN (L1). Fig. 4
shows the 𝐹1-𝑠𝑐𝑜𝑟𝑒 of the SCL-GCN (L1) with 𝑡 = 2 to fix the radius and
different cube sizes. The best result occurs when 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 = 0.30 m and
𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 = 0.10 m.

4.5. Crack detection results

Based on the results of the parametric experiments, we defined
the optimal setting for the training process as 𝑡 = 2, L1 loss as the
contrastive loss function, the sparse cube size as 𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 = 0.30 m and
the dense cube size as 𝑑𝑒𝑛𝑠𝑒

𝑐𝑢𝑏𝑒 = 0.10 m. The visual comparison results
and corresponding detailed observations of pavement crack detection
from MLS point clouds are shown in Fig. 5, which indicates that the
developed SCL-GCN model can provide satisfactory crack detection
in pavements with complicated cracks. The observations reveal that
7

Fig. 4. 𝐹1-𝑠𝑐𝑜𝑟𝑒 of CrackGCN (SF) and SCL-CGN (L1), with 𝑡 = 2 and different cube
sizes (𝑠𝑝𝑎𝑟𝑠𝑒

𝑐𝑢𝑏𝑒 , 𝑑𝑒𝑛𝑠𝑒
𝑐𝑢𝑏𝑒 ).

SCL-GCN achieves outstanding detection results. The experimental re-
sults also show that SCL-GCN can effectively distinguish road cracks
with varying shapes and sizes. Thus, the SCL-GCN has robust local
context, long-range feature construction, and dual-branch contrastive
learning capabilities, all of which contribute to accurate and complete
point-level crack detection results.
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Fig. 5. Visual comparison results and corresponding detailed observations of pavement crack detection using different methods.
4.6. Comparison study

To evaluate the feature descriptive ability of the SCL-GCN in actual
environments, we conducted experiments on the pavement point cloud
dataset to compare the SCL-GCN with several existing methods. The
compared methods included pixel-level methods: U-Net (Ronneberger
et al., 2015) and AU-Net (Oktay et al., 2018); a traditional point-
level algorithm: 3DSkeleton (Yu et al., 2014); supervised deep learning
models: PointNet (Qi et al., 2017) and DGCNN (Wang et al., 2019), and
semi-supervised models: CrackGCN (Feng et al., 2022) and SD-GCN (Ma
8

and Li, 2022). For all comparison approaches, we used the same
experimental protocols used in CrackGCN and set hyperparameters to
their default settings. The experimental results were evaluated based
on 𝑃𝑟𝑒, 𝑅𝑒𝑐 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒.

Pixel-level methods. We converted the point cloud pavements
into images based on the intensity for training and testing the U-
Net and AU-Net models. Pixel-level average evaluation metrics were
derived accordingly. However, information loss usually occurs in such
approaches due to data dimensionality reduction.
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Table 4
Comparison results of different methods for pavement crack detection.

Type Method train:test 𝑃𝑟𝑒(%) 𝑅𝑒𝑐 (%) 𝐹1-𝑠𝑐𝑜𝑟𝑒(%)

Pixel U-Net 7:3 80.9 73.3 76.6
AU-Net 7:3 76.5 77.8 76.4

Point 3DSkeleton – 33.6 71.7 46.7
PointNet 7:3 70.4 63.1 66.1
DGCNN 7:3 73.0 67.0 70.1
SD-GCN 7:2 79.5 77.1 78.3
CrackGCN 1:6 70.0 73.9 71.9
SCL-GCN 1:6 75.7 75.1 75.2
t
t

c
t
O
c

4

t
G
t
p
i
d
p
t
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Point-level methods. 3D-Skeleton is a traditional method that
ombines Otsu thresholding with Euclidean distance-based clustering.
e set the density threshold 𝑑𝑠 = 1.2 and the local radius 𝑟𝑑 = 0.2 m

for crack detection and outlier removal. However, determining the
optimal thresholds in different test scenes is challenging. Although
PointNet is a pioneer of point-based deep learning networks, it cannot
learn local features efficiently, leading to challenges in fine-grained
detection in complex road scenes. Inspired by PointNet and graph
neural networks, DGCNN further exploits local geometric structures by
introducing dynamic graph edge convolution. Nevertheless, it fails to
capitalize on the long-term contextual relationships between intra-class
points.

