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A B S T R A C T   

Planar primitives tend to be incorrectly detected or incomplete in complex scenes where adhesions exist between 
different objects, resulting in topology errors in the reconstructed models. We propose a semantic-guided 
building reconstruction method known as semantic-guided reconstruction (SGR), which is capable of 
achieving the independence and integrity of building models in two key stages. In the first stage, the space 
partition is represented by a 2.5D convex cell complex and is capable of restoring planar primitives that are easily 
lost and can further infer the potential structural adaptivity. The second stage incorporates semantic information 
into a graph-cut formulation that can assist in the independent reconstruction of buildings while eliminating 
interference from the surrounding environment. Our experimental results confirmed that the SGR method can 
authentically reconstruct weakly observed surfaces. Furthermore, qualitative and quantitative evaluations show 
that SGR is suitable for reconstructing surfaces from insufficient data with semantic and geometric ambiguity or 
semantic errors and can obtain watertight models considering fidelity, integrity and time complexity.   

1. Introduction 

The efficient reconstruction of 3D building models in an automated 
manner is in constant demand for applications such as smart cities (Yang 
and Lee, 2019; Allam et al., 2022), environmental analysis (Badach 
et al., 2020), and entertainment (Matrone et al., 2020; Biljecki et al., 
2015; Hackel et al., 2017). At present, as the construction of smart cities 
transforms from digital twins to the Metaverse, the concept of “3D Real 
Scene” has been proposed in China (Xu et al., 2021), aiming to build real 
3D models in digital space from geographic entities in the real world. 

Building reconstruction is a tricky task because of its complex 
structure and delicate topology. The data are often obtained from laser 
scanning or photogrammetry, containing noise and occlusions (Han 
et al., 2021). However, the acquisition costs of point clouds through 
Airborne Laser Scanning (ALS) are high; points on façades are often 
missing owing to flight altitude. Urban 3D model reconstruction based 
on oblique photogrammetry (Zhang et al., 2020; Xiao, 2019; Bas and Ok, 
2021; Zhang et al., 2022; Zou et al., 2023) is currently one of the most 
popular reconstruction methods. Oblique photogrammetry mainly uses 

multiview aerial images as input and generates a triangular mesh 
through a series of steps. Compared with point clouds, the triangular 
mesh has a better shape description, and some noise points have been 
eliminated in its generation process (Vu et al., 2011). Therefore, we 
studied building reconstruction based on a triangular mesh. Considering 
the planar characteristics of man-made buildings, an intuitive approach 
(Liu et al., 2019; Nan and Wonka, 2017; Bauchet and Lafarge, 2020; Li 
et al., 2019) is to fit the original data with planes and capture the re-
lationships between them as much as possible, or further infer the po-
tential relationship. Based on further observations of its structure, a 
building typically has piecewise planar rooftops and vertical walls. The 
essence of boundary representation modeling (Chen et al., 2021; Zhou 
and Neumann, 2010) is to accurately extract the building roof and 
interior structural lines and organize and optimize them according to the 
correct topology. Advanced roof plane segmentation technology (Zhang 
et al., 2022) has further improved the accuracy of such methods. 
However, the modeling method based on the above idea is sensitive to 
noisy and missing data, which can easily lead to the low geometric ac-
curacy of key points and boundary lines. In addition, geometry and 
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semantic information in real data are often biased or even incorrect. In 
the most serious cases, some adhesions between the buildings and the 
surrounding environment cannot be separated, resulting in holes or 
incoherent parts in a single building extracted from a scene. Song et al. 
(2020) concluded that reconstructing a façade without sufficient 
observation data remains an issue owing to the continuing inability to 
acquire oblique data. At present, construction in the context of the 
Metaverse not only needs to achieve the purpose of visualization, but 
also needs to identify the readable and applicable single buildings; in 
this case, relying exclusively on the geometric structure for the recon-
struction process is inadequate. Building a model reconstruction that 
considers semantic information has received increasing attention. 
Currently, the buildings and surrounding environment are still attached 
to each other and are not independent. 

In this study, we propose a semantic-guided reconstruction (SGR) 
method for building modeling. The main contributions of the SGR are as 
follows: 

(1) A novel optimization mechanism incorporating semantic infor-
mation that can extract building entity models from mixed scenes 
with semantic ambiguity and adhesion between different objects.  

(2) A 2.5D space partition that considers the structure contours to 
restore weakly observed façades, which may be covered or have 
serious noise.  

(3) A reliable point cloud segmentation process based on quasi-a- 
contrario theory is extended to the plane segmentation of the 
mesh to accurately and robustly obtain planar primitives from the 
high noise and uneven mesh that may be present. 

The remainder of this paper is organized as follows. Section 2 pro-
vides an overview of related studies. Section 3 describes the imple-
mentation of the SGR approach. Section 4 presents and discusses 
experimental results. Section 5 summarizes our conclusions and di-
rections for future work. 

