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A B S T R A C T   

Rapid assessment of urban damages after a strong earthquake is a necessary and crucial task to reduce the 
number of fatalities and recover socioeconomic services. In this paper, a novel deep-learning-based framework is 
proposed for detecting and mapping damages in urban buildings and roads using post-earthquake high-resolu
tion satellite imagery. The method begins with overlaying a pre-event vector map on an input image to extract 
the building and road objects. The core machine learning components include two separate convolutional neural 
networks (CNN), integrated with Gabor filters, which extract debris pixels associated with building and road 
objects. These debris pixels are analyzed to generate the final damage maps, which show multiple damage de
grees for buildings and roads. Two different datasets were used to thoroughly evaluate the proposed method’s 
overall effectiveness. The overall accuracy of 95% for detecting the debris pixels in building and road areas 
proves the effectiveness of the proposed CNN models for debris detection in comparison to the traditional Ma
chine Learning (ML) methods. The proposed method successfully labelled 84% of the buildings and 87% of the 
roads when compared with a manually generated multiple damage map.   

1. Introduction 

1.1. Motivation 

Earthquakes are known as one of the most deadly and catastrophic 
natural hazards on earth. Among the death tolls, many were directly lost 
due to building damages or collapses (e.g., residential or commercial 
buildings) (Lu et al., 2023). Some damages were indirectly attributed to 
disabled functionalities of lifeline infrastructure. Indirect loss of lives in 
the aftermath of strong earthquakes may be caused by disrupted services 
of medical facilities due to impassable road networks. Besides claiming 
lives and injuries, earthquakes threaten all aspects of human societies, 
including social, economic, and technical activities (Bellini et al., 2023). 
On the other hand, these activities are physically supported by civil 
structures and lifeline infrastructure, including road networks. There
fore, rapid and accurate mapping of damaged buildings and road net
works in urban areas is necessary to provide decision support for 
immediate post-earthquake rescue and long-term recovery of critical 

functionalities of societies (Rastiveis et al., 2013). 
Various remote sensing (RS) technologies and data sources, such as 

high-resolution optical images, have been used for damage map gener
ation (Irwansyah and Gunawan, 2023). Due to the increasing spatial 
resolution and availability during the last two decades, optical satellite 
images have been popularly adopted for urban damage detection and 
mapping (Tiwari et al., 2023). Several machine learning (ML)- and deep 
learning (DL)-based methods have been proposed for detecting damaged 
buildings or blocked roads after earthquake using satellite imagery. In 
the majority of these methods, debris pixels were often treated as the 
most visually salient feature in satellite images. However, nearly all 
these damage detection methods have focused on either buildings or 
roads, and none of them have conducted the two detection problems 
considering their intrinsic relation, as road blockage is mainly due to 
structural debris that further comes from building damages. Besides, DL 
algorithms have recently emerged as the fastest-growing trend in sat
ellite image understanding. Therefore, in this paper we propose a state- 
of-the-art DL-based method for damage assessment using satellite 
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imagery to simultaneously generating both buildings and roads damage 
maps. The following section will review the previous traditional and DL- 
based methods for damage assessment. 

1.2. Literature review 

Previous damage detection methods have often relied on comparing 
pre- and post-event images using change detection methods (Menderes 
et al., 2015; Zhou et al., 2019). For instance, Erdogan and Yilmaz (2019) 
proposed a framework for building damage maps generation (B-DMG) 
using pre- and post-earthquake aerial photos and digital surface models 
(DSM). They employed an image differencing algorithm to identify 
change areas, and applied a threshold selection method to detect 
earthquake-induced changes. 

Another common method for damage assessment is detecting debris 
areas on satellite images using classification techniques. Classification 

algorithms are typically employed for this purpose, with textural in
formation being the most commonly used features for debris detection. 
In this regard, Haralick features, generated through grey level co- 
occurrence matrices (GLCM), have frequently been used for damage 
assessment (Samadzadegan et al., 2008). Khodaverdizahraee et al. 
(2020) proposed a state-of-the-art segment-by-segment comparison 
(SBSC) method based on object-oriented classification for B-DMG using 
satellite images. Their approach involved segmenting both images, 
performing a segmentation intersection to extract identical image ob
jects, extracting optimal textural features for these objects, and utilizing 
the differences between pre- and post-event images in a support vector 
machine (SVM) classifier to detect damaged buildings. Cooner et al. 
(2016) evaluated building damages in three different scenarios 
including Artificial Neural Network (ANN), Radial Basis Function Neu
ral Network (RBFNN), and Random Forest (RF), and reported an overall 
accuracy of 77%. Taskin Kaya et al. (2011) used the same dataset for 

Fig. 1. The BR-DMG flowchart for earthquake-induced buildings and road damage map generation.  
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damage assessment based on support vector selection and adaption 
(SVSA), achieving an overall accuracy of 81%. While B-DMG methods 
using multi temporal optical remote sensing have shown acceptable 
results, they often face challenges due to the requirement of a pre-event 
dataset that may not always be available or up-to-date. Furthermore, 
collecting training data for classification twice can be a time-consuming 
process. 

Surprisingly, there have been fewer studies focusing on road damage 
map generation (R-DMG) compared to B-DMG, despite the crucial role 
of road damage maps in post-earthquake search and rescue operations. 
However, several methods have utilized high-resolution optical imagery 
or LiDAR point clouds for R-DMG. For instance, Coulibaly et al. (2015) 
and Rastiveis et al. (2015) employed SVM classification for R-DMG using 
textural, spatial, and spectral features. Although R-DMG methods have 
demonstrated promising results, they often neglect the impact of 
building debris, and heavily rely on the availability of a pre-event image. 

