
International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103540

A
1

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journal homepage: www.elsevier.com/locate/jag

The Segment Anything Model (SAM) for remote sensing applications: From
zero to one shot
Lucas Prado Osco a,∗, Qiusheng Wu b, Eduardo Lopes de Lemos c, Wesley Nunes Gonçalves c,
Ana Paula Marques Ramos d, Jonathan Li e, José Marcato Junior c

a University of Western São Paulo (UNOESTE), Rod. Raposo Tavares, km 572, Limoeiro, Presidente Prudente, 19067-175, Brazil
b University of Tennessee (UT), 1331 Circle Park Drive, Knoxville, 37996-0925, United States
c Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva-Pioneiros, Cidade Universitária, Campo Grande, 79070-900, Brazil
d São Paulo State University (UNESP), Centro Educacional, R. Roberto Simonsen, 305, Presidente Prudente, 19060-900, Brazil
e University of Waterloo (UW), 200 University Avenue West, Waterloo, N2L 3G1, Canada

A R T I C L E I N F O

Dataset link: GitHub: AI-RemoteSensing, GitHu
b: Segment-Geospatial

Keywords:
Artificial intelligence
Image segmentation
Multi-scale datasets
Text-prompt technique

A B S T R A C T

Segmentation is an essential step for remote sensing image processing. This study aims to advance the
application of the Segment Anything Model (SAM), an innovative image segmentation model by Meta AI,
in the field of remote sensing image analysis. SAM is known for its exceptional generalization capabilities
and zero-shot learning, making it a promising approach to processing aerial and orbital images from diverse
geographical contexts. Our exploration involved testing SAM across multi-scale datasets using various input
prompts, such as bounding boxes, individual points, and text descriptors. To enhance the model’s performance,
we implemented a novel automated technique that combines a text-prompt-derived general example with
one-shot training. This adjustment resulted in an improvement in accuracy, underscoring SAM’s potential for
deployment in remote sensing imagery and reducing the need for manual annotation. Despite the limitations,
encountered with lower spatial resolution images, SAM exhibits promising adaptability to remote sensing
data analysis. We recommend future research to enhance the model’s proficiency through integration with
supplementary fine-tuning techniques and other networks. Furthermore, we provide the open-source code of
our modifications on online repositories, encouraging further and broader adaptations of SAM to the remote
sensing domain.
1. Introduction

The field of remote sensing deals with capturing images of the
Earth’s surface from airborne or satellite sensors. Analyzing these im-
ages allows us to monitor environmental changes, manage disasters,
and plan urban areas efficiently (Gómez et al., 2016; Song et al., 2023;
Yuan et al., 2020). A critical part of this analysis is the ability to
accurately identify and segment various objects or regions within these
images, a process known as image segmentation. Segmentation allows
us to isolate specific objects or areas within an image for further study
or monitoring (Kotaridis and Lazaridou, 2021). Traditional segmenta-
tion techniques often require extensive human input and intervention
for accurate results. However, with the advent of advanced artificial
intelligence (AI) and deep learning methods (Bai et al., 2022; Aleissaee
et al., 2023), the segmentation process has become more automated,
albeit still facing challenges, particularly in the effective segmentation
of images with minimal human input.

∗ Corresponding author.
E-mail address: lucasosco@unoeste.br (L.P. Osco).

The Segment Anything Model (SAM), developed by Meta AI, is
a groundbreaking approach to image segmentation that has demon-
strated exceptional generalization capabilities across a diverse range
of image datasets, requiring no additional training for unfamiliar ob-
jects (Kirillov et al., 2023). This approach enables it to make accurate
predictions with little to no training data. However, its potential can
be limited when facing specific domain conditions. To overcome this
limitation, SAM can be modified by a re-learning approach (Zhang
et al., 2023b), feeding it with a single example of a new class or object
for better results.

Zero-shot learning pertains to a model’s capability to accurately
process and act upon input data that it has not explicitly encountered
during training (Alayrac et al., 2022; Sun et al., 2021). This ability is
derived from gaining a generalized understanding of the data rather
than specific instances. Zero-shot learning systems can recognize ob-
jects or understand tasks they have never seen before based on learning
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underlying concepts or relationships. In contrast, one-shot learning
denotes a model’s ability to interpret and make accurate inferences
from just a single example of a new class (Zhang et al., 2023b). By
feeding SAM with a single example (or ‘shot’) of this new class, we can
potentially enhance its performance, as it has more specific information
to work with.

The best-known one-shot methods for SAM are named PerSAM and
PerSAM-F, both being training-free personalization approaches (Zhang
et al., 2023b). Given a single image with a reference mask, PerSAM
localizes the target concept using a location prior to an initial estimate
of where the object of interest is likely to be. The second method
is PerSAM-F, a variant of PerSAM that uses one-shot fine-tuning to
reduce mask ambiguity. In this case, the entire SAM is frozen (i.e., its
parameters are not updated during the fine-tuning process), and two
learnable weights are introduced for multi-scale masks. This one-shot
fine-tuning variant requires training only two parameters and can be
done in as little as ten seconds to enhance performance (Zhang et al.,
2023b). Both are capable of improving SAM, making it a flexible model.

Another important aspect relates to SAM’s ability to perform seg-
mentation with minimal input, requiring only a bounding box or a
single point as a reference, or even a prompt text as guidance (Kirillov
et al., 2023). This capability has the potential to reduce human labor
during the annotation process. Many existing techniques require inten-
sive annotations for each new object of interest, resulting in significant
computational overhead and potential delays in time-sensitive applica-
tions. SAM, on the other hand, presents an opportunity to alleviate this
time-intensive task.

Since SAM’s release in April 2023, the geospatial community has
shown strong interest in adapting SAM for remote sensing image seg-
mentation. However, a more in-depth investigation is needed. In this
context, we present a first-of-its-kind evaluation of SAM, developing
both its zero and one-shot learning performance on segmenting remote
sensing imagery. We adapted SAM to our data structure, benchmarked
it against multiple datasets, and assessed its potential to segment
multiscale images. We then evolved SAM’s zero-shot characteristic to
a one-shot approach and demonstrated that with only one example
of a new class, SAM’s segmentation performance can be significantly
improved.

Our proposal’s innovation is within the one-shot technique, which
involves using a prompt-text-based segmentation as a training sample
(instead of a human-labeled sample), making it an automated process
for refining SAM on remote sensing imagery. In this study, we also
discuss the implications, limitations, and potential future directions of
our findings. Understanding the effectiveness of SAM in this domain
is of paramount importance for novel development. In short, with its
promise of zero-shot and one-shot learning, SAM has the potential
to transform current practices by significantly reducing the time and
resources needed for training and annotating data, thereby enabling a
quicker, more efficient approach.

2. Remote sensing image segmentation: A brief summary

The remote sensing field has experienced impressive advancements
in recent years, largely driven by improvements in aerial and or-
bital platform technologies, sensor capabilities, and computational re-
sources (Toth and Jóźków, 2016; Osco et al., 2021a). One of the most
critical tasks in remote sensing is image segmentation, which involves
partitioning images into multiple segments or regions, each, ideally,
corresponding to a specific object or class (Kotaridis and Lazaridou,
2021). In this section, we focus on providing comprehensive informa-
tion regarding segmentation processes, deep learning-based methods,
and techniques, and explain the overall importance of conducting
zero-to-one shot learning.

Traditional image segmentation techniques in remote sensing often
rely on pixel-based or object-based approaches. Pixel-based methods,
2

such as clustering and thresholding, involve grouping pixels with sim-
ilar characteristics, while object-based techniques focus on segmenting
images based on properties of larger regions or objects (Hossain and
Chen, 2019; Wang et al., 2020b). However, these methods can be
limited in their ability to handle the complexity, variability, and high
spatial resolution of modern remote sensing imagery (Kotaridis and
Lazaridou, 2021).