2. Related works 

The building model of an artificial scene is typically regarded as a 
collection of piecewise planar elements. As initial data always have 
defects of type or another, it is necessary to infer or “reconstruct” the 
object from the initial shape detected (Wang et al., 2020). In this paper, 
we review current methods for extracting geometric primitives and 
identifying their combinations to obtain a final model. 

Primitive extraction. The extraction of primitives aims to extract 
high-quality geometric shapes from raw input data polluted by noise and 
outliers, including region growth (Rabbani et al., 2006; Nurunnabi et al., 
2012) and RANSAC (Schnabel et al., 2007; Awwad et al., 2010). Both 
methods decompose the input point clouds or meshes into planar 
primitives. 

Primitive regularization. Previous studies in this category aimed to 
further regularize initial primitives by exploring prior knowledge of 
global regularity (Oesau et al., 2016; Fang et al., 2018). These methods 
refine the initial primitives from the noise data and reduce the geometry 
of the output 3D model and the solution space to be explored by 
assuming a relationship between the basic primitives, such as the rela-
tionship between repetition and global alignment (Li et al., 2011), 
parallel or coplanar relationship between the initial primitives (Mon-
szpart et al., 2015), and Manhattan hypothesis (Coughlan and Yuille, 
2000). However, the resulting model may have gaps, rather than being 
completely aligned, because each primitive is processed separately. 

Primitive assembling. Two groups of methods can be applied to 
assemble the initial primitives into a surface mesh model. Connectivity 
methods (Bouzas et al., 2020) apply an adjacency graph to analyze the 
relationship between the initial primitives and then extract the output 
mesh model (Schindler et al., 2011). These methods have advantages in 
terms of efficiency; however, they can create incorrect links that directly 

lead to topology errors or incomplete models. 
Slicing methods turn the modeling matter into a labeling problem of 

the “partition plane” or “partition cell” of the space unit, which has been 
shown to be helpful for generating a topologically closed 3D building 
model (Chauve et al., 2010; Mura et al., 2016; Nan and Wonka, 2017; 
Bauchet and Lafarge, 2020). This group of popular methods can be 
effective and robust in recovering watertight and concise models from 
challenging data. However, if a single building is seriously hindered by 
its surrounding environment or experiences semantic ambiguity, the 
constraint method based on geometric information cannot remove the 
interference of the surrounding environment or rebuild the building 
independently. 

Semantic reconstruction. The significance of semantic information 
in reconstruction tasks has received increasingly more attention (Blaha 
et al., 2016). Initial attempts to combine geometry and semantics for 
reconstruction were based on a depth map (Ladickỳ et al., 2012; Zheng 
et al., 2020); later, volume representations (Curless and Levoy, 1996; 
Savinov et al., 2015) and meshes (Cabezas et al., 2015) were utilized. 
Most of these approaches require two-dimensional images as input data 
to completely reconstruct the object and smooth the surrounding envi-
ronment to obtain a visually appealing model (Holzmann et al., 2018). 
Semantic modeling methods have recently been proposed. To date, most 
studies have involved labeling the building components and generating 
a semantic modeling framework (Coudron et al., 2020; Werbrouck et al., 
2020). 

3. 3D reconstruction of a single building with semantic priors 

The input of our SGR method requires that the original mesh has 
semantic information pertaining to all building and non-building cate-
gories. Fig. 1 shows the buildings in yellow and non-buildings in green in 
the semantic mesh. Our SGR method comprises three main phases: (i) 
planar primitive segmentation, (ii) space partitioning, and (iii) face se-
lection with semantic priors. 

3.1. Planar primitive segmentation 

The commonly used method for initially defining a structure is to 
detect the initial primitives in the input mesh. In the classical plane 
segmentation approach (Schnabel et al., 2007), the emphasis is on 
clustering point sets rather than accurately fitting planes. 

We did not directly detect primitives owing to the discontinuity and 
irregularity of the mesh; rather, the QTPS algorithm (Zhu et al., 2021) 
was extended to the planar segmentation of the mesh data. First, the 
QTPS algorithm segmented the encrypted vertices of the triangular mesh 
into planar clusters P = {pv}, and then the adjacent faces within a 
predefined ring of each inner vertex of the planar segment were used as 
the seed patch. In general, we selected a ring of neighbors of inliers as 
adjacent faces. Finally, our two-stage progressive region growth strategy 
was used to cluster patches on the plane; the same a-contrario theory as 
in the QTPS was used to verify the accuracy of the extended plane to 
obtain complete and accurate plane segmentation, P = {ptri}(see Fig. 2 
(a)). 