In recent years, several damage assessment techniques based on deep 
learning (DL) have been proposed. Nex et al. (2019) introduced a con
volutional neural networks (CNN)-based architecture for identifying 
visible earthquake damages using optical sensors with different resolu
tions, generating a binary building damage map. Hao et al. (2018) 
proposed a combined 3-D convolutional neural network and Gabor fil
ters (GNN) method for post-earthquake IKONOS image classification. 
Their proposed GNN model uses multi-scale spatial information scales 
by Gabor filters. Their GNN model outperformed SVM algorithm in 
classifying the image into four classes of Intact building, Forest, Broken 
Building, and Bareland. Yang et al. (2020) proposed a method for 
extracting road blockage information from post-earthquake high-reso
lution imagery using a low-depth CNN. 

Most state-of-the-art DL-based damage assessment methods utilize 
deep architectures such as Fully Convolutional Networks (FCN), VGG, 
and U-Net (Ma et al., 2020; Shao et al., 2020) to extract deep features. 
While these architectures have demonstrated fascinating results, their 
effectiveness relies on a substantial amount of sample data, which can be 
a time-consuming and laborious process. Additionally, processing such 
complex networks requires powerful hardware. The complexity of these 
networks also makes it challenging to tune their hyperparameters and 
train them effectively. 

In summary, generating a damage map based on change detection 
methods using bi-temporal imagery analysis is challenging because the 
changes can originate from other sources such as registration errors. In 
addition, it is a time-consuming and laborious process, which may not be 
a useful option for disaster managers to have a quick response after an 
earthquake. Although traditional methods based on textural information 
have reported promising results, selecting optimal features for classifi
cation is the main drawback of these methods. In the DL-based algo
rithms, this optimization is conducted by changing the weights between 
neurons in the last layer of the CNNs. It worths mentioning that 
regardless of promising results of the previous DL-based algorithms, 
their models possess complex network architecture and a very large 
number of model parameters. Hence, they demand high-volume training 
datasets, for which the process of preparing these semantically anno
tated datasets is tedious and demanding. 

1.3. Contribution 

Reviewing the previous methods on damage map generation using 
satellite imagery reveals potential for further improvement. This 
research proposes a deep learning-based method for creating a 
comprehensive urban damage map using satellite optical imagery. The 
proposed method introduces two CNNs to extract debris for buildings 
and roads. These CNNs, combined with a low-level feature extraction 
technique based on classical Gabor filters, offer a lower computational 
complexity compared to advanced deep learning frameworks. Conse
quently, the proposed CNN models are more efficient in training due to 
reduced network parameters, requiring a smaller training dataset. 

A novel design aspect of the proposed method involves utilizing the 
produced building damage map as auxiliary data, along with the 
extracted debris areas on the road surface, to generate the road damage 
map. The visualization of features extracted from the shallow layers 
demonstrates their similarity to Gabor features. Gabor filters possess 
steerable properties that allow for the extraction of structures at specific 
frequencies and orientations from an image. These advantages have 
made Gabor filters popular tools in various image processing applica
tions. By incorporating Gabor filters, the training complexity of the CNN 
is reduced, resulting in a decreased number of trainable parameters. 
Furthermore, the Gabor filter enhances the network’s resistance to 
geometric transformations, thus improving the robustness of learned 
features against scale and rotation. This represents a key contribution of 
this paper—highlighting the potential benefits of Gabor filters in DL- 
based damage assessment. 

In addition, this research introduces two new indices for measuring 
the level of damage to buildings and roads. Numerical studies and per
formance assessments using real earthquake event images are conducted 
to demonstrate and verify the proposed method. Notably, the proposed 
method only requires the post-event image for damage map generation. 
Furthermore, the algorithm can provide multi-level damage maps for 
roads and buildings, whereas many state-of-the-art methods focus on 
binary damage map generation. Another contribution of this paper is the 
reduction of false-positive debris pixels by establishing a connection 
between road debris and damaged buildings. 

2. Method 

Fig. 1 depicts the flowchart of our framework for urban buildings and 
road damage mapping (BR-DMG). The proposed framework is made up 
of three major components: (i) CNN-based debris detection to detect 
debris pixels on roads and buildings, (ii) B-DMG process to evaluate the 
damage degree of each building, and 3) R-DMG process to estimate the 
blockage level of the roads using the detected debris areas and the 
generated building damage map. 

2.1. CNN-based architecture for debris detection 

Because debris areas are a true indication of building damage or road 
blockage, debris detection constitutes the first step of the proposed BR- 
DMG method, implemented using CNN-based classification techniques. 
It is noteworthy that the variety of objects in the building area differs 
from the road surfaces; therefore, different CNN structures are used in 
each phase. To clarify, after an earthquake pixels of a building area in a 
satellite image can be categorized into two groups of Debris and non- 
Debris classes, and a binary classifier may satisfy this categorization. 
On the other hand, objects on the road surface are more diverse; here, 
Shadows, Cars, Asphalt, and Debris are five considered classes in roads 
area classification, which requires a more complex classifier. 

The CNN has several layers connected sequentially by learnable 
weights and biases. These stacked convolutional kernels learn picture 
characteristics in spectral and texture space. CNN models for image 
classification usually have two primary parts: a feature extractor with 
multiple convolutional layers and an MLP classifier. 