Segmentation involves various methods designed to separate or
group portions of an image based on certain criteria (Zhang et al.,
2021). Each method has a unique approach and application. Interactive
Segmentation, for example, is a niche within image segmentation that
actively incorporates user input to improve the segmentation process,
making it more precise and tailored to specific requirements (Li et al.,
2020; Wu et al., 2021). Different interactive segmentation methods
utilize various strategies to include human intelligence in the loop.
This makes interactive segmentation particularly useful in tasks where
high precision is required, and generic segmentation methods may not
suffice.

Super Pixelization is another method that groups pixels in an image
into larger units, or ‘‘superpixels’’, based on shared characteristics such
as color or texture (Gharibbafghi et al., 2018). This grouping can
simplify the image data while preserving the essential structure of the
objects. Object Proposal Generation goes a step further by suggesting
potential object bounding boxes or regions within an image (Hossain
and Chen, 2019; Su et al., 2019). These proposals serve as a guide for a
more advanced model to identify and classify the actual objects’ pixels.
Foreground Segmentation, also known as background subtraction, is a
technique primarily used to separate the main subjects or objects of
interest (the foreground) from the backdrop (the background) in an
image (Zheng et al., 2020; Ma et al., 2022).

Semantic Segmentation is a more comprehensive approach where
every pixel in an image is assigned to a specific class, effectively group-
ing regions of the image based on semantic interest (Zhang et al., 2020;
Adam et al., 2023). Instance Segmentation identifies each pixel recog-
nizes distinct objects of the same class and recognizes the individual
objects as separate entities or instances (Gao et al., 2021; Qurratulain
et al., 2023). Panoptic Segmentation merges the concepts of semantic
and instance segmentation, assigning every pixel in the image a class
label and a unique instance identifier (Hua et al., 2021; de Carvalho
et al., 2022). This method aims to give a complete understanding of
the image by identifying and classifying every detail.

All these methods have been intensively studied, but one that
surged in recent years, with the advancements of Visual Foundation
Models (VFM) and Large Multimodal Models (LMM), is known as
‘‘Promptable Segmentation’’, an approach that aims to create a versatile
model capable of adapting to a variety of segmentation tasks (Mialon
et al., 2023; Zhang et al., 2023a). This is achieved through ‘‘prompt
engineering’’, where prompts are carefully designed to guide the model
toward generating the desired output (Lobry et al., 2020; Sun et al.,
2021). This concept is a departure from traditional multi-task systems
where a single model is trained to perform a fixed set of tasks. The
unique feature of a promptable segmentation model is its ability to
take on new tasks at the time of inference, serving as a component in
a larger system (Sun et al., 2021; Mialon et al., 2023). For instance,
to perform instance segmentation, a promptable segmentation model
could be combined with an existing object detector.

Object detection is a crucial task in computer vision, focusing on
identifying and locating objects within images. This task is foundational
for various applications such as surveillance, autonomous vehicles, and
many others. In the realm of object detection and image segmentation,
different techniques have been employed. Traditional methods often
focus on detecting objects that the model has been specifically trained
on, known as closed-set detection. However, real-world applications
demand more flexibility and the ability to detect and classify objects

not seen during training, known as open-set detection.
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One state-of-the-art open-set object detector that stands out is
Grounding DINO (GroundDINO), an enhanced transformer-based object
detector capable of identifying a broader range of objects based on var-
ious human inputs (Liu et al., 2023b). This system is an enhancement
of the Transformer-based object detector called DINO (Zhang et al.,
2022a), enriched with grounded pre-training to be able to identify
a broader range of objects based on human inputs, such as category
names or referring expressions. An open-set detector is meant to iden-
tify and classify objects that were not part of the model’s training data,
as opposed to a closed-set detector that can only recognize objects it has
been specifically trained on. The information from Grounding DINO can
potentially be used to guide the segmentation process, providing class
labels or object boundaries that the segmentation model could use.

Most NLMs incorporate deep-learning-based networks and, with the
rise of these methods, more advanced segmentation techniques have
been developed for remote sensing applications. Convolutional Neural
Networks (CNNs), which emerged as a popular choice due to their abil-
ity to capture local and hierarchical patterns in images (Martins et al.,
2021; Bressan et al., 2022), have widely been used as the backbone for
these tasks. CNNs consist of multiple convolutional layers that apply
filters to learn increasingly complex features, making them well-suited
for segmenting objects in many remote sensing images (Yuan et al.,
2021; Bai et al., 2022). However, they are computationally intensive
and may require substantial training data.

Generative Adversarial Networks (GANs) have also shown potential
in the field of image processing. GANs consist of a generator and a
discriminator network, where the generator tries to create synthetic
data to fool the discriminator, and the discriminator aims to distinguish
between real and synthetic data (Jozdani et al., 2022). For image
segmentation, GANs can be used to generate realistic images and their
corresponding segmentations, which can supplement the training data
and improve the robustness of the segmentation models (Benjdira et al.,
2019).

Vision Transformer (ViT), on the other hand, is a recent develop-
ment in deep learning that has shown promise in image segmentation
tasks. Unlike CNNs, which rely on convolutional operations, ViT em-
ploys self-attention mechanisms that allow it to model long-range
dependencies and global context within images (Li et al., 2023b,a). This
approach has demonstrated competitive performance in various com-
puter vision tasks, including remote sensing image segmentation (Aleis-
saee et al., 2023), and it is currently outperforming CNNs in remote
sensing data (Gonçalves et al., 2023).

Another capability of deep learning that can enhance the segmen-
tation process is transfer learning. With it, a model pre-trained on a
large dataset is adapted for a different but related task (Tong et al.,
2020). For instance, a CNN or ViTr trained on a large-scale image
recognition dataset like ImageNet can be fine-tuned for the task of
remote sensing image segmentation (Osco et al., 2020, 2021b). The
advantage of transfer learning is that it can leverage the knowledge
gained from the initial task to improve performance on the new task,
especially when the amount of labeled data for the new task is limited.

One of the main challenges in applying deep learning techniques
to remote sensing image segmentation is the need for large volumes of
labeled ground-truth data (Chi et al., 2016). Acquiring and annotating
this data can be time-consuming and labor-intensive, requiring expert
knowledge and resources that may not be readily available. Further-
more, the variability and complexity of remote sensing imagery can
make the labeling process even more difficult (Amani et al., 2020). As
such, it becomes imperative to develop robust, efficient, and accessible
solutions that can aid in the processing and analysis of such data.
A model that can perform segmentation with zero domain-specific
information may offer an important advantage for this process.

In this sense, the Segment Anything Model (SAM) has emerged as
a potential tool for assisting in the segmentation process of remote
sensing images. SAM design enables it to generalize to new image
3

distributions and tasks effectively and already resulted in numerous
applications (Kirillov et al., 2023). By using minimal human input, such
as bounding boxes, reference points, or simply text-based prompts, SAM
can perform segmentation tasks without requiring extensive ground-
truth data. This capability can reduce the labor-intensive process of
manual annotation and be incorporated into the image processing
pipeline, potentially accelerating its workflow.

SAM has been trained on an enormous dataset, of 11 million images
and 1.1 billion masks, and it boasts impressive zero-shot performance
on already a variety of segmentation tasks (Kirillov et al., 2023). Foun-
dation models such as this, which have shown promising advancements
in NLP and, more recently, in computer vision, can carry out zero-shot
learning. This means they can learn from new datasets and perform
new tasks often by utilizing ‘prompting’ techniques, even with little to
no previous exposure to these tasks. In the field of NLP, ‘‘foundation
models’’ refer to large-scale models that are pre-trained on a vast
amount of data and are then fine-tuned for specific tasks. These models
serve as the ‘‘foundation’’ for various applications (Mai et al., 2023;
Mialon et al., 2023; Wu et al., 2023).

SAM’s ability to generalize across a wide range of objects and
images makes it particularly appealing for remote sensing applications.
That it can be retrained with a single example of each new class at
the time of prediction (Zhang et al., 2023b), demonstrates the models’
high flexibility and adaptability. The implementation of a one-shot
approach may assist in designing models that learn useful information
from a small number of examples — in contrast to traditional models
which usually require large amounts of data to generalize effectively.
This could potentially revolutionize how we process remote-sensing
imagery. As such, by investigating SAM’s innovative technology, we
may be able to provide more interactive and adaptable remote sensing
systems.