3.2. Space partitioning with volumetric unit 

The slicing method is currently one of the most prevalent recon-
struction methods because of its robustness to defective data using a 
divide-and-conquer strategy. Inspired by the kinetic Shape Reconstruc-
tion (KSR) (Bauchet and Lafarge, 2020), we extended and designed a 
2.5D partition mode, the essence of which is to generate meaningful 
partitions efficiently and adaptively. First, we obtained an adaptive 
polygon partition based on the projection of façade primitives in two- 
dimensional space and then described the partition of the overall 
space by considering the non-façade. The final result was a convex 
polyhedral set. 
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Detection of Line-segments: The Line-Segment Detector (LSD) 
method (Von et al., 2008) was used to approximate the contour of the 
two-dimensional projection of the façade primitives to obtain the line 
segmentation. 

Polygonal partition in dynamic planar graph: The method of 
polygon partition guided by line segments is widely used in images 
(Achanta and Susstrunk, 2017, Duan and Lafarge, 2015) and is also used 
to vectorize the boundary pixel chain of super voxels. Bauchet and 
Lafarge (2018) dynamically updated the planar graph by progressively 
expanding the pre-detected line segments; the restoration of the 
connection point in the polygon partition was solved in an adaptive 
manner. This method inspired us to use the detected line segments to 
guide polygonization in a two-dimensional (2D) space, as follows in 
Fig. 3.  

(i) Initialize the projection of the façade as a graph, G = (V,E), 
where V is the vertex of the graph, represented by the midpoint of 
the line segment, and E is the section among the vertices, i.e., the 
edge.  

(ii) A dynamic planar graph Gt = (Vt ,Et) was introduced to generate 
a polygon partition in 2D. The points in the initial graph 
(midpoint of the line segment) extend outward at a uniform speed 
along the two endpoints of the line segment. As shown in Fig. 3 

(c), after time t, the ray l1 first intersects with line segment l3 to 
generate point p1 (a collision) and then continues to extend out-
ward to generate points p2, p3, and p4 successively. Considering 
the robustness of the defective data and the complexity of the 
plane partition, the extension stops when the collision number of 
the line segment reaches two in our experiment. When the line 
segments are divided and intersected, the graph is updated by 
inserting new vertices and edges. Therefore, when all line seg-
ments in the planar graph no longer extend, the planar partition 
process is completed. The initial line-segment graph was con-
verted into a new planar graph. 

(iii) The polygon partition is stretched to the maximum height of the 
input mesh to generate a set of polyhedra. Then, the intersection be-
tween the non-façade primitive and the polygon in 2D is determined. We 
note that the non-façade primitives only clip the polyhedra expanded 
from polygons with 2D intersections. Finally, a 2.5D space partition is 
generated. 

As the dynamic partition is an effective polyhedron embedding, the 
polyhedral partition has greater shape self-adaptability to generate a 
watertight and intersection-free model than the tetrahedral partition. 

Fig. 1. Pipeline of semantic-guided reconstruction.  

Fig. 2. Illustration of the initial planar primitive segmentation.  

Fig. 3. Illustration of the kinetic planar graph: the line segments in (a) are initialized as shown in (b); the extremities (blue dots) of the line segments collide with 
each other to yield the new nodes (red dots) in (c, d); and the final graph after removing unnecessary nodes is shown in (e). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Semantic-guided surface extraction 

The SGR method was designed to accurately identify the buildings 
mixed with their surrounding environment according to semantic in-
formation and meet the following requirements: (1) the algorithm 
should be able to discard the parts occluded by the surrounding envi-
ronment and fill in the holes; and (2) even though there may be parts 
with semantic errors on the monomer, the complete structure can still be 
reproduced. The surface extraction of a building is usually transformed 
into a binary labeling problem of convex polyhedra (Chauve et al. 2010). 
The cells are labeled as interior or exterior polyhedra using a graph-cut 
formulation; the output surface becomes the interface between the 
different labels. This approach designs an energy function related to the 
semantic information of the original mesh to extract the surface model 
from the polyhedral embedding. In contrast to assigning an internal and 
external guess to each polyhedron through ray shooting (Verdie et al. 
2015), we adopted a more efficient voting strategy that exploits the 
semantic information of the initial mesh and the oriented normal of the 
inliers to assign the label of the polyhedron more robustly. 

Let the binary variable li = (in, out) encode the inside (li = in) and 
outside (li = out) labels of polyhedra C. The possible output surface S =

(li)i∈C is obtained by minimizing the energy function using two terms: 

{li} = argminE := Eclass data + λEclass area (1) 

where Eclass data measures data fidelity and Eclass area evaluates surface 
complexity, both of which are terms used in [0, 1]. λ ∈ [0, 1] is used to 
balance the two terms. 

Data fidelity Eclass data measures the consistency between the inner 
and outer labels of each polyhedron and the normal direction of the 
inliers. The aim was to remove the non-building part from the plane of 
semantic ambiguity. Therefore, the semantic information of the input 
mesh was introduced to clarify the judgment of consistency. The ver-
texes of the original mesh are assigned to the plane of the corresponding 
polyhedron as the inliers of the polyhedron according to the Euclidean 
distance. The normals can be calculated from the minimum spanning 
tree and should be as accurate as possible, pointing to the outside of the 
building surface. Then, the vote for the inlier points of the semantic 
mesh to express data fidelity is considered, as shown below: 

Eclass data :=
1
|I|

∑

i∈C

∑

p∈Ii

dB
i (p, li) (2) 

where C is the set of polyhedra, Ii is the associated inliers of all the 
faces of polyhedron i, and the value of |I| is twice the number of all the 
inliers in the original mesh. Specifically, dB

i (p, li) is a voting function 
related to semantic information that is used to test whether the normal 
direction of the inner point p is consistent with the label of polyhedron i. 