2.1.1. Gabor filter 
The Gabor filter is a popular method of feature extraction that has 

been widely used in the field of image processing. This filter can be used 
directly, without any pre-processing, to extract features from grayscale 
images in a variety of scales and orientations. It involves a Gaussian 
function modulated by complex sinusoidal frequency and orientation. 
The general form of a 2D complex Gabor filter is defined by the 
following equation (Jia et al., 2021): 

H (x, y; λ, α, σ,φ, γ) ≡ e
−
(Z2

1 − γ2 Z2
2 )

2

2σ2
x ej(2π

Z2
1
λ +φ) (1) 
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Z1 = xcosα+ ysinα (2)  Z1 = − xsinα+ ycosα (3) 

Fig. 2. The proposed CNN architecture for the B-DMG part.  

Fig. 3. The architecture of the CNN network for R-DMG purposes.  
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where x, y are pixel positions in the grey level image, σ standard 
deviation of the Gaussian function, λ wavelength of the sinusoidal plane 
wave, α is the orientation, γ is the spatial aspect ratio, and φ is phase 
offset, 

The real part of a 2D Gabor Filter (H r) can be defined as follows: 

H r(x, y; λ, α, σ,φ, γ) ≡ e
−
(Z2

1 − γ2 Z2
2 )

2

2σ2
x cos(2π Z2

1

λ
+ φ) (4) 

The 2D Gabor Filter’s imaginary component (H i) can be described 
as: 

H i(x, y; λ, α, σ,φ, γ) ≡ e
−

(Z2
1 − γ2 Z2

2 )
2

2σ2
x sin(2π Z2

1

λ
+ φ) (5) 

The 2D Gabor Filter’s real and imaginary components are applied to 
the greyscale image at various angles and sizes. The output of Gabor 
Filter is fused with the first layer of CNN and fed to the next layers to 
generate high-level features. 

2.1.2. Convolution layer 
The convolution layer automatically extracts deep features by a 

combination of linear and non-linear operations based on the following 
equation (Barzegar et al., 2023): 

vi,j = f

(
∑q

s=1

∑q

t=1
ws,t.vi+s,j+t + b

)

(6) 

where f denotes the activation function, W is the convolution filter 
with a size of q × q, v is the feature map at the preceding layer, b is the 
bias, and (.) is the dot product operator. The output of the jth feature map 
in the ith layer at (x,y) can be expressed using the following equation 
(Saadat et al., 2022): 

vxy
i,j = f

(

bi,j +
∑

m

∑Li-1

r=0

∑Qi-1

s=0
Wr,s

i,j,mv(x+r)(y+s)
i-1,m

)

(7) 

where L and Q are the length and width of the convolution filter size, 
respectively, and m is the feature related to the current feature in the (i- 
1)th layer. 

2.1.3. Architectures 
Due to the diversity of the objects on the road area against the 

simplicity of the building area, different CNN architectures are consid
ered. The CNN architecture for buildings should divide the building area 
into two classes “Debris” and “non-Debris”. Fig. 2 depicts the architec
ture of the suggested CNN model for B-DMG, which consists of an input 
layer, an extraction layer using a Gabor bank filter, four convolution 
layers, and a fully connected layer. The size of the input patch in this 
network is 21 × 21 pixels. The number of kernels and their size in the 
convolutional layer are depicted in Fig. 2. The extracted deep features 
are incorporated into a fully connected (FC) layer, and then a softmax is 
used to determine the classification of the input patch with probabilistic 
values between 0 and 1. It should be noted that unlike the GNN model, 
proposed by Hao et al. (2018), our proposed model extract gabor fea
tures for each channels of the image separately and use the resulted 
gabor features along with the original image as the input of the con
volutional layers. 

In the road area, various classes such as cars, debris, asphalt, and 
shadows exist; therefore, detecting debris areas on the road surface re
quires a more complex CNN architecture compared to the B-DMG’s ar
chitecture. For this purpose, an extra fully connected layer is considered 
in addition to the higher number of filters in the convolutional layers. 
The designed architecture for R-DMG is illustrated in Fig. 3. 

2.2. Model training and prediction 

Fig. 4 illustrates the general overview of the training process. As 
shown in this figure, the optimization of the parameters is performed in 
two iterative steps: (i) learning the classifier algorithm based on training 
data and initial parameters, and (ii) evaluating the classifier using test 
data. These steps are repeated until reaching an acceptable accuracy. 

Our proposed CNN models utilize back-propagation for supervised 
learning techniques in their training process. The main idea is to adjust 
the weights in the nodes to minimise the difference between the output 
node activation and the output (Zhang et al., 2019). By back- 
propagating the errors through the network, the weights are adjusted 
using a recursive method. This process will continue until the error 
become lower than a predefined acceptable value. 

The quality and quantity of sample data are crucial to the efficacy of 
supervised machine learning systems. As can be seen from Fig. 5, the 
sample data is divided into two main parts: (1) training data, and (2) 
testing data. The training data is divided into training and validation 
data, which are used for training and validating the data while tuning 
the parameters of the models. 

In this study, to train the CNNs, several sample data in two classes of 
Debris and non-Debris were manually collected to be used for training 
the proposed CNN in the B-DMG module. In the R-DMG module, the 
selected sample data were collected in four classes Asphalt, Debris, Cars, 
and Shadows. Eventually, using the abovementioned CNNs the debris 

Fig. 4. The process of the supervised classification process.  