Semi-supervised methods. CrackGCN creates a semi-supervised
eep learning framework for detecting pavement cracks based on a
raph-widened strategy, whereas SD-GCN further explores a saliency-
ased dilated graph convolutional network. Due to the finely designed
efining features based on graph representation, they achieve more
ompetitive performance than supervised approaches in terms of data
ependency and efficiency; however, they fail to account for multi-scale
nd long-term geometric contexts in pavement point clouds.

In this study, the pixel-level methods were trained on the corre-
ponding intensity images of Dataset-I, the point-level methods were
rained on Dataset-I, CrackGCN and the proposed SCL-GCN were trained
n the part1 of Dataset-II, and all these methods were tested on the
art2 of Dataset-II. However, SD-GCN was trained on the first 70% of
ataset-II and tested on the last 20% of Dataset-II.

Table 4 displays the comparison results based on the average 𝑃𝑟𝑒,
𝑒𝑐 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒. For the pixel-level models, U-Net and AU-Net had

he same training/testing ratio (7:3), similar training time (> 6 h),
nd similar average 𝐹1-𝑠𝑐𝑜𝑟𝑒 of 76.6% and 76.4%, respectively. How-
ver, taking advantage of the attention mechanism, AU-Net achieves
4.35% improvement in the average recall compared to U-Net. As a

raditional threshold-based method, 3DSkeleton has an average 𝑅𝑒𝑐 of
1.7% but an average 𝑃𝑟𝑒 of 33.6%, which indicates that 3DSkeleton
isclassifies many pavement points as crack points. For supervised

lgorithms, the graph-related DGCNN outperformed PointNet in all as-
essment criteria, implying that graph representations may outperform
oint-based representations in pavement crack-detection tasks. As a
emi-supervised approach, CrackGCN has a training/testing split ratio
f 1:6 compared with the 7:3 ratio of PointNet and DGCNN, but with
5.9% higher average recall and 1.8% higher average 𝐹1-𝑠𝑐𝑜𝑟𝑒 than
GCNN. Although SD-GCN is also trained semi-supervised and achieves
xcellent performance, it has a training/testing split ratio of 7:2, which
eans that it has seven times more training data than CrackGCN but

nly one-third of the test data. Thus, the SD-GCN is a data-driven
pproach that does not meet the low data dependency requirements
or pavement crack detection in MLS point clouds. With the same data
plit setting and competitive efficiency as CrackGCN, SCL-GCN achieves
uch better performance. Specifically, the proposed SCL-GCN achieved
5.7%, 75.1%, and 75.2% for average 𝑃𝑟𝑒, 𝑅𝑒𝑐 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒, 5.7%,
.2%, and 3.3% higher than those of CrackGCN. Thus, the experimental
esults demonstrate that SCL-GCN outperforms the comparison methods
9

hen considering accuracy, efficiency, and data dependency owing to
he enhanced descriptive feature encoding and inference capabilities of
he constructed stratified features and multi-scale contrastive learning.

The corresponding visualization results are shown in Fig. 5. The
racks detected by the comparative methods are incomplete, whereas
he SCL-GCN network yields more complete cracks with fewer outliers.
verall, the SCL-GCN proved to be a satisfactory solution for detecting
racks from large-scale and disordered MLS pavement point clouds.

.7. Ablation study

We conducted several ablation experiments to explore the effec-
iveness of the SCL-GCN component. Expressly, CrackGCN and Crack-
CN (SF) indicate that CrackGCN is trained with vanilla-version fea-

ures and stratified features, respectively; SCL-GCN is the model pro-
osed in this paper. During the experiments, we fixed the same train-
ng/testing split ratio of 1:6 and other hyperparameter settings as
escribed in Section 4.4. As shown in Table 5, the crack-detection
erformance increased gradually with the addition of stratified fea-
ures and the contrastive learning module. Compared with CrackGCN,
rackGCN (SF) improved the average 𝑃𝑟𝑒 by 6.4% and average 𝐹1-𝑠𝑐𝑜𝑟𝑒