As shown in Fig. 4, n→ and u→ are the normal vectors of interior point p 
and the vector from the point p to the center of the corresponding 
polyhedron, respectively. When the inner product of n→ and u→ is less 
than zero, this point is generally marked as in, and vice versa. We prefer 
to assign the labeling polyhedron i as “in” and polyhedron j as “out”. 

When considering semantic information, we fully exploit the 
contradiction between its semantic attributes and statistics of its inliers 
in a convex polyhedron. We may find some phenomena that can easily 
cause labeling errors; for example, if a polyhedron after a partition 
contains only one vertex whose normal is toward the outside of the 
surface, the polyhedron is marked as “out” according to the voting 
mechanism and is finally selected. However, the results may not be 
reliable in terms of the number of vertices included or the accuracy of 
the normal. In addition, a polyhedron cannot be labeled only according 
to the normal information of the inlier point, and is not sufficient to 
settle the issue of semantic ambiguity on the plane. Therefore, the 
related constraints are required. When the statistics for vertices are 
introduced, the variables ratiof P, ratiopB all, ratiopB P, d|in− out|, and np are 
defined and graphically illustrated in Fig. 5. Here, ratiof P is the ratio of 
the number of faces labeled as a building class to the total number of 
faces contained in the polyhedron. If there are three or more inliers of 
the building class on the face of the polyhedron, it is considered as the 
face of the building class. Next, ratiopB all is the ratio of the number of 
building class points in each convex polyhedron to the number of points 
in the mesh. Then, ratiopB P represents the proportion of building points 
in each convex polyhedron. To a certain extent, the above three vari-
ables reflect whether the convex polyhedron is a part of the building 
when there is interference from the surrounding environment. We used 
d|in− out| to count the difference between the number of normals of the 
points toward the interior of the surface and the exterior of the surface in 
each polyhedron. Ideally, the normals of all inliers of each polyhedron 
face the interior or exterior of the surface. If the difference is small, there 
may be an error in the normals of the inliers of a polyhedron or the 
difference may indicate that the polyhedron is in a semantically 
ambiguous part. Finally, np is the number of inliers in each convex 
polyhedron. 

Therefore, we propose the concept of the contradiction domain, 
which mainly refers to the scope that should not belong to the building. 
The contradictions explored include the following cases:  

1. From the perspective of the proportion of the faces covered by the 
building points, if ratiof P is greater than θratiof P , then the building 
points cover most of the faces in a convex polyhedron; thus, the 
polyhedron belongs to the building part. Theoretically, the building 
points it contains should occupy a certain proportion of the original 
points unless ratiopB all is relatively small in scale. This condition 
mainly removes polyhedra whose building points are scattered on 
several patches, and where the number of points labeled as buildings 
accounts for a small proportion. This condition may often appear in 
the boundary part of the semantic ambiguity and may be 
fragmented.  

2. With respect to the building importance of each polyhedron, i.e., the 
proportion of the building points to all the inliers it contains, if 
ratiopB all is greater than θratiopB all

, then this polyhedron contains a 
certain building point, and all the inliers in the same polyhedron 
should also have a higher proportion. However, if the value of 
ratiopB P is very small, the polyhedron likely contains both building 
points and other types of points. 

To balance the influence of the normal consistency and semantics of 
the inliers on the labels of the polyhedron, we set a range within which 
the labeling of the polyhedron was clear and the error was small. This 
range is represented by the following Eq. (3): 

d|in− out|
maxP{in,out} > ratiopB P(np > 3) (3). 

Fig. 4. Graphical representation of the consistency of the normal vector. The 
red point represents the center of the polyhedron; the black arrow represents 
the normal vector of interior point p; and the red arrow represents the vector 
where p points to the center. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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The difference d|in− out| between the inliers labeled with “in” and “out” 
is more significant than the proportion of building points in the poly-
hedron. To avoid the voting errors caused by a convex polyhedron 
containing a vertex, Eq. (3) was used when the number of inliers is not 
less than three. If one of the following two conditions is satisfied, it can 
be used as the harmony zone:  

1. By satisfying Eq. (3), more than half of the inliers belong to the 
building class of a polyhedron. For example, ratiopB P > 0.8. A 
polyhedron meeting this condition is mainly covered by building 
points.  

2. By satisfying Eq. (3), ratiof P, ratiopB all, and ratiopB P should all be 
greater than a certain value in their respective ranges.  

