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ARTICLE INFO ABSTRACT

MSC: In this research, a primitive prediction network embedding Spherical Coordinate Transformation (named SCT-
00-01 Net), which is a simple and end-to-end deep neural network, is proposed for primitive instance segmentation
99-00 of point clouds. The key point of SCT-Net is to excavate the relationship between local neighborhood points.
Keywords: First, in order to enhance the compacted expression of local feature, a spherical coordinate transformation

Primitive instance segmentation
Spherical coordinate transformation
Relation matrix

is embedded to a deep network. Second, the embedded network is constructed to predict the point grouping
proposals and classify the primitives corresponding to each proposal, which can segment primitive instance
directly. Third, the feature relationship between each two points is revealed by the constructed relation matrix.
The designed loss function not only encourages the embedded network to describe local surface properties,
but also produces a grouping strategy accurately for each point. Experiments show that the proposed SCT-Net
achieves the state-of-the-art performance than representative methods. At the same time, the capability of

spherical coordinate transformation has been demonstrated to improve primitive instance segmentation.

1. Introduction

With the rapid development of 3D scanning technology, the acquisi-
tion of point clouds, which records the spatial information of the scene
or object surface, is becoming more and more convenient. However,
these point clouds lack topological relationships and tend to require
larger storage capacity, which increases challenges for applications in
real environments. The triangulation of point cloud enables the discrete
points to obtain the topological relationship between the neighbor-
hoods (Lafarge and Alliez, 2013; Holzmann et al., 2018), but the mesh
decimation iteratively folds edges that cannot preserve the important
structure. Primitive assembly, which requires primitive instances based
on the point segmentation, is therefore limited by the quality of point
cloud segmentation. Thus, our goal is to improve the quality of point
cloud segmentation and generate a lightweight primitive model.

Indeed, a lot of works have been proposed for the primitive instance
segmentation. There are two representative solutions: RANSAC and
region growing. For RANSAC (Derpanis, 2010), many algorithms of
computing inlier points have varying degrees of sensitivity to density,
noise, and occlusion. How to find the appropriate parameter remains
a big challenge. In addition, region growing (David and Gabor, 2001)
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is a kind of non-global methods for primitive instance extraction. The
main challenge is how to fit appropriate parameters so as to preserve
boundaries of similar primitives robustly. Both two methods are highly
dependent on the choice of parameters. Recently, a number of methods
based on deep learning have emerged. For example, Li et al. (2019)
introduced a Supervised Primitive Fitting Network (SPFN) that can
predict primitives at different varying scales automatically. However,
this method assumes that several primitives are known and are sensitive
to the incomplete data obtained by scanning in the real environment.
Apart from that, Sharma et al. (2020) presented a novel decomposition
strategy that considers primitive patches as the parametric fitting of
simple geometric patches. Nevertheless, the method’s decomposition
module still relies on the given surface patch primitives. Besides, Huang
et al. (2021) proposed an adversarial network (PrimitiveNet), decom-
posed the global segmentation problem into local tasks, and fitted them
with geometric primitives. It is noteworthy that they still need the help
of RANSAC or region growing, and the designed deep neural network
greatly increases the complexity of such methods.

Primitive extraction is aimed at extracting high-quality primitive
instances and clears boundaries from point clouds corrupted by noise
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and outliers. In order to distinguish different primitive instances ro-
bustly, we propose an end-to-end deep neural network that reinforces
the extraction of point-to-point relationships based on spherical coor-
dinate transformation, and derives a smooth border at the junction
of primitives. Although the problem of primitive segmentation is gen-
erally considered as the instance segmentation, it is different from
the traditional 3D instance segmentation. Primitive does not contain
sharp features that make the relationship of points more important.
In general, a cloud saves with the artesian coordinate system, the
relationship between points such as distance is calculated, and the
square root or trigonometric functions is unavoidable. Floating-point
arithmetic tends to generate error and high time complexity. Notably,
spherical coordinate is a good way to solve this problem, because
a point and its neighbor always have a similar elevation angle or
azimuth. It is convenient and efficient for us to introduce spherical
coordinate transformation, and point deep learning methods such as
PointNet and PointNet++. Thus, the feature similarity of two points
reaches a specific value, indicating that the selected two points belong
to a same primitive. Beyond that, the distance of pairwise points is
measured to construct a relation matrix making an initial proposal of
each primitive instance. Combining with a learned confidence map and
primitive estimation, we can finally get an accurate group.