by approximately 1% at the cost of a 4.3% decrease in the average
𝑅𝑒𝑐 . The results reveal that the designed stratified features provide a
more accurate and specific description of pavement cracks but lead to
a decrease in the detection rate for cracks with inconspicuous geometric
features. With the addition of the contrastive learning (CL) mechanism,
SCL-GCN outperforms CrackGCN by 5.7%, 1.2%, and 3.3% in 𝑃𝑟𝑒,
𝑅𝑒𝑐 , and 𝐹1-𝑠𝑐𝑜𝑟𝑒, respectively, and outperformed CrackGCN (SF) by
5.5% and 2.4% in 𝑅𝑒𝑐 and 𝐹1-𝑠𝑐𝑜𝑟𝑒. he proposed contrastive learning
module narrows the distance of multi-scale features in the feature
space, allowing mutual assistance to improve the overall structural
description ability while ensuring the geometric details of pavement
cracks. Thus, stratified feature construction and contrastive learning
modules are effective.

4.8. Efficiency analysis

Table 6 presents the training times for the different models. U-Net
and AU-Net required the longest training times as pixel-level models,
exceeding 6 h. Owing to the high computational cost of dynamic graph
convolution, the training time of DGCNN was twice as long as that
of PointNet, approximately 4 h. In general, the efficiency of the semi-
supervised models was significantly higher than that of the supervised
models. Among them, CrackGCN was the most efficient. The training
time of CrackGCN (SF) was slightly longer than that of CrackGCN
due to the additional computations caused by the extra features. The
crack detection performance of the proposed SCL-GCN remarkably
outperformed that of CrackGCN (SF) due to the contrastive learning
mode of the two GCN branches. However, the training time of SCL-GCN
was much less than twice that of CrackGCN (SF), only 1.27 times, which
proves the compactness and training efficiency of the dual-branch
architecture of SCL-GCN. Furthermore, SCL-GCN achieved competitive
performance on five times more test data than SD-GCN with a slight
increase in training time using only one-seventh of the training data.
Thus, the proposed SCL-GCN is an efficient and less-data-dependent

solution for pavement crack detection.
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Table 5
Ablation experimental results of different methods.

Method CrackGCN SF CL 𝑃𝑟𝑒(%) 𝑅𝑒𝑐 (%) 𝐹1-𝑠𝑐𝑜𝑟𝑒(%)

CrackGCN ✓ 70.0 73.9 71.9
CrackGCN (SF) ✓ ✓ 76.4 69.6 72.8
SCL-GCN ✓ ✓ ✓ 75.7 75.1 75.2
Table 6
The computational costs of different methods measured in training time.

Method U-Net AU-Net PointNet DGCNN CrackGCN CrackGCN(SF) SD-GCN SCL-GCN (ours)

Training time >6 h >6 h >2 h >4 h ∼40 min ∼45 min ∼55 min ∼70 min
5. Conclusion

This paper presents SCL-GCN, a novel dual-branch GCN-based ar-
chitecture consisting of a multi-scale graph representation construction
module and a graph feature contrastive learning module for pavement
crack detection from MLS point clouds. The multi-scale graph represen-
tations construction module enables the model to increase the effective
receptive field with long-range contexts at a low computational cost.
In addition, the graph feature contrastive learning module supervises
the learning process of dual-branch GCNs using stratified features,
avoiding learning bias caused by imbalanced data distribution, promot-
ing convergence and improving performance. The experimental results
demonstrate that the developed SCL-GCN outperforms state-of-the-art
approaches, with comprehensive consideration of accuracy, efficiency,
and data dependency. With a training/testing ratio of only 1:6 and an
overall training time of less than 70 min, the average precision, recall,
and 𝐹1-𝑠𝑐𝑜𝑟𝑒 of the SCL-GCN reached 75.7%, 75.1%, and 75.2%, respec-
tively. The effectiveness of the modules in the SCL-GCN was analyzed
through a series of ablation experiments, further verifying the efficacy
of the model. We have developed an efficient technique for improving
pavement crack-detection performance using MLS point clouds. Future
research will introduce knowledge distillation techniques to monitor
and guide networks with more compact architectures to increase the
integrity and accuracy of detected cracks.
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