3. If the value of d|in− out| is large enough, then the number of inliers 
labeled with “in” or “out” in the polyhedron will vary greatly. In this 
case, the effect of semantics on labels should be appropriately 
reduced. For example, ratiof P is greater than a threshold such as 
0.04; 

The above uncertainty threshold in the definition of contradiction 
and harmony domains is only a conceptual introduction. See the 
parameter settings for the subsequent experiments. Based on the above, 
the voting function is determined as follows: 

dB
i (p, li) =

⎧
⎨

⎩

di(p, li), Ci ∈ Zharmony
1{li=in}, Ci ∈ Zcontradiction
di(p, li)⋅ratiopB all, Ci ∈ Zelse

(4)  

di(p, li) =

{
1
{ n→⋅ u→>0}, if li = in

1
{ n→⋅ u→<0}, if li = out (5) 

where p is the interior point of the polyhedron, li is the label of the 
polyhedron, n→ is the normal of p, and u→ is the vector that p points to the 
center of the polyhedron. 

di(p, li) is an indicator function when n→⋅ u→> 0, di(p, li = in) returns a 
penalty of 1 whereas di(p, li = out) = 0. The binary voting mechanism 
only requires that the normal points are half the space of the separating 
surface, which is robust to the imprecise normal directions. 

When voting for each interior point, if the point belongs to the har-
mony region, the voting function is determined only according to the 
consistency of the normal vector. If the point satisfies the condition of 
the contradiction field, the label of this polyhedron is forced to be “in” 
regardless of the normal vector of the interior point. For the remaining 
ambiguous areas, the normal vector consistency and semantic propor-
tion should be jointly considered. 

Second, Eclass area measures the complexity of the output surface, 
which traditionally is measured by calculating the area of the output 
surface. Our innovation is that we introduce the semantic information of 
the original mesh on the output surface. Compared to other methods, we 
target the real surface area covered by the building class, expressed by 
Eq. (6): 

Eclass area =
1
A
∑

ij̃

aB
Δ⋅1{xi∕=xj} (6) 

where the value of A is defined as the sum of the areas of all the 
divided patches, which is a normalization factor; i ∼ j represents two 
adjacent polyhedra i and j, and aΔB denotes the area of the triangular 
mesh (the semantic label is the building), which is coplanar between 
polyhedra i and j. To maintain a balance between the number of output 
surfaces and geometric errors, in our experiments, we set the value of λ 
to 0.5. Finally, the energy function was solved using a graph-cut algo-
rithm (Boykov et al., 2004). 

4. Experimental results and discussion 

4.1. Experimental settings 

The proposed SGR approach was implemented in C++ using the 
CGAL and VCG libraries. The details of the pipeline of the proposed 
algorithm are as follows. 

(1) Line segmentation expands outward with rays until collisions 
occur to generate a two-dimensional polygon partition. The collision 
number K plays a trade-off role between model fineness and the 
robustness to missing data, which is set by the user. In the experiments, 
the value of K is set to 2. 

(2) The thresholds of several of the variables we used to define the 
contradiction domain and harmony domain are worth discussing spe-
cifically. The three variables, ratiof P, ratiopB all and ratiopB P, appear in 
both the contradiction domain and harmony domain and the threshold 
settings are different in the two domains. 

We explored the significance of each parameter in comparison ex-
periments. Table 1 lists the parameter settings and Fig. 6 shows a 
comparison of our visualization results for the different parameters. In 
Table 1, (a)-(d) show the input parameters of the visualization results in 
the first row of Fig. 6; (e)-(h) correspond to the second row. The 
reduction in the threshold value of ratiof P led to the expansion of the 
scope of the contradiction domain; thus, there was a structural loss in the 

Fig. 5. Illustration of the defined variables. The yellow points represent the building points while the gray points represent the inliers. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Settings for the input parameters corresponding to Fig. 6(a)-(h).   

contradiction domain harmony domain 

data ratiof_P ratiop
B
_all ratiop

B
_P ratiof_P ratiop

B
_all ratiop

B
_P d|in-out| 

a 0.8 0.05 0.8 0.3 0.02 0.2 50 
b 0.2 0.05 0.8 0.3 0.02 0.2 50 
c 0.4 0.15 0.8 0.3 0.02 0.2 50 
d 0.8 0.05 0.8 0.01 0.08 0.02 50 
e 0.8 0.05 0.8 0.3 0.02 0.2 50 
f 0.8 0.05 0.8 0.02 0.008 0.08 50 
g 0.8 0.05 0.8 0.3 0.02 0.2 10 
h 0.5 0.3 0.3 0.3 0.02 0.2 30  

S. Wang et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 119 (2023) 103324

6

result model (see Fig. 6 (b)). According to the statistical information, 
decreasing the values of the three variables resulted in more polyhedra 
belonging to the harmony domain. The final model contained additional 
parts that were not building frames, as shown in Fig. 6 (f). In summary, 
the increase in variables in the contradiction domain led to the loss of 
structure in the final model; the reduction in variables in the harmony 
domain resulted in the retention of more structural details. Therefore, 
the goal is to find an appropriate threshold that can accurately remove 
non-building parts adhering to the building frame in the final model 
reconstruction. 