Fig. 5. The various distribution of debris inside a building; (a) building with no 
debris par; (b) destroyed along the width; (c) destroyed along the length; (d) 
destroyed in both length and width. 
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pixels are detected in both roads and buildings area. These pixels are 
then used for evaluating the level of damage in the next steps. 

2.3. Damage map generation 

2.3.1. Building damage map generation 
The extracted debris of each building is used to detect the level of 

damage to that building. It should be noted that small objects on the roof 
of some buildings such as solar panels, air conditioners, and TV antennas 
may cause false alarms in the classification step. Therefore, in a modi
fication step of the B-DMG, a closing morphological operator is used to 
eliminate the noisy debris areas considering a square-shaped structural 
element with a 3 pixels width. Here, the shape and size of the structural 
element must be selected carefully to not eliminate large debris parts. 
After the modification, all buildings with no debris areas are labeled as 
“Intact buildings” while the others are evaluated via a damage analysis 
process. 

There are various criteria for damage analysis that mainly focus on 
the geometrical properties of the debris parts including length, width, 
and area. Defining the damage index merely based on one of these pa
rameters may lead to an incorrect damage degree. This is clarified by the 
presented samples in Fig. 5 which debris parts may appear in any di
rection in any area. 

In this research, therefore, all of these three geometrical parameters 
are used to calculate a building damage index (BDI). For this purpose, 
three initial damage indexes based on each of these parameters (i.e. area 
(DIA), width (DIW), and length (DIL)) are measured using Eqs. (8)–(10), 
and then the average of these indices is used to define the final building 
damage index (BDI) as shown by Eq. (11). 

DIA =
Area of the Debris

Area of the Building
(8)  

DIW =
Width of the Debris
Width of the Building

(9)  

DIL =
Length of the Debris

Length of the Building
(10)  

BDI =
DIA + DIW + DIL

3
(11) 

Once the BDI is calculated for all buildings in the damaged area, 
some predefined thresholds on the BDI map can be utilized to provide a 
multi-level building damage map. The bigger BDI value indicates more 
similarity between the debris area and the initial building polygon 
which is a sign of a highly damaged building. Conversely, if the BDI is 
small, which is a sign of a small and narrow debris area, then the 
building would be labeled as low-level damage. The minimum and 
maximum value of the BDI is 0 and 1, respectively. Dividing this inter
val, the final damage map is obtained in three levels of damages: intact 
or low-level damaged building, moderate-level, and high-level damage 
degrees. 

Fig. 6. Various distributions of debris on a road surface; a) high amount of debris in an unblocked road; b) sample of debris distribution that may not be accurate by 
road sectioning or profiling; c) low amount of debris area in a blocked road. 

Fig. 7. Schematic diagram of damaged road consideration based on RDI.  

Fig. 8. Overview of the Bam dataset as the first dataset in this research; a) Post-earthquake high-resolution data that the selected test area is bolded by the red 
polygon; b) The pre-event vector map of the selected test area. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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2.3.2. Road damage map generation 
Similar to the B-DMG, the R-DMG process starts with modification of 

the classification result followed by a road damage index (RDI) calcu
lation to evaluate the blockage level for each road segment. The main 
purpose of the modification process in this module is to detect and 
eliminate false debris areas inside the road area. If we assume that all 
debris areas inside a road originate from building damages, we can 
eliminate false debris areas by considering the resulted building damage 
map. In other words, a debris area on the road will be accepted if there is 

at least one damaged building near that debris area. Here, after elimi
nating noisy debris pixels using a morphological operator by using a 
square-shaped structural element with a 3 pixels width, another modi
fication is used based on the generated building damage map. In which, 
a buffer space perpendicular to the road direction is considered for each 
debris part to detect all adjacent buildings to that debris part. Due to the 
assumption that building debris is the main reason for a road blockage 
after an earthquake, not observing a damaged building inside the buffer 
space can be a sign of classification errors, and consequently, that debris 

Fig. 9. Haiti dataset: (a) Post-earthquake WorldView-2 image; (b) obtained layer of the road network from the open street map overlaid on the resulted building 
polygons from the pre-event image interpretation. 

Fig. 10. Spatial distribution of the selected samples to train the proposed models for classification: (a) Bam dataset; (b) Haiti dataset.  

Table 1 
Numbers of samples used for damage detection in the Bam dataset ().   

No. of Pixels in the Test Area Class No. of Samples Training Validation Testing 

B-DMG 486,503 Non-Debris 7505 4803 1201 1501 
Debris 8440 5401 1351 1688 

R-DMG 241,689 Car 942 602 152 188 
Asphalt 27,374 17,519 4380 5475 
Shadow 5218 3339 835 1044 
Debris 2057 1316 328 411 

*Unit of samples is pixel. 
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area can be eliminated from the road segment. 
Once the classification results are modified, the blockage level of 

each road can be assigned based on the extracted debris areas. Surely, 
the amount of debris inside a road is not an accurate index for evaluating 
the road’s blockage but its distribution form is significant. Fig. 6 illus
trates three different possible cases of debris distribution. For example, 
Fig. 6a shows an unblocked road with a large amount of debris on the 
road surface while Fig. 6c shows a blocked road with a small and narrow 
debris area. Several previous studies have used road profiling or 
sectioning for their damage analysis in which a road is divided into 
several tiles or sections, and the blockage of these sections is considered 
to make the final decision about the road situation (Izadi et al., 2017; 

Samadzadegan and Zarrinpanjeh, 2008). Although these methods may 
provide promising results, however, they may not be accurate in some 
cases. For instance, in Fig. 6b there is an inclined debris area that has 
blocked the road. If one divides this road into many segments, all seg
ments in this road may appear unblocked, and consequently, it would be 
labeled an unblocked road while it is truly blocked. 