Experiments show the convenience and effectiveness of spherical
coordinate transformation-based method. Besides, SCT-Net achieved
better performance on the ABC dataset than the existing representative
methods. Notably, the time consumption is also lower than the state-
of-the-art methods. Ablation studies show that spherical coordinate
transformation significantly improves the standard point cloud feature
extraction network.

2. Related work
2.1. Fitting-based methods

Primitive fitting is to sample points and fit them with basic prim-
itives such as planes and cylinders. The representative methods are
reviewed as follows. Fischler and Bolles (1981) presented a classic
algorithm namely Random Sampling Consensus (RANSAC) algorithm
that iteratively operates between randomized sampling and estimates
the fitting parameters from a given data containing outliers, which
has been applied for computer vision and image processing. Variants
of RANSAC (Chum and Matas, 2005; Derpanis, 2010) are efficient in
outlier detection and its selection strategy decides the precision of
results. For dense point clouds, Schnabel et al. (2007) proposed a more
robust algorithm to detect different types of primitives. Li et al. (2011),
who extended Schnabel’s method, introduced subsequent optimizations
to extract primitives according to their relationships. As an extension
of the RANSAC-based approach, Wu et al. (2018) and Du et al. (2018)
presented a method to reverse a mesh or point cloud from which a solid
geometry was constructed. Although the experiments of these RANSAC
variants have improved the accuracy significantly in the corresponding
respective fields, it often relays on unstable and laboratory parameters
adjusted for different types of objects. Furthermore, these methods
usually require point normals as input, which are not directly available
from 3D scans. Some of the learning-based algorithms have been con-
structed for fitting primitive. Fang et al. (2018) proposed a framework
to detect planar shapes at structural scales. Then, they presented a
hybrid approach that connects and slices planes for reconstructing
3D objects (Fang and Lafarge, 2020). However, these two methods
have an ill-posed problem with no guarantee to adequately describe
the observed objects. Lin et al. (2020) presented a fast regularity-
constrained fitting method for planar segmentation of point cloud,
but merely focused on plane fitting. Jiang et al. (2021) presented a
Non-Watertight PolyFit (NW-PolyFit) algorithm to simplify polygonal
modeling from incomplete data, yet NW-PolyFit still uses RANSAC to
detect planar points.
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2.2. Clustering-based methods

Region growing refers to a classic method that segments the point
cloud into homogeneous regions according to the local indicators (Besl
and Jain, 1988; David and Gabor, 2001; Rabbani et al., 2006a). After
selection of the seed, an intelligent algorithm is designed to iteratively
compute the similarity of between the category and each point, until
all the points are classified into a certain class, the regional growth
stops. Region growing, as a local-based method, is easy to implement.
However, it suffers from the uncertainty issue of seed selection and the
interference of noise. Besides, the selection of the neighborhood size,
the pre-set merging rules and the initial seed selection are all crucial.
A lot of methods still use the k-nearest neighbor or fixed neighbor
algorithm (Rabbani et al., 2006b), but they are usually affected by the
point density. There are two types of methods to improve the accuracy
of the algorithm. The first method is to improve the ability of local
feature description (Che and Olsen, 2018). For instance, Nurunnabi
et al. (2016)proposed a robust method based on normal estimation to
analyze adjacent points, which made the algorithm significantly im-
prove the results of planar segmentation of cylinders. Furthermore, the
second one is to reduce the algorithm’s dependence on the threshold.
For the other instance, Maalek et al. (2015) tried to identify outliers
before cluster segmentation. In addition, local features can also be
used as an indicator of growth, and Lin et al. (2017) made use of
geometric model to reconstruct plane primitive that successfully fits the
plane under outliers and noise. While these methods are usually not
robust caused of noises or complex structures of the object’s surface.
Besides, Poullis (2019) proposed a tensor-based clustering algorithm
to divide the tensor into basic 3D graphs with different thresholds ele-
ments, such as curves, surfaces, or intersections. At the same time, Chen
et al. (2017) proposed a partial improvement by initial clustering so
as to 100 to eliminate erroneous segmentation due to inappropriate
neighborhood size and threshold choices. Additionally, Xu et al. (2019)
presented a novel hierarchical method to cluster point clouds with
the bipartite graph theory, which allowing plane primitives to retain
desired parts after processing, such as rule-based merging. Nonetheless,
the clustering method is still affected by the selection of seed points and
noise interference.