(3) The distance threshold in the plane fitting process is related to the 
average distance between the original mesh vertices. In this experiment, 
it was manually set to 0.15 m according to the geometric precision of the 
mesh. 

4.2. Experimental data 

The experimental data included two mesh datasets containing se-
mantic information. The first dataset depicts a university area in 
Guangzhou, China, and the second is the SUM dataset (Gao et al. 2021). 
First, we processed the multi-view aerial oblique image using the Con-
textCapture (B.SYSTEMS, 2016) commercial software to obtain a 
triangular mesh model. Then, based on the depth neural network U-Net 
(Ronneberger et al., 2015), we integrated the geometric features of the 
mesh, spectral features, and façade value features and introduced an 
attention mechanism to classify the meshes to obtain a triangular mesh 
with semantic information. Both datasets contained six semantic cate-
gories: terrain, vegetation, buildings, water, vehicles, and ships. Fig. 7 
illustrates the two datasets. 

4.3. Baselines 

We contrasted the results of our SGR method with the results of the 
following three state-of-the-art algorithms: structure-aware method 
(Bouzas et al., 2020), PolyFit (Nan and Wonka, 2017), and kinetic shape 
reconstruction (KSR) (Bauchet and Lafarge, 2020). The main feature of 
the structure-aware method is the use of structural awareness to restore 
the original primitive and its adjacency. PolyFit obtains a watertight 
structure by extending and intersecting the initial primitives. KSR uses a 
dynamic data structure to adaptively divide the space, thereby providing 
high elasticity to occluded and missing data. 

4.4. Results and discussion 

We evaluated the reconstruction results from different degrees of 
interference of non-building semantic labels on single buildings and the 
complexity of the buildings themselves. 

Reconstruction results. The input data in Fig. 8(a)-(c) are from the 
Guangzhou survey area. Based on the initial data in Fig. 8(a), the single 
building structure is complete, but its independent extraction and 
reconstruction are damaged because of adhesion with the ground. The 
data in Fig. 8(b) have semantic classification errors; the single building 
has missing data and curling due to occlusion. The structure of the 
original data in Fig. 8(c) is more complex than before; semantic classi-
fication errors exist over a large area of the façade. The results in Fig. 8 
(a)-(c) show that our SGR algorithm completely reconstructed the 
building from the original mesh with missing and incorrect semantic 
classification, even generating the details of a building with complicated 
structures, as shown in Fig. 8(c). The data in Fig. 8(d) and (g) are from 

Fig. 6. Final model generated from the parameters in Table 1. Different results were generated by adjusting the values of the variables in the defined fields 
respectively. 

Fig. 7. Experimental mesh data. Scene data (a) is from the self-test data and other data (b) is from the SUM public data set.  
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the public dataset SUM and are mainly affected by the surrounding non- 
buildings. However, some of the data were significantly obscured, as 
shown in Fig. 8(d), such as simple roof structures (Fig. 8(d)) and gable 
roofs (Fig. 8(e)). The experimental results showed that the SGR can 
reconstruct single buildings independently of vegetation occlusion. In 
particular, although the entire wall of the original data in Fig. 8(d) was 
covered by vegetation, SGR accurately identified and completely 
restored the missing wall. In Fig. 8(g), our method accurately identified 
the sheltered façade, restored its structure, and reconstructed two 
buildings connected by trees. 

Table 2 presents a quantitative evaluation of the SGR method. From 
the number of input and output triangular meshes, SGR can achieve a 
lightweight model. The number of polyhedra generated by space parti-
tioning partially depends on the structural complexity of the original 
data, as shown in Fig. 8(a) and Fig. 8(g). In terms of running time, the 
proposed SGR basically processed single buildings in approximately one 
minute, but required longer run times for complex structures. We note 
that the space partition process is a time-consuming step in the entire 
process. The overall runtime includes the entire process from the input 
to the output. 

Comparisons. The main purpose of this group of experiments was to 
compare the effects of various methods on the reconstruction of single 
buildings under occlusion and to observe the effects of SGR’s intro-
duction of semantic information into the reconstruction process. 

Fig. 8. Reconstruction of a single building from mesh data with semantic information. The original data is disturbed by the surrounding environment.  

Table 2 
Statistics on the example are shown in Fig. 8.  