In this study, the road damage index (RDI) is defined based on the 
orthogonal distance of the debris areas to the edge of the road. If this 
distance is larger than a standard parking width (e.g. 3 m), it means that 
the debris area has not completely blocked the road. As can be seen from 
Fig. 7, the orthogonal distance of each debris area to the road edges can 
be a useful sign of the openness of the road. It is worth mentioning that 

Table 2 
Numbers of samples used for damage detection in the Haiti dataset.   

No. of Pixels in the Test Area Class No. of Samples Training Validation Testing 

B-DMG 194,406 Non-Debris 19,763 12,648 3162 3953 
Debris 10,192 6523 1631 2038 

R-DMG 274,767 Car 5229 3347 837 1045 
Asphalt 8968 5739 1435 1794 
Shadow 4505 2883 721 901 
Debris 8088 5176 1294 1618 

*Unit of samples is pixel. 

Fig. 11. Results of the B-DMG module in Bam dataset: (a) classified buildings using the proposed CNN in two classes; (b) building damage map showing three levels 
of building damages. 

Fig. 12. Results of the R-DMG module in the Bam dataset: (a) classified roads using the proposed CNN in four classes; (b) road damage map with three levels of 
road damages. 
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small areas of sidewalks from both sides of the road are eliminated to 
measure the RDI in a more reasonable area. These areas, which are 
shown by the yellow color in Figs. 6 and 7, can be a fixed value or can be 
considered as a small percentage of the road width. In this research, we 
considered 2 m road width as the sidewalk buffer. Eventually, the road 
damage index for each debris part (RDIi) is calculated using Eq. (12), and 
the final RDI for the road can be obtained using Eq. (13): 

RDIi = max{dli, dri} (12)  

RDI = min{RDIi}, i = 1, 2, ⋯., n (13) 

where n is the number of debris areas inside the road. dri and dli are 
the distance of the i-th debris area to the right- and left side of the road, 
respectively. The higher value of these distances will show the low in
fluence of the debris on the road blockage. The final RDI of the road is 
calculated based on the smallest RDIi among all debris areas. Similar to 
multiple damage map generation of buildings, predefined thresholds on 
the RDI measure can be used in the final road damage map. 

3. Experiments and results 

3.1. Datasets 

The first dataset includes the pre-event digital vector map and post- 
event QuickBird satellite image of the city of Bam, Iran, taken on 
January 3, 2004, a week after the 2003 earthquake. The spatial reso
lution of this dataset is 2.4 (m) visible spectral bands and 0.6 (m) for 
panchromatic band. Also, The Intensity-Hue-Saturation (IHS) pan
sharpening technique was utilized to enhance the spatial resolution. The 
selected test area region of the Bam dataset can be seen within the red 
polygon in Fig. 8a. 

The post-earthquake WorldView-2 image of Port-au-Prince, Haiti is 
used as the second dataset to evaluate the proposed CNN-based BR-DMG 
method. The WorldView-2 image was acquired on January 13th, 2010, 
with spatial resolutions of 2 m and 0.5 m for multispectral and 

panchromatic bands, respectively. In this dataset, a region including 
several buildings was selected as the test area which is specified by a red 
polygon in Fig. 9a. 

3.2. Model training process 

The spatial distribution of the generated sample data for the Bam and 
Haiti datasets is presented in Fig. 10. The training, validation, and test 
data percentages in both networks were 64%, 16%, and 20%, respec
tively. More details of the selected samples are summarized in Tables 1 
and 2 for both datasets. 

The CNN hyper-parameters were also initialized and, then, examined 
on the testing data. The input patch size for B-DMG and R-DMG were 21 
× 21 × 3 and 9 × 9 × 3, respectively. In addition, the size of the mini- 
batch was 1500. Moreover, the initial learning rate was set to 10-4 with 
an epsilon value of 10-9. The dropout is a key parameter to avoid 
overfitting that was set to 0.1 rates in the latest layer. 

3.3. Results 

After pre-processing, by overlaying the buildings and road layers on 
the post-event image all buildings and road areas were extracted. It is 
noteworthy that the obtained areas merely help us to know which pixel 
should be imported into which classification process, and input patches 
to the network are selected from the original pre-processed image. This 
will help the network to have a fair and realistic view of the pixels 
located on the edges of the buildings or roads. Finally, the label of every 
candidate pixel inside the buildings or roads was predicted using their 
corresponding trained CNN model. 

Fig. 11a shows the result of the building damage classification for the 
Bam dataset. Eventually, the final buildings damage map was obtained 
by thresholding the BDI measure that can be seen in Fig. 11-b. In this 
paper, those buildings whose BDI is less than 0.3 are labeled as Intact or 
low-level damaged buildings, those with BDI values between 0.3 and 0.5 
as moderate-damaged buildings, and the buildings with BDI greater than 

Fig. 13. Final damage map of the test area for the Bam dataset using the proposed BR-DMG process with the three levels of damages.  
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Fig. 14. Damage maps for the test area in Haiti dataset: (a) classified building area; (b) building damage map; (c) classified road area after modification; (d) road 
damage map with three levels of damages; (e) final damage map generated using the proposed BR-DMG process. 
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0.5 as high-damaged buildings. The multiple damage analysis for the 
buildings shows that a considerable number of buildings have been 
classified in the high-level damage class. 