3. Materials and methods

In this section, we describe how we evaluated the performance
of the Segment Anything Model (SAM), for both zero and one-shot
approach, in the context of remote sensing imagery. The method im-
plemented in this study is summarized in Fig. 1. The data for this
study consisted of multiple aerial and satellite datasets. These datasets
were selected to ensure diverse scenarios and a large range of objects
and landscapes. This helped in assessing the robustness of SAM and its
adaptability to different situations and geographical regions.

The study particularly investigated SAM’s segmentation capacity
under different prompting conditions. First, we used the general seg-
mentation approach, in which SAM was tasked to segment objects and
landscapes without any guiding prompts. This provided a baseline for
SAM’s inherent segmentation capabilities with zero-shot. For this, we
only evaluated its visual quality, since it segments every possible object
in the image, instead of just the ones with ground-truth labels. It also
is not guided by any means, thus resulting in the segmentation of
unknown classes, serving as just a traditional segmentation filter.

In the second scenario, bounding boxes were provided. These rect-
angular boxes, highlighting specific areas within the images, were used
to restrict SAM’s segmentation per object and see its proficiency in
recognizing and segmenting them. Next, we conducted segmentation
using points as prompts. In this setup, a series of specific points within
the images were provided to guide SAM’s processing. It allowed us
to test the precision potential of SAM. Finally, we experimented with
the segmentation process using only textual descriptions as prompts.
This was conducted with an implementation of SAM alongside Ground-
ingDINO’s method (Liu et al., 2023b). This permitted an evaluation
of these models’ capabilities to understand, interpret, and transform
textual inputs into precise segmentation outputs.

To measure SAM’s adaptability and potential to deal with remote
sensing imagery, we then devised a one-shot implementation. For each

of the datasets, we presented an example of the target class to SAM.
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Fig. 1. Schematic representation of the step-by-step process undertaken in this study to evaluate the efficacy of SAM’s approach in remote sensing image processing tasks.
Table 1
Overview of the distinct attributes and specifications of the datasets employed in this study.

# Platform Resolution (m) Area (ha) Target General Box Point Text Reference

00 UAV 0.04 70 Tree Yes Yes Centroid Tree
01 UAV 0.04 70 House Yes Yes Centroid House
02 UAV 0.01 4 Plantation Crop Yes No Multiple Plantation Osco et al. (2021a)
03 UAV 0.04 40 Plantation Crop Yes No Multiple Plantation
04 UAV 0.09 90 Building Yes Yes Centroid Building Gao et al. (2021)
05 UAV 0.09 90 Car Yes Yes Centroid Car
06 Airborne 0.20 120 Tree Yes Yes Centroid Tree
07 Airborne 0.20 120 Vehicle Yes Yes Centroid Vehicle
08 Airborne 0.45 190 Lake Yes Yes Centroid Lake
09 Satellite 0.30 – Building; Road; Water; Barren; Forest; Farm Yes Yes Multiple Building; Road; Water; Barren; Forest; Farm LoveDA
10 Satellite 0.50 480 Building; Street; Water; Vehicle; Tree Yes Yes Yes Building; Street; Water; Vehicle; Tree SkySat ESA
For that, we adapted the model with a novel combination of the text-
prompt approach and the one-shot learning method. Specifically, we
selected the best possible example (highest logits) of the target object,
using textual prompts to define the object for mask generation. This
example was then presented to SAM as the sole representative of the
class, effectively guiding its learning process. The rationale behind
this combined approach was to leverage the context provided by the
text prompts and the efficacy of the one-shot learning method to the
adaptability of SAM to an automated enhancement process.

3.1. Description of the datasets

We begin by separating our dataset into three categories related to
the platform used for capturing the images: 1. Unmanned Aerial Vehicle
(UAV); 2. Airborne, and; 3. Satellite. Each of these categories provides
unique advantages and challenges in terms of spatial resolution and
coverage. In our study, we aim to evaluate the performance of SAM
across these sources to understand its applicability and limitations in
diverse contexts. Their characteristics are summarized in Table 1. We
also provided illustrative examples from these datasets in Fig. 2 as in
bounding boxes and point prompts.

The UAV category comprises data that have the advantage of very-
high spatial resolution, returning images and targets with fine details.
This makes them particularly suitable for local-scale studies and ap-
plications that require high-precision data. However, the coverage
area of UAV datasets is limited compared to other data sources. The
images comprised particularly single-class objects per dataset, so they
were tackled in binary form. In the case of linear objects, specifically
continued plantation crops cover, we used multi-points spread within
its extremes, to ensure that the model was capable of understating it
better. For more condensed targets such as houses and trees, we used
the centered position of the object as a point prompt.

The second category is Airborne data, which includes data collected
by manned aircraft. These datasets typically offer a good compromise
between spatial resolution and coverage area. We processed these
4

datasets with the same approach as with the UAV images since they
also consisted of binary problems. The total quantifiable size of these
datasets surpasses 90 Gigabytes and comprises more than 10,000 im-
ages and image patches. Part of the dataset, specifically the aerial one
(UAV and Airborne), is currently being made public in the following
link for others to use: GeomaticsandComputerVision/Datasets. These
datasets cover different area sizes and their corresponding ground-truth
masks were generated and validated by specialists in the field.

The third category consists of Satellite data, which provides the
widest coverage and is focused on multi-class problems. The spatial
resolution of satellite data is generally lower than that of UAV and
Airborne data. Furthermore, the quality of the images is more affected
by atmospheric conditions, with differing illumination conditions, thus
providing additional challenges for the model. These datasets consist
of publicly available images from the LoveDA dataset (Wang et al.,
2022) and from the SkySat ESA archive (European Space Agency,
2023) and present a multi-class segmentation problem. To facilitate’s
SAM evaluation, specifically with the guided prompts (bounding box,
point, and text), we conducted a one-against-all approach, in which we
separated the classes into individual classifications (‘‘specified class’’
versus ‘‘background’’).

3.2. Protocol for promptable image segmentation

In this section, we explain how we adapted SAM to the remote
sensing domain and how we conducted the promptable image segmen-
tation with it. All of the implemented code, specifically designed for this
paper, is made publicly available in an under-construction educational
repository (Osco, 2023). Also, as part of our work, we are focusing
on developing the ‘‘segment-geospatial’’ package (Wu and Osco, 2023),
which implements features that will simplify the process of using SAM
models for geospatial data analysis. This is a work in progress, but it
is publicly available and offers a suite of tools for performing general
segmentation on remote-sensing images using SAM. The goal is to

https://sites.google.com/view/geomatics-and-computer-vision/home/datasets
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Fig. 2. Collection of image samples utilized in our research. The top row features UAV-based imagery with bounding boxes and point labels, serving as prompts for SAM. The
middle row displays airborne-captured data representing larger regions, with both points and a rectangular box provided as model inputs. The bottom row reveals satellite imagery,
again with bounding boxes and points as prompt inputs, offering a trade-off between lower spatial resolution and wider area coverage.
enable users to engage with this technology with a minimum of coding
effort.

Our geospatial analysis was conducted with the assistance of a
custom tool, namely ‘‘SamGeo’’, which is a component of the original
module. SAM possesses different models to be used, namely: ViT-H,
ViT-L, and ViT-B (Kirillov et al., 2023). These models have different
computational requirements and are distinct in their underlying archi-
tecture. In this study, we used the ViT-H SAM model, which is the most
5

advanced and complex model currently available, bringing most of the
SAM capabilities to our tests.

To perform the general prompting, we used the generate method of
the SamGeo instance. This operation is simple enough since it segments
the entire image and stores it as an image mask file, which contained
the segmentation masks. Each mask delineates the foreground of the
image, with each distinct mask allocated a unique value. This allowed
us to segment different geospatial features. The result is a non-classified
segmented image that can also be converted into a vector shape. As
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mentioned, we only evaluated this approach visually, since it was not
possible to appropriately assign the segmented regions outside of our
reference class.