Mesh (Fig. 8) (a) (b) (c) (d) (e) (f) (g) 

#input trimesh 108 k 51 k 48 k 59 k 11 k 45 k 94 k 
#planar shapes 315 135 283 132 22 70 294 
#number of 

polyhedra 
114 103 126 227 67 130 781 

#output facets 204 159 395 64 70 144 488 
Graph cut(sec) 0.03 0.02 0.03 2.04 0.01 0.04 0.01 
2.5D 

partitioning 
(sec) 

4.42 3.85 4.8 12.78 4.68 10.32 68.42 

face selection 
(sec) 

0.03 0.02 0.07 1.37 0.02 0.01 0.14 

Total time 
(sec) 

34.75 21.06 27.72 67.67 10.41 32.46 578.62  
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Buildings were sheltered by trees to varying degrees, as shown in 
Fig. 9 (a) and (b). As shown in Fig. 9(b), in the case of severe occlusion, 
the structure-aware method and PolyFit method were unable to produce 
results. KSR aims to reconstruct the geometry and structure so that the 
surrounding trees are reconstructed together and the goal of separating 
the buildings from the surroundings is not achieved. On the other hand, 
SGR accurately identified the interface between buildings and trees in a 
heavily obscured environment and rebuilt single buildings without 
interference from trees. However, because SGR depends on the accuracy 
of the initial segmentation, the upper block cannot be reproduced. In 
Fig. 9(c), two buildings were connected by trees, which is a relatively 
complicated scene, but SGR still located the façade between the building 
and trees and restored the occluded part, generating a visually accurate 
and attractive building model. Overall, the SGR method generated in-
dependent and complete building models from mixed data for buildings 
and the surrounding environment. 

Table 3 lists the statistics comparing the efficiency of these methods 
and the accuracy of the model for the quantitative results. Efficiency was 
expressed by the overall run time of the algorithm. Model accuracy was 
measured by calculating the root mean square error (RMSE) distance of 
the model to the original mesh (excluding non-buildings): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

∀v∈mB
ori

min
PΔtri∈M

‖v − PΔtri‖
2

|{v|∀v ∈ mB
ori} |

√
√
√
√
√ (7)  

where v is a vertex labeled building in the original mesh and PΔtri is the 
planar primitive of the final model M composed of a triangular mesh. 
Here, the distance from the vertex to the model is considered the min-
imum Euclidean distance to PΔtri, while 

⃒
⃒
{
v|∀v ∈ moriB

} ⃒
⃒ is the amount of 

building vertices in the original mesh. 
In Table 3, while the KSR method offers a significant advantage in 

terms of runtime, the accuracy of the model is relatively low when the 
buildings are seriously obscured. The PolyFit method requires a long 
runtime and produces poor quality results. The structure-aware method 
required less runtime, but was only effective when the data quality was 
very good. Both the structure-aware and polyFit methods failed to 
generate results for the data in Fig. 9(c). While our SGR method had a 
longer runtime, it was better than PolyFit. The accuracy of the model 
was relatively stable, regardless of whether the data were less or 
severely occluded. 

Effect of semantic information. The experiment was divided into 

two groups (semantic and non-semantic information) with the input as 
the original complete data and non-building data, respectively. 

In Fig. 10, the visualization results for the building attached to the 
surrounding environment are almost the same as those with non- 
building parts removed (as shown in Fig. 10, arrow 1). This indicates 
that semantic information played a partial role in filtering the sur-
rounding environment. Arrow 2 shows the influence of the original data, 
with or without semantic information, on the reconstruction results. 
There were redundant fragments in the reconstruction results without 
semantic information. In the grouping experiment without semantic 
information, if the non-building part was removed, there were incorrect 
parts in the experimental results, as indicated by arrow 3. These results 
show that an ideal result cannot be achieved by simply removing the 
non-building parts for reconstruction through the pretreatment step. In 
the grouping experiment without semantic information, there were 
obvious incorrect details in the visualization results of both the original 
data and the data with the non-building parts removed (arrow 4). 
Overall, the results of the grouping experiments without semantic in-
formation are obviously inferior to those with semantic information. In 
general, the semantic information not only filtered the reconstruction of 
buildings, but also improved the structural correctness. 

To further illustrate the role of semantic information in guiding the 
reconstruction of buildings, the experimental setup used data containing 
non-building parts of different degrees as input, as shown in Fig. 11(b) 
and Fig. 11(c). Fig. 12 intuitively presents the difference between Se-
mantic information participation and non participation in the modeling 
process. 

Owing to the absence of the façade, the structure was automatically 
inferred during the reconstruction process to generate the results shown 
in Fig. 11(a). If the semantic information is correct, the non-building 

Fig. 9. Comparison of the reconstruction methods.  

Table 3 
Quantitative evaluation of the different reconstruction methods.  