2.3. Deep learning-based methods

Many supervised or unsupervised deep learning-based methods
have been proposed for primitive data extraction. For example, Zou
et al. (2017) presented a 3D Primitive Recurrent Deep Neural Network
(3D-PRNN) that encodes symmetry characteristics on the common man-
made objects, which significantly reduced parameter space. Beyond
that Tulsiani et al. (2017) presented an unsupervised deep learning
framework to generate simple geometric 3D volumetric primitives.
Although the method can predict shape representation in a very simple
setting, these two methods focus on man-made objects and are com-
posed of several simple cuboids that are difficult to adapt to the fitting
of real-world 3D scene data. Apart from that, Li et al. (2019) presented
a Supervised Primitive Fitting Network (SPFN) that fits geometric
parameters of various primitives robustly based on the primitive types.
Furthermore, Yan et al. (2021) used hybrid feature representations
to separate points of different primitives. Despite that the above two
methods can accurately predict various primitives, a finite number of
primitives and object completeness are needed. Sharma et al. (2020)
presented a decomposition method that transforms the surface patches
of 3D point cloud into the parametric fitting of geometric patches.
However, the decomposition module by this method still relies on
given surface patch primitives. Loizou et al. (2020) proposed a graph
convolutional network framework to detect boundaries of parts in
3D objects, which is applied to detect probabilistic boundaries in the
ABC dataset. However, the segmented results are sensitive to wrong
predictions. Lé et al. (2021) presented a Cascaded Primitive Fitting
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Fig. 1. Primitive Predict Network based on spherical coordinate transformation. We embed (a) spherical coordinate transformation into (b) 3D feature extraction backbone of
PointNet++, where implicit and explicit features are supervised by the real labels. The training loss is designed based on the global point set and local planar primitives.

Networks (CPFN) using a network that can adaptively sample patches,
but focused on human-made objects. Huang et al. (2021) presented
a solution to extract primitive that significantly reduces the high
computing resources. However, it still needs the help of region growing.

3. Approach
3.1. Overview

The primitive extraction is considered as instance segmentation
assembled from the module of Wang et al. (2018) in our proposed
SCT-Net. The input of this problem is formulated as the combining set
1 =< P,C,& >, where P = { p[}i’i | Tepresents the point coordinates,
N represents the number of points, C = {¢;} fi | represents the normal
vector of a point, & = {< p»p; > li = 1,...,N,j = 1,...,N}
represents that the point p; and point p; are neighborhood. We aim
at predicting the output as @ =< P/, V,L >, where P/ = {p}&
represents the point set without noise and outliers, K represents the
corresponding number, ¥V = {ui}‘.’i represents normal vector set and
primitive instance labels £ = {/,},"_,. Here, the points belonging to
the same primitive have the same label. To acquire the indicators of
primitive instance segmentation, the relationship degree matrix is built
as R = {r;}yxn- As shown in Fig. 1, instead of directly learning
features, the input point clouds are transformed based on spherical
coordinate transformation to distinguish the boundary points. The op-
eration of primitive extraction is achieved based on a deep network
module. The backbone of PointNet/PointNet++ is firstly used for learn-
ing point features. Then, the generated features are divided into three
parts: constructing relationship matrix, generating confidence map and
inferring primitive points. Here, a confidence map is learnt for pruning
the final relationship matrix. After the extraction of instance primitives,
the operation of grouping and merging are used for generating the final
instance primitives. The loss function is constructed according to the
point’s features as well as the difference of point and planar primitives.