In the R-DMG module, the obtained classification result of the road 
regions using the proposed CNN model was modified using the resulted 

buildings damage map, and all false debris areas were eliminated from 
the result. Then, buffering 0.05% of the road width from each side, the 
RDI measure of all the road segments was calculated for evaluating the 
blockage degree. In this research, three degrees of blockage including 
Unblocked, Moderate-level blocked, and Blocked were considered. The 

Fig. 15. Result of the conventional classification methods using Haralick texture features for B-DMG (left) and R-DMG (right) in the Bam dataset.  
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thresholds here are regarded as follows: roads whose RDI is smaller than 
3 m are assigned as Blocked roads, from 3 m to 7 m as Moderate-level 
Blocked, and greater than 7 m are labeled as Unblocked roads. The 
classification image of the roads area for the Bam dataset after modifi
cation and the obtained roads damage map is shown in Fig. 12a and 12b, 
respectively. 

Fig. 13 shows the final damage map after merging both the building 
damage map and the road damage map obtained using our proposed BR- 
DMG process for the Bam dataset. 

Similarly, the damage map for the Haiti dataset was achieved. The 
detailed results including the classification results and the damage map 
of the B-DMG and R-DMG modules in addition to the final damage map 
are shown in Fig. 14. 

3.4. Performance of the CNN classifiers 

This section presents a comparison study between the designed CNN- 
based classification method (i.e., a CNN feature extractor plus an MLP 
classifier) and the four traditional ML methods (MLP, SVM, RF, and 
XGBoost classification models). In these methods, the Haralick textural 
features were extracted and used as suitable descriptors as they have 
been used in several damage assessment studies. It should be noted that 

Fig. 16. Results of the conventional classification methods using Haralick texture features for B-DMG (left) and R-DMG (right) in the Haiti dataset.  

Table 3 
B-DMG module CNN-based classifier numerical assessment summary (UA: User 
Accuracy, PA: Producer Accuracy, OA: Overall Accuracy).   

Bam Dataset Haiti Dataset 

UA (%) PA (%) UA (%) PA (%) 

Non-Debris MLP 63.66 71.55 66.59 100 
RF 77.41 73.75 75.32 88.46 
SVM 68.33 71.15 75.03 88.92 
XGboost 77.34 75.48 75.34 88.57 
Ours 99.70 99.67 95.94 95.72 

Debris MLP 71.57 63.68 100 2.70 
RF 77.6 80.86 66.17 43.77 
SVM 73.37 70.68 66.46 42.59 
XGboost 78.65 80.33 66.37 43.77 
Ours 91.57 99.76 91.74 92.15 

OA (%) MLP 67.39 66.90 
RF 77.52 73.26 
SVM 70.90 73.16 
XGboost 78.05 73.33 
Ours 95.01 94.50  
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in this paper we do not describe the details of the Haralick feature 
extraction. Interested readers are referred to (Löfstedt et al., 2019) for 
more details. During the ML classification, 8 Haralick features, which 
are the most used features in damage assessment studies, were selected. 
Regarding the parameter setting of these classifiers, the optimum value 
of the penalty coefficient (C) parameter and the kernel parameter (γ), in 
SVM were considered 34.29 and 0.001, respectively. In the MLP clas
sifier, 3 hidden layers were considered, and cross-entropy was used as 
the network performance function. This MLP classifier was converged 
after 100 iterations. The RF classifier parameters had set as follows: 
Number of Trees = 105, Number of Features to Split Each Node = 3. In 
addition, the XGboost classifier parameters had set as: Nrounds = 305, 
Max-Depth = 5, Eta = 0.03, Gamma = 0, Min-Child-Weight = 1, Sub
sample = 0.8, Colsample-Bytree = 0.8. 

The results of using the MLP, RF, SVM, and XGboost methods are 
shown in Figs. 15 and 16 for the Bam and Haiti datasets, respectively. As 
shown in Figs. 15 and 16 the obtained results from these two classifiers 
based on texture features are noisy and irrational and include too many 
false pixels while the classified image obtained by the CNN, shown in 
Fig. 12a, is more logical. The RF classifier is more sensitive to the 
detection of Non-Debris while it had missed its performance in the 
detection of Debris pixels. Furthermore, the other classifiers had pro
vided noisy pixels in the detection of Debris pixels. 

To evaluate the performance of the proposed CNNs for debris 
detection in B-DMG and R-DMG modules, quantitatively, common nu
merical measures including overall, user, and producer accuracies were 
calculated and compared with the result of the traditional machine 
learning algorithms. The obtained accuracy parameters are summarized 

Table 4 
R-DMG module CNN-based classifier numerical evaluation.   

Bam Dataset Haiti Dataset 

UA (%) PA (%) UA (%) PA (%) 

Asphalt MLP 88.64 98.61 45.61 85.23 
RF 93.76 85.57 77.83 27.98 
SVM 88.72 99.27 50.48 79.10 
XGboost 90.45 98.10 58.32 72.30 
Ours 98.79 98.65 98.59 93.53 

Car MLP 0 0.00 72.41 2.01 
RF 7.74 41.49 27.34 55.02 
SVM 72.73 4.26 45.79 8.33 
XGboost 58.70 14.36 44.64 23.92 
Ours 78.00 82.98 96.93 99.71 

Shadow MLP 82.29 79.21 78.17 44.51 
RF 79.49 80.17 28.81 68.59 
SVM 90.13 77.01 66.91 51.83 
XGboost 89.75 81.32 66.44 55.38 
Ours 93.40 93.49 99.76 94.01 