For the bounding box prompt, we used the SamGeo instance in
conjunction with the objects’ shapefile. Bounding boxes are extracted
from any multipart polygon geometry returning a, which returned a list
of geometric boundaries for our image data based on its coordinates.
To efficiently process these boundaries, we initialized the predictor
instance. In this process, the image was segmented and passed through
the predictor along with a designated model checkpoint. Once es-
tablished, the predictor processed each clip box, creating the masks
for the segmented regions. This process enabled each bounding box’s
contents to be individually examined as instance segmentation masks.
These binary masks were then merged and saved as a single mosaic
raster to create a comprehensive visual representation of the segmented
regions. Although not focused on remote sensing data, the official
implementation is named Grounded-SAM (IDEA-Research, 2023).

The single-point feature prompt was implemented similarly to the
bounding-box method. For that, we first defined functions to convert
the geodata frame into a list of coordinates [x, y] instead of the previous
[x1, y1, x2, y2] ones. We utilized SamGeo again for model prediction
but with the distinction of setting its automatic parameter to ‘False’
and applying the predictor to individual coordinates instead of the
bounding boxes. This approach was conducted by iterating through
each point, predicting its features in instances, and saving the resulting
mask into a unique file per point (also resulting in instance segmen-
tation masks). After the mask files were generated, we proceeded to
merge these masks into a single mosaic raster file, giving us a com-
plete representation of all the segmented regions from the single-point
feature prompt.

The text-based prompt differentiates from the previous approach
since it required additional steps to be implemented. This method
combines GroundingDINO’s (Liu et al., 2023b) capabilities for zero-
shot visual grounding with SAM’s object segmentation functionality for
retrieving the pre-trained models. For instance, once Grounding DINO
has detected and classified an object, SAM is used to isolate that object
from the rest. As a result, we have been able to identify and segment
objects within our images based on a specified textual prompt. This
procedure opens up a new paradigm in geospatial analysis, harnessing
the power of state-of-the-art models to extract image features based
only on natural language input.

Since remote sensing imagery often contained multiple instances
of the same object (e.g., several ‘houses’, ‘cars’, ‘trees’, etc.), we have
added a looping procedure. The loop identifies the object with the
highest probability in the image (i.e. logits), creates a mask for it,
removes it from the image, and then restarts the process to identify the
next highest probable object. This process continues until the model
reaches a defined minimum threshold for both detection, based on a
box threshold, and text prompt association, also based on an specific
threshold. The precise balancing of these thresholds (ranging from 0 to
1) is crucial, with implications for the accuracy of the model, so we
manually set them for each dataset based on trial and error tentatively:

• Box Threshold: Utilized for object detection in images. A higher
value augments model selectivity, isolating only those instances
the model identifies with high confidence. A lower value, con-
versely, expands model tolerance, enhancing overall detections
but possibly including less certain ones.

• Text Threshold: Utilized for associating detected objects with
provided text prompts. An elevated value mandates a robust asso-
ciation between the object and text, ensuring precision but poten-
tially limiting associations. A diminished value permits broader
associations, potentially boosting the number of associations but
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potentially compromising precision.
These thresholds are critical for ensuring the balance between pre-
cision and recall based on specific data and user requirements. The
optimal values may diverge depending on the nature and quality of
the images and the specificity of text prompts, warranting user experi-
mentation for optimal performance. The segmented individual images
and their corresponding boxes are subsequently generated, while the
resulting segmentation mask is saved and mosaicked.

3.3. One-shot text-based approach

The one-shot training was conducted following the recommendation
in Zhang et al. (2023b) by using its PerSAM and PerSAM-F approaches.
We begin by adapting the text-based approach of the combination of
the GroundDINO (Liu et al., 2023b) and SAM (Kirillov et al., 2023)
methods to return the overall most probable object belonging to the
specified class in its description. By doing so, we enable an automated
process of identifying a single object and including it on a personalized
pipeline for training SAM with this novel knowledge. In this section, we
describe the procedures involved in the one-shot training mechanism as
well as the methods used for object identification and personalization.
To summarize the whole process, we illustrate the main phases in
Fig. 3.

Following Fig. 3, the initial phase of the one-shot training mech-
anism involves the model derived from the object with the highest
logits calculated from the text-based segmentation. This ensures the
object is accurately recognized and selected for further steps. It is this
aspect of the process that the text-based approach starts, capitalizing
on GroundDINO’s capabilities for zero-shot visual grounding combined
with SAM’s object segmentation for pre-trained model retrieval. As
such, the selected object becomes the ‘‘sample’’ of the one-shot training
process due to its high probability of belonging to the specified class by
the text.

Once the object has been identified through this method, the next
phase involves creating a single-segmented object mask. This mask is
used for the retraining of SAM in a one-shot manner. The text-based
approach adds value by helping SAM distinguish between the different
object instances present in the remote sensing imagery, such as multiple
‘‘houses’’, ‘‘cars’’, or ‘‘trees’’, for example. Each object is identified based
on its individual likelihood, leading to the creation of a unique mask
for retraining SAM. The third phase starts once the object with the
highest probability has been identified and its mask has been used for
SAM’s one-shot training. The selected input object is removed from
the original image, making the remaining objects ready for further
segmentation.

The final phase involves a dynamic, interactive loop, where the
remaining objects are continuously segmented until no more objects
are detectable by the PerSAM approach (Zhang et al., 2023b). This
phase is critical as it ensures that every potential object within the
image is identified and segmented. Here again, the loop approach aids
the process, using a procedure that identifies the next highest probable
object, as it creates a mask, removes it from the image, and repeats.
This cycle continues until a breakpoint is reached, where it detects the
previous position again.

Another important aspect of the one-shot approach regards the
choice of the method for its training. An early exploration of both
PerSAM and PerSAM-F methods (Zhang et al., 2023b) was conducted to
assess their utility in the context of remote sensing imagery. Our inves-
tigations have shown that PerSAM-F emerges as a more suitable choice
for this specific domain. PerSAM, in its original formulation, leverages
one-shot data through a series of techniques such as target-guided at-
tention, target-semantic prompting, and cascaded post-refinement, de-
livering favorable personalized segmentation performance for subjects
in a variety of poses or contexts. However, there were occasional failure
cases, notably where the subjects comprised hierarchical structures to
be segmented.
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Fig. 3. Visual representation of the one-shot-based text segmentation process in action. The figure provides a step-by-step illustration of how the model identifies and segments
the most probable object based on a text prompt with ‘‘car’’ and ‘‘tree’’ as examples.
Fig. 4. Comparative illustration of tree segmentation using PerSAM and PerSAM-F. On the left, the PerSAM model segments not only the tree but also its shadow and a part of
the car underneath it. On the right, the PerSAM-F model, fine-tuned for hierarchical structures and varying scales, accurately segments only the tree, demonstrating its improved
ability to discern and isolate the target object in remote sensing imagery.
Examples of such cases in traditional images are discussed in Zhang
et al. (2023b), where ambiguity provides a challenge for PerSAM in
determining the scale of the mask as output (e.g. a ‘‘dog wearing a
hat’’ may be segmented entirely, instead of just the ‘‘dog’’). In the
context of remote sensing imagery, such hierarchical structures are
commonly encountered. An image may contain a tree over a house,
a car near a building, a river flowing through a forest, and so forth.
These hierarchical structures pose a challenge to the PerSAM method,
as it struggles to determine the appropriate scale of the mask for the
segmentation output. An example of such a case, where a tree covers a
car, can be seen in Fig. 4.
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To address this challenge, we used PerSAM-F, the fine-tuning vari-
ant of PerSAM. As previously mentioned, PerSAM-F freezes the entire
SAM to preserve its pre-trained knowledge and only fine-tunes two
parameters within a ten seconds training window (Zhang et al., 2023b).
Crucially, it enables SAM to produce multiple segmentation results with
different mask scales, thereby allowing for a more accurate represen-
tation of hierarchical structures commonly found in remote sensing
imagery. PerSAM-F employs learnable relative weights for each scale,
which adaptively select the best scale for varying objects. This strategy
offers an efficient way to handle the complexity of segmentation tasks
in remote sensing imagery, particularly when dealing with objects that
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exhibit a range of scales within a single image. This, in turn, preserves
the characteristics of the segmented objects more faithfully.