3.2. Spherical coordinate transformation
In order to improve the local planar description of the primitive

instances, a method of spherical coordinate transformation has been
embedded into primitive predicting network. The local point set R; of

a point p; = {x;,y;,z;} is gathered at a given radius for an inputting
point cloud P. Fig. 2 shows that a point p; combining normal vector
is transformed according to a spherical coordinate system. Here, we
consider the point p; as the center of a sphere, and r represents the
searching radius. The point p; = {x;,y;,z;} in the neighborhood of
point p; in the rectangular coordinate system can be formulated as

X = rsingcosd
y = rsingsing (@]
z = rcosf

Therefore, the point p; = {x;,y;,z,} in the neighborhood of point p;
in the spherical coordinate system can be formulated as

r= \/(xj —x,-)2 +(yj _yi)z +(Zj _Z,')z

@ = arccos =) (2)
6 = arctan ;700
(xj=x;)

The local patch around a selected point is gathered based on a
spherical field and transformed by spherical coordinate transformation
for expression. On the one hand, because of the local coordinate system
of each scanning cloud, large differences have existed between two
local scanning point clouds. On the other hand, the angles of elevation
and azimuth in the spherical coordinate system are greatly affected by
the attitude. Therefore, to alleviate the sensitive of posture changes,
a transformation network is introduced to correct relative pose to
some extent. Thus, with the transformation of the spherical coordinate
system, the mutual difference of elevation angles between two points
on the same plane is quite small, especially less than the points of a
threshold 6 on a same primitive. Besides, the cosine distances are less
than a threshold y in the same plane. Secondly, for primitive instance
segmentation, it is important to distinguish that the boundary points
are at the intersection of two primitives. The difficulty of boundary
point identification mainly lies in that it belongs to two planes at the
same time. Due to the fact that these boundary points belong to two
plane primitives, the angle differences of the elevation and azimuth
between the points of their K-nearset neighbors are larger, which is
considered as key description of the boundary point. Besides, to detect
primitive instance more accurately, the receptive field of each point is
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Fig. 2. A spherical transformed example that a selected point in the (a) Cartesian Coordinate System is transformed into the (b) Spherical Coordinate System.

set as small as possible, such that the points belong to the same surface.
In the experiment test, the selection of the ball radius is 10% of the
diagonal length of the corresponding point cloud 3Dbox.

3.3. Relation matrix

In order to indicate segment results more accurately, the corre-
sponding transformation matrix is formulated as Matrixg,peica €
RN*3 where R represents a matrix of dimension N x N, and the value
of r;; indicates whether a point pair p; and p; have the same label.
Each row can be regarded as a set of points that are formed as a plane.
The distance of two features corresponding to two points of the same
plane should be smaller than a given threshold. For a corresponding
points (p;, p;), the L,-norm of corresponding features is used to measure
the planar similarity of each pair of points, i.e., d;; = [|F; — Fll,,
which makes the distance between points on the same plane smaller.
Conversely, the distance between points on different planes becomes
larger in feature space. Compared with plane points, a smaller angle of
elevation locates in the boundary points. From their own perspective,
the difference in the elevation angles of the points around them is also
larger. Such special points have very few connections with other points
in the feature space, so that they are usually classified as one category.
Therefore, there is no need to get an exact regression value of the
feature, and only the points in the same plane need to be transformed
and optimized to a feature space.

Here two cases are considered in each correspondence (p;,p;) as
follows: (a) the point p; and point p; both belong to a same plane
by; (b) the point p; and point p; belong to two different planes. Thus,
the loss function is regarded as the measurement of pairwise features
corresponding to two points, and is formulated as

N N
Lg= ) Y 1G.)) 3
J

i
Where [(i, j) is expressed as
1, j) = ”fi_fj”Za PisPj € by
max(0,k = |1f; = fill2),  pi € by, p; & by

M
k=1’

4

Where b, represents the kth plane, and {k}
of extracted planes.

Since the difference between points is distinguished by two losses,
the accuracy and convergence speed of the network can also be im-
proved. Because in the smaller spherical coordinate system, the point-
to-point not in the same plane is reduced to a great extent. Therefore,
the constraint 0 < a < 1 is added to control the gradient in the feature
space.

The features obtained from the blackbone module of pointnet++
are used to predict an N x 1 confidence matrix through MLP and fully
connected layers. This confidence matrix reflects an evaluation of the

M represents the number

model for this grouping as a candidate for face segmentation. Likewise,
the confidence of points located at the edge of the face is low, it is
regressed according to the ground truth. In terms of the relationship
matrix in B, its size is N * N, for any point P, if it is an outlier or noise,
then the ith row in the relationship matrix should be all 0, so in our In
the confidence matrix of, we define the value of its ith row as the ratio
of the predicted value which is relative to the ground-truth value. As
for Loss, it should also be the L, loss of the predicted confidence map
and ground truth. Although the matrix of this step is dependent heavily
on the output of the relation matrix in B, we also run this branch in
parallel and set a threshold to make its output more accurate.