Debris MLP 77.27 4.14 64.14 58.03 
RF 81.67 11.92 90.11 25.90 
SVM 75.28 16.30 59.98 61.50 
XGboost 64.36 29.44 61.55 69.34 
Ours 78.82 77.86 90.53 96.91 

OA (%) MLP 87.71 53.94 
RF 79.36 39.46 
SVM 88.70 55.39 
XGboost 89.46 59.13 
Ours 96.28 95.84  

Fig. 17. Visually evaluated buildings and roads for accuracy assessment. (a) and (b) buildings and roads of the Bam dataset; (c) and (d) buildings and roads in the 
Haiti dataset. 
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in Tables 3 and 4 for the B-DMG and R-DMG, respectively. Based on the 
numerical results presented in these tables (Tables 3, 4), the CNN clas
sifiers outperformed the other methods in both modules. Additionally, 
the performance of the model in R-DMG is better than in B-DMG for both 
datasets. 

3.5. Accuracy assessment of the damage maps 

The obtained damage maps from the algorithm are compared with 
the manually extracted damage maps based on visual interpretation of 
the pre- and post-earthquake images to assess the reliability of our 
method. Comparing these visually obtained damage maps, as shown in 
Fig. 17 for both datasets, with the results of the algorithm, the accuracy 
of the roads and buildings damage maps were evaluated which are 
summarized in Table 6. 

Table 5 indicates that, in the Bam dataset, the BDI index provided an 
OA of more than 84% and error rates lower than 16%. This index ob
tained promising results in three classes of intact or low-level damage 
buildings, high-level damage, and moderate-level damage but its per
formance in detecting low-level damaged buildings was less than 80%. 
Mainly, these errors originated from the definition of the thresholds for 
BDI in addition to some classification errors. Based on the presented 
numerical results in Table 5, the damage analysis by RDI provided an 
overall accuracy of more than 92%. The lowest accuracy belongs to the 

Moderate-Level blocked class with 50% producer accuracy while 
unblocked roads were detected with an accuracy of more than 93% that 
which indicates, this index may need more investigation for road dam
age analysis. In the Haiti dataset, the proposed method has provided 
better performance in the generation of multiple building damage 
compare to the Bam dataset, where the accuracy is more than 91% by 
OA index. It is worth mentioning that the accuracy of the road damage 
map of the Haiti dataset was lower than the Bam dataset. In this case, the 
high amount of shadows due to tall buildings may be one of the reasons. 

4. Discussion 

4.1. Performance of the proposed CNNs versus traditional ML methods 

Classification is the most important step in damage/change detection 
algorithms. The visual and numerical analysis shown in our experiments 
proved that CNN models have higher performance compared to the 
traditional feature extraction and classification methods (based on the 
SVM and MLP, RF, and Xgboost classifiers using the Haralick features). It 
is noteworthy that since the CNN models in this work use the same MLP 
classifier, it is observed that the employed feature extraction is a sig
nificant factor in classification accuracy. Similar to the model proposed 
by Hao et al. (2018), our results showed that deep features outperform 
traditional ML algorithms for debris detection. This can be seen by 
comparing the results of damage detection based on texture features 
using MLP classification with the deep features by the same classifier. In 
this case, several falsely classified pixels were observed in the conven
tional classifiers using textural features. 

Fig. 18 illustrates several sample buildings in the classified image 
showing the superiority of the designed CNN for debris detection in the 
B-DMG module in both datasets. Fig. 18-a shows intact buildings with 
IDs i, iii, and iv in the Bam dataset that is considered correctly by CNN 
using deep features while the results of the other methods include 
several false pixels. This CNN has also identified the debris areas in 
buildings with IDs ii, v, and vi correctly. As shown in Fig. 18b, the 
performance of the proposed method is compared with other methods. 
Accordingly, the proposed method has provided meaningful results in 
terms of classifying debris pixels from non-debris pixels. For instance, 
Fig. 18b with IDs i, ii, and iii shows damaged buildings that were 
detected by the proposed method as well as other methods providing 
many missed detection pixels. The proposed method also provides lower 
false pixels than other conventional methods of damage mapping (ii, v, 
and vi). 

The classification results of the designed CNN in the R-DMG module 
in comparison with the other conventional classifiers based on textural 
features in the Bam and Haiti datasets are illustrated in Fig. 19a and 19b, 
respectively. As shown in these two figures, the use of conventional 

Table 5 
The accuracy of the obtained building and road damage maps is evaluated by comparing them to the reference maps of both datasets (IB: Intact-Building; MLD: 
Moderate-Level Damage; HLD: High-Level Damage; U: Unblocked; B: Blocked; MB: Moderate Blocked; CO: Classification Overall; TO: Truth Overall).   

Bam Dataset  Haiti Dataset  

Buildings Damage Map UA (%) CO HLD MLD IB IB MLD HLD CO UA (%) Buildings Damage Map 

88.46 26 0 3 23 IB 537 16 5 558 96.23 
57.24 138 49 79 10 MLD 33 79 5 117 67.52 
94.30 351 331 14 6 HLD 1 3 31 35 88.57 
— 515 380 96 39 TO 571 98 41 710 — 
— — 87.10 82.29 58.97 PA (%) 94.05 80.61 75.61 — — 
84.08 OA (%) 91.13  
UA (%) CO B MB U  U MB B CO UA (%)  

Roads Damage Map 92.06 63 0 5 58 U 23 3 0 26 88.46 Roads Damage Map 
100 3 0 3 0 MB 0 9 2 11 81.81 
100 3 3 0 0 B 1 0 10 11 90.91 
— 69 3 8 58 TO 24 12 12 48 — 
—— — 100 37.5 100 PA (%) 95.83 75.00 83.33 — —— 
92.75 OA (%) 87.50  
Bam Dataset  Haiti Dataset   

Table 6 
Comparison of high-resolution satellite image debris detection techniques.   