As such, PerSAM-F exhibited better segmentation accuracy in our
early experiments, thus being the chosen method to be incorporated
with the text-based approach. In our training phase with PerSAM-F,
the DICE loss and Sigmoid Focal Loss are computed, and their summa-
tion forms the final loss that is backpropagated to update the model
weights. The learning rate is scheduled using the Cosine Annealing
method (Loshchilov and Hutter, 2017), and the model is trained for
1000 epochs. With hardware acceleration incorporated, the model can
be trained within a reasonable time frame without requiring excessive
computational resources. This careful setup ensures the extraction of
meaningful features from the reference image, contributing to the
effectiveness of our one-shot text-based approach.

To evaluate the performance and utility of the text-based one-
shot learning method, we conduct a comparative analysis against a
traditional one-shot learning approach. The traditional method used
for comparison follows the typical approach of one-shot learning, pro-
viding the model with a single example from the ground-truth mask,
manually labeled by human experts. To ensure fairness, we provided
the model with multiple random samples from each dataset, and mimic
the image inputs to return a direct comparison for both approaches.
We calculated the evaluation metrics from each input and returned
its average value alongside with its standard deviation. Since the text
approach always uses the same input (i.e. the highest logits object), we
were able to return a single measurement of their accuracies.

3.4. Model evaluation

The performance of both zero-shot and one-shot models was mea-
sured by evaluating their prediction accuracy on a ground-truth mask.
For that, we used metrics like Intersection over Union (IoU), Pixel
Accuracy, and Dice Coefficient. These metrics are commonly used in
evaluating imaging segmentation, as they provide a more nuanced
understanding of model performance. For that, we compared pairs of
predicted and ground-truth masks.

Intersection over Union (IoU) is a common evaluation metric for
object detection and segmentation problems. It measures the overlap
between the predicted segmentation and the ground truth (Rahman and
Wang, 2016). The IoU is the area of overlap divided by the area of
the union of the predicted and ground truth segmentation. A higher
IoU means a more accurate segmentation. The equation to achieve it is
presented as:

𝐼𝑜𝑈 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(1)

Here, TP represents True Positives (the correctly identified pos-
itives), FP represents False Positives (the incorrectly identified pos-
itives), and FN represents False Negatives (the positives that were
missed).

Pixel Accuracy is the simplest used metric and it measures the
percentage of pixels that were accurately classified (Minaee et al.,
2021). It is calculated by dividing the number of correctly classified
pixels by the total number of pixels. This metric can be misleading if
the classes are imbalanced. The following equation returns it:

𝑃 𝑖𝑥𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(2)

Here, TN represents True Negatives (the correctly identified nega-
tives).

Dice Coefficient (also known as the Sørensen–Dice index) is another
metric used to gauge the performance of image segmentation methods.
It is particularly useful for comparing the similarity of two samples. The
Dice Coefficient is twice the area of overlap of the two segmentations
divided by the total number of pixels in both images (the sum of the
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areas of both segmentations) (Minaee et al., 2021). The Dice Coefficient
ranges from 0 (no overlap) to 1 (perfect overlap). The equation to
perform it is given as follows:

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(3)

We also utilized other metrics, particularly, True Positive Rate (TPR)
and False Positive Rate (FPR) to measure the effectiveness of SAM,
juxtaposed with the accurately labeled class from each dataset. The
interpretation of these metrics as per (Powers, 2020) is: The True
Positive Rate (TPR) denotes the fraction of TP cases among all actual
positive instances, while the False Positive Rate (FPR) signifies the
fraction of FP instances out of all negative instances. A model with a
higher TPR is proficient at correctly pinpointing lines and edges and
performs better at avoiding incorrect detections of lines and edges when
the FPR is lower. Both metrics are calculated as:

TPR = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑁)

(4)

FPR = 𝐹𝑃
(𝐹𝑃 + 𝑇𝑁)

(5)

In alignment with the inherent structure of SAM, a transformer
network, our objective was to maintain the comprehensive context
of our images to fully harness the model’s attention mechanism. This
consideration led to our decision to process larger image crops or entire
orthomosaics as a single unit, rather than fragmenting them into fixed-
sized smaller patches. While this approach enhances the model’s con-
textual understanding, it understandably augments the computational
time.

For most larger patches or quartered orthomosaics, the inference
duration on a GPU was kept under 10 min, providing a balance between
computational load and contextual analysis. When processing entire
datasets as a whole, the time requirement extended to approximately 1
to 2 h. Despite the augmented processing time for larger datasets, the
assurance of comprehensive contextual analysis justifies this computa-
tional investment. Still, in fixed-sized patches such as the ones from the
publicly available datasets, the inference time was under a second for
each patch. These inferences were executed on an NVIDIA RTX 3090
equipped with 24 GB GDDR6X video memory and 10,496 CUDA cores,
operating on Ubuntu 22.04.

4. Results and discussion

4.1. General segmentation

Our exploration of SAM for remote sensing tasks involved an eval-
uation of its performance across various datasets and scenarios. This
section presents the results and discusses their implications for SAM’s
role in remote sensing image analysis. This process commenced with an
investigation of SAM’s general segmentation approach, which requires
no prompts. By merely feeding SAM with remote sensing images, we
aimed to observe its inherent ability to detect and distinguish objects on
the surface. Examples of different scales are illustrated in Fig. 5, where
we converted the individual regions to vector format. This approach
demonstrates its adaptability and suitability for various applications.
However, as this method is not guided by a prompt, it is not return-
ing specific segmentation classes, making it difficult to measure its
accuracy based on our available labels.

As depicted in Fig. 5, the higher the spatial resolution of an im-
age, the more accurately SAM segmented the objects. An interesting
observation pertained to the processing of satellite images where SAM
encountered difficulties in demarcating the boundaries between con-
tiguous objects (like large fragments of trees or roads). Despite this
limitation, SAM exhibited an ability to distinguish between different
regions when considering very-high spatial resolution imagery, indica-
tive of an effective segmentation capability that does not rely on any
prompts. This approach offers value for additional applications that are
based on object regions, such as classification algorithms. Moreover,
SAM can expedite the process of object labeling for refining other
models, thereby significantly reducing the time and manual effort

required for this purpose.
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Fig. 5. Examples of segmented objects using SAM’s general segmentation method, drawn from diverse datasets based on their platforms. Objects are represented in random colors.
As the model operates without any external inputs, it deduces object boundaries leveraging its zero-shot learning capabilities.
4.2. Zero-shot segmentation

Following this initial evaluation, we proceeded to test SAM’s
promptable segmentation abilities using bounding boxes, points, and
text features. The resulting metrics for each dataset are summarized in
Table 2. Having compiled a dataset across diverse platforms, including
UAVs, aircraft devices, and satellites with varying pixel sizes, we noted
that SAM’s segmentation efficacy is also quantitatively influenced by
the image’s spatial resolution. These findings underscore the significant
influence of spatial resolution on the effectiveness of different prompt
types.

For instance, on the UAV platform, text prompts showed superior
performance for object segmentation tasks such as trees, with higher
Dice and IoU values. However, bounding box prompts were more
effective for delineating geometrically well-defined and larger objects
like houses and buildings. The segmentation of plantation crops was a
unique case. Point prompts performed well at a finer 0.01 m resolution
for individual plants. However, as the resolution coarsened to 0.04 m
and the plantation types changed, becoming denser with the plant
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canopy covering entire rows, bounding box prompts outperformed the
others. This outcome suggests that, for certain objects, the type of
input prompt can greatly influence detection and segmentation in the
zero-shot approach.

With the airborne platform, point prompts were highly effective at
segmenting trees and vehicles at a 0.20 m resolution. This trend con-
tinued for the segmentation of lakes at a 0.45 m resolution. It raises the
question of whether the robust performance of point prompts in these
scenarios is a testament to their adaptability to very high-resolution
imagery or a reflection of the target object’s specific characteristics.
These objects primarily consist of very defined features (like cars and
vehicles) or share similar characteristics (as in bodies of water).