3.4. Primitive inference

In this module, each primitive is considered independently. Here,
a plane primitive is expressed as @ = (n,v), where n represents the
normal vector of the local primitive, and |n|| = 1. Inner product of
the normal vector n and the point p;, on the local primitive can be
denoted as n” p; = v. Thus, the distance between a point p; and a plane
primitive @ can be formulated as d,, o = (n” p,—v). Combining with the
relationship matrix R, the minimized cost of point p; to plane primitive
@ can be defined as

N
Llocal = z Ri(nTpi - U)2 5
i=1
The solution of the equation g = 0 is computed by lagrange
multiplier method. Then, @ can be deduced as
@' = ||diag(R, Xn)]| (6)
Where
Y Rp
X, =p, — % @
Zi= 1 Ri
This formulate represents the relationship of point p; and expected
plane primitive. Similarly, when the normal vector |la|| = 1, the

corresponding solution is actually the right singular value vector, so
that the gradient can be back-propagated by the SVD decomposition
method. Thus, it is used as a point-wise classifier to get a preliminary
primitive classification.

The relation matrix R generates N sets of proposals, many of which
represent the same plane as noise. Hence, further trimming is required
to obtain accurate, non-overlapping, or angles (less than 15°). By using
Non-Maximum Suppression, take the point set with a larger IoU as the
benchmark, then try to assign each point to this point set and merge
them. In some special cases, a point belongs to multiple groups, which
means that the point is at the intersection of the face and the face. This
does not affect the final result because the points on the intersection
can be its classification to any one plane. Therefore, we assign these
points randomly and arbitrarily without affecting the accuracy as much
as possible.
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4. Experiments

In order to demonstrate the superiority of proposed SCT-Net in
primitive instance segmentation, all of our experiments have been
tested on a PC with Ubuntu 20.04.2, Intel(R) XCore(R)E5-2678 v3 CPU
@3.30 GHz and 16.0 GB RAM and with a graphics card model of
NVIDIA RTX2080 and 8G memory.

4.1. Dataset

The datasets used in the experimental analysis including CAD mod-
els which are provided by ABC dataset (Koch et al., 2019), and the
indoor’s dataset, which are from SUN3D dataset (Xiao et al., 2013),
are applied to test the performance on the real-word scene. Since our
method has focused on the detection of planar primitives, the network
is trained on data that does not contain spherical surfaces. Second, to
increase our sample size, we scale each model data around the center
so that they all lie within a unit cube of different scales. To test the
anti-noise performance, Gaussian noise is added to the data along with
the point normal direction, and the noise range is between [-0.01,
0.01]. Therefore, the normal vector of each point receives uniformly
distributed noise interference. In this way, it deviates from the original
direction, and the deviation angle is within 3°. Afterwards, the dataset
includes the training and testing dataset at the ratio of 3:1.

4.2. Evaluation metrics for algorithmic analysis

Here, the segmentation performance of the SCT-Net is tested by the
following evaluation indicators:

(a) Segmentation Mean IoU (Seg mIoU)

The Seg mloU measures the similarity from the results of predicted
and ground-truth, the higher the similarity, the higher the value. For
a given ground truth set W, the result set W can be predicted by the
network, below:

N

R .
SegmloU = N ; iou(W[:, k], \(W[:, k]) (8)

Where W1[:, k] represents the kth column of matrix W, h represents
a one-hot encoding transformation, and N represents the number of
ground-true plane segmentation.

(b) Mean Point Normal Difference

This indicator measures the standard deviation of the absolute
difference between the point normal angle of the point set in the ground
truth and the point normal angle of the point set predicted by the model
(hereinafter referred to as MPND). For any two points belonging to the
same point set, we have

MPND = | £(n(p)), n(p))) = £(n(p{ "), n(pT ) ©

Among them, n(p;) represents the point normal at point p;, and the
point normal is closely related to the attitude of the corresponding
plane. This item can be used to evaluate the attitude of the plane.