Method Fig. 9(a) Fig. 9(b) Fig. 9(c) 

time 
(s) 

RMSE 
(cm) 

time(s) RMSE 
(cm) 

time 
(s) 

RMSE 
(cm) 

Structure- 
aware  

23.2  12.33 14.3  9.15  –  – 

PolyFit  49.2  11.50 2604  5.08  –  – 
KSR  3.77  8.04 27.98  10.88  237.99  19.76 
SGR  45.69  10.66 195.08  7.17  578.62  5.84  
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part is directly removed (as shown in the input data in Fig. 11(b)); a 
severely occluded façade is not generated, resulting in structural errors 
on the left side of the building. The input data in Fig. 11(c) does not 
completely remove the non-building parts, as shown in Fig. 11(b); some 
non-building parts are retained on the severely occluded façade. From 
the experimental results, although there was non-building interference, 
the façade on the left side of the building was correctly generated. In 
conclusion, when buildings are seriously disturbed by the surrounding 
environment, semantic information plays a more significant role in 
guiding the reconstruction process and is of great significance in 
removing non-building parts and completing missing parts in building 
monomer reconstruction. 

Effect of primitive segmentation. We explored the influence of the 
initial primitive segmentation on the reconstruction process and results. 
Fig. 13 shows the visualization results. 

In the initial primitive segmentation stage, the parameters were 

changed to generate different segmentation results. According to the 
statistical results, the number of roofs detected was also different, which 
was the key factor causing the different results in the final model. From 
the results, the more primitives that were detected, the more facets that 
were included in the final generated model with increased runtime. 
Furthermore, in practical applications, the number of initial primitives 
can be appropriately controlled according to the need for detailed 
retention, which can improve the efficiency. 

Impact of parameters. Our SGR method has two main parameters: 
1) the threshold of the roof area and 2) the value of λ in the energy 
function. 

The roof played an important role in the detailed retention and run 
time of the resulting model. To capture the main roof structure and 
effectively obtain the framework of buildings, we set the area threshold 
of the roofs. 

Four thresholds were set, as shown in Fig. 14. As the threshold 
decreased, more roof details were retained. In addition, the runtime 
increased as the threshold increased. The area threshold of the roof 
should be within a certain range to ensure certain structural details, as 
well as efficiency. 

We also explored the impact of λ on the reconstruction, including the 
number of output facets and geometric errors. Gradually increasing the 
value of λ and the number of output patches caused a significant 
decreasing trend (blue curve in Fig. 15). The value of λ was 0.4–0.8 to 
balance the simplicity and accuracy of the model. The geometric error 
was calculated as the RMSE of the Euclidean distance from the vertex of 
the original mesh to the final primitive model (as described in Eq. (7)). 

Potential for detail retention. To confirm the potential of our SGR 

Fig. 10. Impact of semantic information on the model.  

Fig. 11. Influence of non-building interference on reconstruction.  

Fig. 12. The Comparative experiment of the proposed method with and 
without semantics. (a) input data; (b) use semantic information for recon-
struction; (c) the reconstruction process does not use semantic information. 
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method in retaining details, we selected data for the comparison 
experiment. In Fig. 16, the red boxes in the original data indicate the 
building details. The structure-aware method aimed to extract the main 
structure to the maximum extent. The visualization results of our 
method generated details that were consistent with the original data. We 

suggest that more details will be retained based on their robustness and 
accuracy. 

Limitations. As the original data inevitably contain noise and oc-
clusions or are missing, primitive objects in the real object may not be 
recovered in the original input data, making it undetectable. Structural 
deficiencies may also exist in the final model. Moreover, the noise and 
uneven density of the original mesh may affect the accurate calculation 
of the vertex normals, particularly on the occluded plane, which is 
important for the extraction of the final surface. If the error is significant, 
it is necessary to manually correct the normal direction. 

5. Conclusions 

We proposed a semantic-guided building reconstruction (SGR) 

Fig. 13. Effect of the initial primitive on the reconstructed model.  

Fig. 14. Influence of the area threshold of the roof. If the threshold value is too high, the building structure will be simplified; otherwise, more details will 
be retained. 

Fig. 15. Influence of parameter λ. As the value of λ increases, the output model 
becomes simpler and the number of output faces (blue curves) decreases. The 
values that are too small or too large will make the geometric error larger. The 
unit of geometric error is cm. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Potential to generate detail.  
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method for building objects using fuzzy boundary semantics. SGR makes 
full use of the semantic information of the original building data and 
statistical information of the semantic information on the boundary. In 
addition, SGR adaptively expands the façade in 2D space to explore 
possible intersection relations and creates a space partition for recon-
struction. It can capture and recover occluded or missing façade infor-
mation by combining the semantic information and the façade 
projection on the boundary. The SGR can also ensure the efficiency and 
scalability of its algorithm by adaptively generating space partitions. 
Our experiments showed that SGR could reconstruct single buildings 
independently and cost-effectively from various objects and scenes and 
multiple data sources, with different degrees of semantic interference to 
buildings and varying complexities of building structures. In our ex-
periments, when multiple buildings were occluded by vegetation, our 
SGR method reduced the interference of the surrounding environment 
and rebuilt individual buildings separately. 

In the future work, we will use the proposed method to make a city- 
level building model dataset, and further explore the the use of deep 
learning in the automatic reconstruction task to better compensate for 
imperfect local structures and thereby improve the accuracy of the 
model. 
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