In the context of satellite-based remote sensing imagery, point
prompts proved most efficient for multi-class segmentation at the ex-
amined resolutions of 0.30 m and 0.50 m. This can be attributed to the
fact that bounding box prompts tend to overshoot object boundaries,
producing more false positives compared to point prompts. This finding
indicates the strong ability of point prompts to manage a diverse
set of objects and categories at coarser resolutions, making them a
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Table 2
Summary of metrics for the image segmentation task across different platforms, targets, and resolutions, and using different prompts for SAM
in zero-shot mode. The values in red indicate the best performance for a particular target under specific conditions.

# Platform Target Resolution (m) Prompt Dice (%) IoU (%) Pixel Acc. (%) TPR (%) FPR (%)

00 UAV Tree 0.04 Box 88.8 79.9 96.0 94.2 3.6
Point 91.8 84.8 97.6 91.6 1.4
Text 92.2 85.2 98.1 92.1 1.2

01 UAV House 0.04 Box 92.7 86.3 98.4 97.4 1.5
Point 70.8 54.8 84.0 96.6 19.2
Text 89.2 79.8 95.6 97.1 10.1

02 UAV Plantation 0.01 Box 86.2 82.8 85.5 88.2 11.1
Point 95.8 92.0 95.0 98.0 9.2
Text 67.1 64.4 66.5 68.6 12.0

03 UAV Plantation 0.04 Box 80.1 68.9 95.2 94.4 10.4
Point 72.7 57.1 93.5 93.4 6.5
Text 44.1 32.8 49.9 45.0 6.1

04 UAV Building 0.09 Box 69.7 53.5 81.3 95.5 22.8
Point 69.1 52.8 84.2 91.1 17.5
Text 66.3 50.9 77.2 90.7 24.0

05 UAV Car 0.09 Box 78.8 65.0 97.0 66.0 0.2
Point 90.0 81.9 99.1 86.7 0.3
Text 92.7 84.3 97.3 89.3 0.1

06 Airborne Tree 0.20 Box 68.8 52.4 91.2 84.4 7.9
Point 91.7 84.7 93.5 88.3 2.9
Text 89.0 82.2 90.7 85.6 3.7

07 Airborne Vehicle 0.20 Box 86.1 75.6 99.5 86.9 0.3
Point 86.3 75.9 99.1 78.5 0.1
Text 84.6 74.4 97.1 76.9 0.2

08 Airborne Lake 0.45 Box 57.4 40.3 98.3 98.8 1.7
Point 97.2 94.5 99.9 99.1 0.1
Text 89.4 86.9 91.9 91.2 0.8

09 Satellite Multiclass 0.30 Box 39.1 22.5 94.5 22.6 0.4
Point 82.3 56.7 87.8 67.8 3.7
Text 74.0 51.0 79.1 61.0 3.9

10 Satellite Multiclass 0.50 Box 26.1 15.0 93.6 15.1 0.5
Point 54.9 37.8 87.0 45.2 4.2
Text 49.4 34.0 78.3 40.7 4.4
promising tool for satellite remote sensing applications. The text-based
approach was found to be the least effective, primarily due to the
model’s difficulty in associating low-resolution objects with words.
Still, it is important to notice that, from all the datasets, the satellite
multiclass problem proved to be the most difficult task for the model,
with generally lower metrics than the others.

Qualitatively, our observations also revealed that bounding boxes
were particularly effective for larger objects (Fig. 6). However, for
smaller objects, SAM tended to overestimate the object size by includ-
ing shadows in the segmented regions. Despite this overestimation, the
bounding box approach still offers a useful solution for applications
where an approximate estimate of such larger objects suffices. For these
types of objects, a single point or central location does not suffice,
they are defined by a combination of features within a particular
area. Bounding boxes provide a more spatially comprehensive prompt,
encapsulating the entire object, which makes them more efficient in
these instances.

The point-based approach outperformed the others across our
dataset, specifically for distinct objects. By focusing on a singular point,
SAM was able to provide precise segmentation results, thus proving
its capability to work in detail (Fig. 7). In the plantation dataset with
0.01 m resolution, for instance, when considering individual small
plants, the point approach returned better results than bounding boxes.
This approach may hold particular relevance for applications requiring
precise identification and segmentation of individual objects in an
image. Also, when isolating entities like single trees and vehicles, these
precise spatial hints might suffice for the model to accurately identify
and segment the object.

The textual prompt approach also yielded promising results, partic-
ularly with very high-resolution images (Fig. 8). While it was found to
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be relatively comparable in performance with the point and bounding
box prompts for the aerial datasets, the text prompt approach had
notable limitations when used with lower spatial resolution images. The
text-based approach also returned worse predictions on the plantation
with 0.04 m. This may be associated with the models’ limitation on
understanding the characteristics of specific targets, especially when
considering the bird’s eye view of remote sensing images. Since it relies
on GroundDINO to interpret the text, it may be more of a limitation on
it than on SAM, mostly because, when applying the general segmenta-
tion, the results visually returned overall better segmentation on these
datasets (Fig. 5).

Text prompts, though generally trailing behind in performance, still
demonstrated commendable results, often closely following the top-
performing prompt type. Text prompts offer ease of implementation
as their primary advantage. They do not necessitate specific spatial
annotations, which are often time-consuming and resource-intensive
to produce, especially for extensive remote sensing datasets. However,
their effectiveness hinges on the model’s ability to translate text to
image information. Currently, their key limitation is that they are
typically not trained specifically on remote sensing images, leading
to potential inaccuracies when encountering remote sensing-specific
terms or concepts. Improving the effectiveness of text prompts can
be achieved through fine tuning models on remote sensing-specific
datasets and terminologies. This could enable them to better interpret
the nuances of remote sensing imagery, potentially enhancing their
performance to match or even surpass spatial prompts like boxes and
points.
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Fig. 6. Illustrations of images processed using bounding-box prompts. The first column consists of the RGB image, while the second column demonstrates how the prompt was
handled. The ground-truth mask is presented in the third column and the prediction result from SAM in the fourth. The last column indicates the false positive (FP) pixels from
the prediction.
4.3. One-shot segmentation

Regarding our one-shot approach, we noticed that the models’
performance is improved in most cases, as evidenced by the segmen-
tation metrics calculated on each dataset. Table 3 presents a detailed
comparison of the different models’ performance providing a summary
of the segmentation results. Fig. 9 offers a visual illustration of example
results obtained from both approaches, particularly highlighting the
performance of the model. The metrics indicate that, while the PerSAM
11
approach with a human-sampled example may be more appropriate
than the proposed text-based approach, this may not always be the
case when considering the metric’s standard deviation. This opens up
the potential for adopting the automated process instead. However,
in some instances, specifically where GroundDINO’s not capable of
identifying the object, to begin with, the human-labeling provides a
more appropriate result.

In its zero-shot form, SAM tends to favor selecting shadows in some
instances alongside its target, which can lower its performance in tasks
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Fig. 7. Illustrations of images processed using point prompts. The first column presents the RGB image, while the second column demonstrates the handling of the point prompt.
The third column showcases the ground-truth mask, and the fourth column shows the prediction result from SAM. The final column highlights the false positive (FP) pixels from
the prediction.
like tree detection. Segmenting objects with similar surrounding ele-
ments, especially when dealing with construction materials like streets
and sidewalks, can be challenging for SAM, as noticed in our multi-class
problem. Moreover, its performance with larger grouped instances,
particularly when using the single-point mode, can be unsatisfactory.
Also, the segmentation of smaller and irregular objects poses difficulties
for SAM independently from the given prompt. SAM may generate
disconnected components that do not correspond to actual features,
specifically in satellite imagery where the spatial resolution is lower.
12
The text-based one-shot learning approach, on the other hand,
automates the process of selecting the example. It uses the text-based
prompt to choose the object with the highest probability (highest logits)
from the image as the training example. This not only reduces the
need for manual input but also ensures that the selected object is
highly representative of the specified class due to its high probability.
Additionally, while the text-based approach is capable of handling
multiple instances of the same object class in a more streamlined
manner, thanks to the looping mechanism that iteratively identifies and
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Fig. 8. Examples of images processed through text-based prompts. The first column contains the RGB image, while the second column indicates the text prompt used for the
model. The ground-truth mask is shown in the third column, with the prediction result from SAM in the fourth. The last column indicates the false positive (FP) pixels from the
prediction.
segments objects based on their probabilities. The one-example policy,
however, excluded some of the objects in the image to favoring only
the objects similar to the given sample.