(c) Reprojection Degree

Since the output of our network is actually a division of points, and
these points are ultimately used as the basis for generating a plane.
Then, projecting the predicted set of points onto their corresponding
fitted planes should be close to their projections are on the ground
truth fitted plane. Whether the model restores the correlation between
point sets is measured by calculating how many points and their
projection points on the corresponding fitted plane. Here, the angle of
the predicted line and the ground-truth fitted primitive is less than 0.1£
in our experiments.
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Table 1
Quantitative comparative analysis of different algorithms.
Methods Seg mloU Point normal Reprojection
degree
Efficient Ransac 45.9 10.6° 35.1%
Pearl 47.2 12.4° 34.2%
Global L, 56.1 9.4° 73.9%
SCT-Net 69.8 10.1° 75.4%
55 w—\Nith-Merge Without Merge
50
45
© 40
a
< 35
30
25
20

0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Noise

Fig. 3. Quantitative test of robustness against merge or not with varying Gaussian
noise scales.

4.3. Experimental analysis

To highlight the superiority of SCT-Net, the representative methods
such as Efficient Ransac (Schnabel et al., 2007), Pearl (Delong et al.,
2012) and Global LO (Lin et al., 2020) were selected for testing the
performance based on the relationship matrix of the spherical coordi-
nate system. Table 1 shows the comparison of the differences between
the results of these methods.

As shown in Table 1, it can be clearly observed that the primitive ex-
traction algorithm of point cloud based on the relationship matrix of the
spherical coordinate system has the highest mean IoU, which indicating
that the method can better classify the points of primitive instance, and
satisfy the reprojection requirements. The proportion of points with the
threshold is also the largest, suggesting that the method can analyze the
relationship between points more accurately. The point normal vectors
generated by Global L, are more accurate, indicating that the effect
of noise on it is minimal. From the quantitative analysis given in the
above table, the results obtained by the point cloud primitive extraction
algorithm based on the spherical coordinate system relationship matrix
are basically close to the ground truth. In some parts with apparent
edges and corners, the boundary line segments are also smooth. In
addition, the method does not produce over-segmentation.

Ablation experiment for spherical coordinate system analysis mod-
ule is also carried out. At present, the main network skeletons for
feature extraction of point clouds are PointNet++ and Spconv. In order
to reflect the improvement of the network model by the spherical
coordinate system analysis module, Spconv is used to replace the
PointNet++ part of the network, and the network is trained on the ABC
dataset. The two evaluation indicators below are added to evaluate the
performance of the network, namely Label mIoU and average precision
(Average Precision hereinafter referred to as AP). Among them, AP
measures the degree of false detection and degree of missed detection
of the model. The larger the value, the smaller the degree of false
detection and missed detection.

As displayed in Table 2 that the spherical coordinate system has
improved the performance of the two main point cloud feature extrac-
tion backbone networks to varying degrees. Here, the test dataset is
same as the test dataset of PrimitiveNet. Therefore, the measurements
including AP,5, APs, and AP of PointNet++ and Spconv are directly
cited from the (Huang et al., 2021). The advantages of the spherical
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Table 2

Analysis of ablation experiments.
Methods Seg mloU Point normal Reprojection APy APy, AP

degree

PoinNet++ 71.8% 87.9% 12.7% 28.4% 16.5% 12.7%
PoinNet++ + SCT 72.0% 89.1% 13.0% 68.6% 55.3% 43.8%
Spconv 82.3% 91.8% 53.1% 73.6% 59.1% 53.1%
Spconv + SCT 82.7% 93.1% 54.4% 77.5% 66.3% 60.5%

(a) PointGroup (b) ParseNet

(c) BoundaryNet

(d) SCT-Net (e) GT

Fig. 4. Some select visual comparisons via the representative methods on ABC dataset (Koch et al., 2019). The proposed SCT-Net achieves the best performance.

ToU: 091

091

loU: 0.96

095

0.86

Fig. 5. Examples of some other models are listed. Our proposed method (.i.e SCT-Net) can accurately segment the primitive instances.

coordinate system are presented that it is more suitable for the fol-
lowing relationship matrix modules. The relationship between points
can be represented accurately and clearly. Second, since the part of the
experiment only uses a small part of the ABC dataset and does not add
additional Gaussian noise to it, the performance of Spconv is better than
that of PointNet++.