Reference Method OA 
(%) 

Buildings Damage 
Map Generation 
(B-DMG) 

Taskin Kaya et al. 
(2011) 

Support Vector Selection 
and Adaption (SVSA) 

81 

Cooner et al. 
(2016) 

#1: Artificial Neural 
Network (ANN) 
#2: Radial Basis Function 
Neural Network (RBFNN) 
#3: Random Forest (RF) 

74 
77 
76 

Bai et al. (2018) Object-based classification 91 
Mangalathu and 
Burton (2019) 

Deep Learning-based 
(LSTM) 

86 

Hao et al. (2018) 3-D Gabor Convolutional 
Neural Network 

71 

Ours Deep Learning-based 
(CNN) 

93 

Roads Damage Map 
Generation (R- 
DMG) 

Wang et al. (2015) Knowledge-based 
Detection 

85 

Rastiveis et al. 
(2015) 

support vector machine 
(SVM) 

83 

Ours Deep Learning-based 
(CNN) 

87  
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classifiers based on texture features has missed various debris areas that 
have resulted in wrongly labeling many blocked roads as unblocked. 

Table 6 summarizes the overall accuracies obtained for the classifi
cation of the optical high-resolution satellite imageries for damage 
assessment in comparison to our method. As can be seen from this table, 
our method outperformed traditional ML methods in both B-DMG and R- 
DMG purposes. 

4.2. Thresholding Multiple-Damage map 

The multiple-damage map is one of the most important achievements 
of this research. The BR-DMG can help to understand more details of 
damage maps that it can use as the basis map in the natural hazards. The 
multiple-damage map is generated in an unsupervised manner by 
thresholding RDI and BDI indices. The threshold value can be chosen as 
knowledge-based and depend on the view of the user against the damage 

Fig. 18. Performance of the CNN in comparison with conventional classifiers in debris detection. (a) sample buildings in Bam dataset; (b) sample buildings in 
Haiti dataset; 
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Fig. 19. Performance of the designed CNN in the R-DMG module in comparison with the conventional classifiers for debris detection. (a) three sample roads in the 
Bam dataset; (b) three sample roads in Haiti dataset. 
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level. This research generated three levels of damage the threshold value 
has been chosen through a trial and error procedure. For as much as the 
damage map can be generated at the binary level, we examined the 
results of multiple damage maps at the binary level. Table 7 shows the 
BR-DMG results at the binary level. Based on the presented numerical 
results, the binary damage map generation has high accuracy compare 
to multiple damage maps. This issue originated from the thresholding in 
the generation of the multiple damage map. 

4.3. Sample dataset 

The availability of a suitable sample dataset is crucial for the success 
of damage mapping using DL-based methods. Semantic segmentation 
models, in particular, rely on a large amount of training data, which can 
be costly to acquire in practice. It is worth noting that architectures such 
as Swin-Unet, which are based on semantic segmentation, typically 
require a larger training dataset compared to shallower pixel-wise deep 
learning methods. These models need to process the entire set of pixels 
in the input images, which often results in a time-consuming process. 

In contrast, the proposed framework in this study utilizes a sample 
dataset that is smaller than what is typically required for semantic 
segmentation-based models. Specifically, it was trained using only 
33,000 samples for the Bam dataset. Furthermore, the proposed 
framework has the advantage of generating multiple damage maps in an 
unsupervised manner, while deep learning models often necessitate 
multiple sets of labeled damage data. 

5. Conclusions 

In this paper, a novel DL-based method for automatic map generation 
of building and road damage using post-earthquake optical high- 
resolution imagery was proposed. The debris detection module, which 
includes two different CNNs for buildings and roads, as compared with 
conventional classifiers, and both CNNs outperformed these classifiers. 
However, the accuracy of the designed CNN for debris detection in 
buildings was higher than the one for the road area, which may be due to 
the variety of existing objects inside the roads. Besides, the obtained 
results showed that the proposed novel indices for buildings and roads 
(termed BDI and RDI, respectively) were successful in evaluating the 
level of damage in buildings and the level of blockage in roads. 

The proposed method has several advantages compared to other 
similar methods. They include: (1) The method provides simultaneously 
road and buildings damage maps; (2) The simple CNN architectures for 
debris detection require low computational cost; (3) Providing cate
gorical degrees for building damage and road blockage; (4) Working 
with post-event satellite imagery without relying on pre-event imagery; 
(5) Utilizing the buildings damage map for validating the detected 
debris inside roads area in R-DMG module. 

It is noted that the proposed method uses structural debris as the 
primary visual signature for determining building damage and road 
blockage. There are instances of structural damage or collapse patterns 
where debris is not significantly produced, despite the observed damage 
level at the ground level. For example, a collapsed building may still 
have a fallen, ’intact’ structural roof. This inherent limitation can be 
attributed to the nature of space-borne imagery, which does not offer a 
vertical view of buildings. In such cases, the utilization of LiDAR data or 
stereo satellite images may prove to be helpful. Such remote sensing 

data with visual features coming from the elevational direction may be 
further beneficial to removing false-positive detection of debris. These 
potential improvements warrant our future work. 
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