In summary, upon comparing these two methods, we found that
the traditional one-shot learning approach outperforms the zero-shot
learning approach in all datasets. Additionally, the combination of text-
based with one-shot learning also, even when not improving on it,
gets close enough in most cases. This comparison underscores the ben-
efits and potential of integrating state-of-the-art models with natural
13
language processing capabilities for efficient and accurate geospatial
analysis. Nevertheless, it is important to remember that the optimal
choice between these methods may vary depending on the specific
context and requirements of a given task.

5. Future perspectives on SAM for remote sensing

SAM has several advantages that make it an attractive option for
remote sensing applications. First, it offers zero-shot generalization
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Table 3
Comparison of segmentation results on different platforms and targets when considering both the one-shot and the text-based one-shot approaches. The baseline
values are referent to the best metric obtained by the previous zero-shot investigation, be it from a bounding box, a point, or a text prompt. The red colors
indicate the best result for each scenario.

# Platform Target Resolution (m) Sample Dice (%) IoU (%) Pixel Acc. (%) TPR (%) FPR (%)

00 UAV Tree 0.04 Baseline 92.2 85.2 98.1 92.1 1.2
PerSAM-F 94.5 ± 4.2 87.4 98.8 94.4 1.1
Text PerSAM-F 95.0 ± 4.9 87.8 99.3 96.3 0.9

01 UAV House 0.04 Baseline 92.7 86.3 98.4 97.4 1.5
PerSAM-F 95.4 ± 2.1 88.9 99.3 98.1 1.1
Text PerSAM-F 95.0 ± 2.7 88.5 98.8 99.8 1.4

02 UAV Plantation Crop 0.01 Baseline 80.1 68.9 95.2 94.4 10.4
PerSAM-F 82.1 ± 6.4 70.6 98.8 96.8 9.6
Text PerSAM-F 64.1 ± 7.2 55.1 76.2 75.5 15.6

03 UAV Plantation Crop 0.04 Baseline 95.8 92.0 95.0 98.0 9.2
PerSAM-F 98.2 ± 1.1 94.3 98.8 100.4 8.5
Text PerSAM-F 76.7 ± 1.3 73.6 76.0 78.4 13.8

04 UAV Building 0.09 Baseline 69.7 53.5 81.3 95.5 22.8
PerSAM-F 87.2 ± 6.2 66.9 98.0 96.6 21.0
Text PerSAM-F 73.2 ± 6.7 54.9 94.3 97.9 21.1

05 UAV Car 0.09 Baseline 92.7 84.3 97.3 89.3 0.1
PerSAM-F 95.0 ± 2.4 86.4 98.8 91.5 0.1
Text PerSAM-F 95.5 ± 3.0 86.9 99.3 93.3 0.1

06 Airborne Tree 0.20 Baseline 91.7 84.7 93.5 88.3 2.9
PerSAM-F 94.0 ± 1.3 86.8 98.8 90.5 2.7
Text PerSAM-F 94.5 ± 1.5 87.3 99.3 92.3 2.1

07 Airborne Vehicle 0.20 Baseline 86.3 75.9 99.1 78.5 0.1
PerSAM-F 88.4 ± 5.6 77.8 99.8 80.4 0.2
Text PerSAM-F 86.7 ± 6.5 76.3 99.6 78.9 0.1

08 Airborne Lake 0.45 Baseline 97.2 94.5 99.9 99.1 0.1
PerSAM-F 97.6 ± 1.5 94.9 99.9 99.5 0.1
Text PerSAM-F 97.3 ± 1.3 94.6 99.8 99.2 0.1

09 Satellite Multiclass 0.30 Baseline 82.3 56.7 87.8 67.8 3.7
PerSAM-F 90.5 ± 5.2 68.0 96.6 74.5 3.5
Text PerSAM-F 89.7 ± 5.3 61.8 95.8 73.9 3.5

10 Satellite Multiclass 0.50 Baseline 54.9 37.8 87.0 45.2 4.2
PerSAM-F 60.3 ± 10.4 45.3 95.7 49.7 3.9
Text PerSAM-F 59.8 ± 12.3 41.2 94.8 49.2 4.0
to unfamiliar objects and images without requiring additional train-
ing (Kirillov et al., 2023). This capability allows SAM to adapt to the
diverse and dynamic nature of remote sensing data, which often con-
sists of varying land cover types, resolutions, and imaging conditions.
Second, SAM’s interactive input process can significantly reduce the
time and labor required for manual image segmentation. The model’s
ability to generate segmentation masks with minimal input, such as a
text prompt, a single point, or a bounding box, accelerates the anno-
tation process and improves the overall efficiency of remote sensing
data analysis. Lastly, the decoupled architecture of SAM, comprising
a one-time image encoder and a lightweight mask decoder, makes
it computationally efficient. This efficiency is crucial for large-scale
remote sensing applications, where processing vast amounts of data on
time is of utmost importance.

However, our study consists of an initial exploration of this model,
where there is still much to be investigated. In this section, we discuss
future perspectives on SAM and how it can be improved upon. Despite
its potential, SAM has some limitations when applied to remote sensing
imagery. One challenge is that remote sensing data often come in
different formats, resolutions, and spectral bands. SAM, which has
been trained primarily on RGB images, may not perform optimally
with multispectral or hyperspectral data, which are common in remote
sensing applications. A possible approach to this issue consists of either
adapting SAM to read in multiple bands by performing rotated 3-band
combinations or performing a fine-tuning to domain adaption. In our
early experiments, a simple example run on different multispectral
datasets demonstrated that, although the model has the potential to
segment different regions or features, it still needs further exploration.
This is something that we intend to explore in future research, but
expect that others may look into it as well.
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Regardless, the current model can be effectively used in various
remote sensing applications. For instance, we verified that SAM can be
easily employed for land cover mapping, where it can segment forests,
urban areas, and agricultural fields. It can also be used for monitoring
urban growth and land use changes, enabling policymakers and urban
planners to make informed decisions based on accurate and up-to-date
information. Furthermore, SAM can be applied in a pipeline process to
monitor and manage natural resources. Its efficiency and speed make
it suitable for real-time monitoring, providing valuable information
to decision-makers. This is also a feature that could be potentially
explored by research going forward with its implementation.

Nevertheless, it is crucial to underscore a significant limitation
concerning the complexity of our data. While our primary objective was
to analyze results across varying spatial resolutions and broad remote
sensing segmentation tasks, the limited regional diversity of our data
may not fully capture the range of object characteristics encountered
worldwide. Future research, therefore, could emphasize utilizing and
adapting to a more diverse array of the same object, thereby bolstering
the robustness and applicability of the model or its adaptations. For
instance, in the detection of buildings and water bodies, exploration
of publicly available datasets from diverse regions (Boguszewski et al.,
2022; Zhang et al., 2023c) could provide a more comprehensive under-
standing of these objects’ varied characteristics, and contribute to the
enhancement of algorithmic performance across varied geographical
contexts.