In order to better demonstrate the sensitivity of the primitive in-
stance extraction, quantitative test of robustness against merge or not
is designed with varying Gaussian noise scales. The algorithm based

on the relationship matrix of the spherical coordinate system to noise
and the effect of merging grouping in high noise, Gaussian noises of
different scales are added to the ABC dataset. Fig. 3, which shows the
optimized performance of the noise by final merge grouping, plots the
accuracy variation curves of the quantitative results under different
noise scales. In the case of high noise, if the final result is not merged
and grouped, a large number of additional results will be obtained,
which leads to a sharp drop in network performance.
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IoU: 0.14

Fig. 7. The failure result of primitive instance segmentation.

Comparative instance segmentation. Some representative meth-
ods such as PointGroup (Jiang et al., 2020), BoundaryNet (Loizou
et al., 2020) and ParseNet (Sharma et al., 2020) have been selected
for experimental comparison. A limited number (10,000) of inputting
points was set such that all the networks can afford. Table 3 lists the
tested results of representative algorithms on the ABC dataset. It is
obvious that the proposed SCT-Net outperforms previous representative
methods according to the scores of Seg mloU. Here, the test dataset is
same as the test dataset of PrimitiveNet that leads to the same results.
Therefore, the compared measurements including AP,s, APs, and AP
are directly cited from the (Huang et al., 2021). Fig. 4 shows the
corresponding visualization results, where the proposed method can
accurately segment a variety of small primitive instances. It can be
clearly observed that the proposed SCT-Net achieves the state-of-the-art
performance. As shown in Fig. 5, many other results from ABC models
are listed, revealing that the primitive instances have been detected
accurately.

Application for indoor dataset. In order to test the proposed SCT-
Net in real-world dataset, we have selected some indoor scenes from
SUN3D dataset for some tests without any training. As far as we know,
there is currently a lack of primitive-level benchmark datasets in the
real-world scans. We collect the indoor dataset and applied it to show
the experimental effect. The ground truth models are manually labeled.
As shown in Fig. 6, the proposed method achieves specific effects in the
primitive instance segmentation of real-world indoor point clouds.

Table 3
The results of Seg mloU measurement which is tested on ABC dataset. The
proposed SCT-Net achieves state-of-the-arts performance.

Methods PointGroup ParseNet BoundaryNet SCT-Net
Seg mloU 61.4% 63.5% 71.1% 82.7%
APy 19.9% 25.7% 21.5% 72.5%
APy, 12.4% 15.3% 13.6% 63.5%
AP 10.2% 11.4% 10.4% 57.2%

5. Discussion

In the real world, scenes or objects composed of many different
types of primitives make primitive-based representation increasingly
difficult. Due to the fact that the proposed method is designed based
on a spherical coordinate system, the quality of primitive segmentation
mainly focuses on simple primitives such as planar, cylinder and cone,
which is relatively sensitive to complex objects in the scene. As shown
in Fig. 7, the seatbacks are irregularity and lack supervised model
reference. Therefore, the segmentation of primitives fails.

6. Conclusion
A novel primitive detection algorithm from point cloud is pro-

posed based on spherical coordinate system relationship matrix. First
of all, the current mainstream methods and adjustments in point cloud
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plane detection are introduced in brief. Since most of the current
mainstream methods require strict parameter adjustment and their
application directions are very limited, an spherical coordinate trans-
formation embedded-based deep network has been proposed with loose
parameter settings. The advantage of the neural network is that its
parameters are self-adjusted by learning. Thus, the input of the al-
gorithm only needs the original point cloud, and the SCT-Net learns
the characteristics of primitives from the unorganized point cloud.
Therefore, compared with the traditional algorithm, it also has cer-
tain advantages in terms of the speed. Secondly, the whole network
framework is introduced and analyzed in detail. At the same time, the
reasons and functions of each module design are expounded. Finally,
the experimental part expounds on the effectiveness and advancement
of the method via the comparative experiments. In addition the ablation
experiment part achieves the state-of-the-art performance than the
representative methods, and has a specific robustness.
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