For the one-shot technique based on SAM, which is the capacity to
generate accurate segmentation from a single example (Zhang et al.,
2023b). Our experimental results indicate an improvement in perfor-
mance across most investigated datasets, especially considering the
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Fig. 9. Visual illustration of the segmentation results using PerSAM and text-based PerSAM. from The last two columns highlights the difference in pixels the PerSAM prediction
and the text-based PerSAM prediction to its ground truth. The graphic compares the range from the Dice values of both PerSAM and text-based PerSAM, illustrating how the
proposed approach remains similar to the traditional PerSAM approach, underscoring the potential of most practices to adopt the automated process in such cases.
border of the objects. However, it is essential to note that one-shot
learning may pose challenges to the generalization capability of the
model. This may be an issue of remote sensing data that often exhibit
a high degree of heterogeneity and diversity (Zia et al., 2022). For
instance, a ‘‘healthy’’ tree can be a good sample for the model, but it can
bias it to ignore ‘‘unhealthy’’ trees or canopies with different structures.

Expanding the one-shot learning to a few-shot scenario could po-
tentially improve the model’s adaptability to different environments or
tasks by enabling it to learn from more than one example (2 to 10)
instead of a single one. This would involve using a small set of labeled
objects for each land cover type during the training process (Sun et al.,
2021; Li et al., 2022a). A more robust learning approach, which uses
a larger number of examples for each class, could further enhance the
model’s ability to capture the nuances and variations within each class.
This approach, however, may require more computational resources
and training data, and thus may not be suitable for all applications.

Additionally, While SAM is a powerful tool for image segmentation,
its effectiveness can be boosted when combined with other techniques.
For example, integrating SAM into another ViT framework in a weakly-
supervised manner could potentially improve the segmentation result,
better handling the spatial-contextual information. However, it is worth
noting that integrating it might also bring new challenges (Wang et al.,
2020a). One potential issue could be the increased model complexity
and computational requirements, which might limit its feasibility. But,
15
as the training of transformers typically requires large amounts of data,
SAM can provide fast and relatively accurate labeled regions for it.

Furthermore, one of the key challenges to tackle would be im-
proving SAM’s performance when applied to low spatial resolution
imagery. Thus, as the original training data of SAM primarily consisted
of high-resolution images, it is inherently more suitable for similar
high-resolution conditions, even in the remote sensing domain. The
noticeable decrease in accuracy at resolutions above 30 cm, noted
in our tests, further substantiates this observation. This shortcoming
can be further explored by coupling SAM with a Super-Resolution
(SR) technique (Yang et al., 2015), for instance, creating a two-step
process, where the first step involves using an SR model to increase the
spatial resolution of the imagery, and the second step involves using the
enhanced resolution image as an input to SAM. It is acknowledged that
while this method can theoretically enhance the performance of SAM
with low-resolution images, the Super-Resolution techniques them-
selves can introduce errors, potentially offsetting the benefits (Yang
et al., 2015). Therefore, the proposed two-step process should be
approached with caution, ensuring meticulous testing and validation.
A dedicated exploration into refining and optimizing SAM for lower-
resolution images, possibly involving adaptation and training of the
model on lower-resolution data, will be integral to ensuring its effective
and reliable application in diverse remote sensing scenarios.

As we explored the integration of SAM with other types of methods,
such as GroundDINO (Liu et al., 2023b), we noticed both strengths and
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limitations that were already discussed in the previous section. This
combination demonstrates a high degree of versatility and accuracy in
tasks such as instance segmentation, where GroundDINO’s object detec-
tion and classification guided SAM’s segmentation process. However,
the flexibility of this approach extends beyond these specific models.
Any similar models could be swapped in as required, expanding the
applications and robustness of the system. Alternatives such as GLIP (Li
et al., 2022b) or CLIP (Liu et al., 2023a) may replace GroundDINO,
allowing for further experimentation and optimization (Zhang et al.,
2022b). Furthermore, integrating language models like ChatGPT (Ope-
nAI, 2023) could offer additional layers of interaction and nuances of
understanding, demonstrating the far-reaching potential of combining
these expert models. This modular approach underpins a potent and
adaptable workflow that could reshape our capabilities in handling
remote sensing tasks.

The integration of Geographical Information Systems (GIS) with
models like SAM holds significant promise for enhancing the annotation
process for training specific segmentation and change detection models.
A fundamental challenge often lies in the discrepancy between training
data and the image data employed due to different acquisition times
and since the data used could be marred with annotator errors, leading
to a compatibility issue with the used image. The integration with
SAM could help users optimize the creation of annotations and, when
suitable, improve its results with editing, thus creating a quicker and
more robust dataset. Lastly, a topic which is not discussed in this paper,
but which is an important issue for applications particularly in the
area of geospatial intelligence is AI security. A recent survey paper on
this topic is Xu et al. (2023). It discusses issues such as that it can be
unclear based on which data a (foundation) model has been trained
and what deficits may arise from this. Particularly, an adversary might
have contaminated the training data.

In short, our study focused on demonstrating the potential of SAM
adaptability for the remote sensing domain, as well as presenting a
novel, automated approach, to retrain the model with one example
from the text-based approach. While there is much to be explored, it
is important to understand how the model works and how it could
be improved upon. To summarize this discussion, there are many po-
tential research directions and applications for SAM in remote sensing
applications, which can be condensed as follows:

• Examining the most effective approaches and techniques for
adapting SAM to cater to a variety of remote sensing data,
including multispectral and hyperspectral data.

• Analyzing the potential of coupling SAM with few-shot or multi-
shot learning, to enhance its adaptability and generalization ca-
pability across diverse remote sensing scenarios.

• Investigating potential ways to integrate SAM with prevalent re-
mote sensing tools and platforms, such as Geographic Information
Systems (GIS), to augment the versatility and utility of these
systems.

• An issue particularly important for applications in the area of
geospatial intelligence is AI security, where an adversary might,
e.g., contaminate the training data for a (foundation) model.

• Assessing the performance and efficiency of SAM in real-time
or near-real-time remote sensing applications to understand its
capabilities for timely data processing and analysis.

• Exploring how domain-specific knowledge and expertise can be
integrated into SAM to enhance its ability to understand and
interpret remote sensing data.

• Evaluating the potential use of SAM as an alternative to tradi-
tional labeling processes and its integration with other image
classification and segmentation techniques in a weakly-supervised
manner to boost its accuracy and reliability.

• Integrating SAM with super resolution approach to enhance its
capability to handle low-resolution imagery, thereby expanding
16

the range of remote sensing imagery it can effectively analyze. i
6. Conclusions

In this study, we conducted a comprehensive analysis of both the
zero and one-shot capabilities of the Segment Anything Model (SAM)
in the domain of remote sensing imagery processing, benchmarking
it against aerial and satellite datasets. Our analysis provided insights
into the operational performance and efficacy of SAM in the sphere
of remote sensing segmentation tasks. We concluded that, while SAM
exhibits notable promise, there is a tangible scope for improvement,
specifically in managing its limitations and refining its performance for
task-specific implementations.

In summary, our data indicated that SAM delivers notable perfor-
mance when contrasted with the ground-truth masks, thereby under-
scoring its potential efficacy as a significant resource for remote sensing
applications. Our evaluation reveals that the prompt capabilities of
SAM (text, point, box, and general), combined with its ability to
perform object segmentation with minimal human supervision, can also
contribute to a significant reduction in annotation workload. This de-
crease in human input during the labeling phase may lead to expedited
training schedules for other methods, thus promoting more streamlined
and cost-effective workflows.

The chosen datasets were also selected with the express purpose
of representing a broad and diverse context at varying scales, rather
than exemplifying complex or challenging scenarios. By focusing on
more straightforward datasets, the study went in on the fundamental
aspects of segmentation tasks, without the additional noise of overly
complicated or intricate scenarios. In this sense, future research should
be oriented towards improving SAM’s capabilities and exploring its
potential integration with other methods to address more complex and
challenging remote sensing scenarios.

Nevertheless, despite the demonstrated generalization, there are
certain limitations to be addressed. Under complex scenarios, the model
faces challenges, leading to less optimal segmentation outputs, by
overestimating most of the objects’ boundaries. Additionally, SAM’s
performance metrics display variability contingent on the spatial reso-
lution of the input imagery (i.e., being prone to increase mistakes as the
spatial resolution of the imagery is lowered). Consequently, identifying
and rectifying these constraints is essential for further enhancing SAM’s
applicability within the remote sensing domain.
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