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ARTICLE INFO ABSTRACT

Keywords: Pantanal is the largest continuous wetland in the world, but its biodiversity is currently endangered by
Multispectral imagery catastrophic wildfires that occurred in the last three years. The information available for the area only refers to
Deep learning the location and the extent of the burned areas based on medium and low-spatial resolution imagery, ranging

Transfer learning

wilds from 30 m up to 1 km. However, to improve measurements and assist in environmental actions, robust methods
1ldiire

are required to provide a detailed mapping on a higher-spatial scale of the burned areas, such as PlanetScope
imagery with 3-5 m spatial resolution. As state-of-the-art, Deep Learning (DL) segmentation methods, in
specific Transformed-based networks, are one of the best emerging approaches to extract information from
remote sensing imagery. Here we combine Transformers DL methods and high-resolution planet imagery to
map burned areas in the Brazilian Pantanal wetland. We first compared the performances of multiple DL-
based networks, namely Segformer and DTP Transformers methods with CNN-based networks like PSPNet,
FCN, DeepLabV3+, OCRNet, and ISANet, applied in Planet imagery, considering RGB and near-infrared within
a large dataset of 1282 image patches (512 x 512 pixels). We later verified the generalization capability of the
model for segmenting burned areas in different areas, located in the Brazilian Amazon, which is also worldwide
known due to its environmental relevance. As a result, the two transformers based-methods, SegFormer (F1-
score equals 95.91%) and DTP (F1-score equals 95.15%), provided the most accurate results in mapping burned
forest areas in Pantanal. Results show that the combination of SegFormer and RGB+NIR image with pre-trained
weights is the best option (F1-score of 96.52%) to distinguish burned from not-burned areas. When applying
the generated model in two Brazilian Amazon forest regions, we achieved Fl-score averages of 95.88% for
burned areas. We conclude that Transformer-based networks are fit to deal with burned areas in two of the
most relevant environmental areas of the world using high-spatial-resolution imagery.
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D.N. Gongalves et al.
1. Introduction

Deep learning (DL) based methods have been a state-of-the-art
approach to extracting information from remote sensing images (Osco
et al.,, 2021). These methods have been used to attend scene clas-
sification, object detection, and semantic segmentation problems in
several environmental applications (Ma et al.,, 2019). The semantic
segmentation task performs a pixel-by-pixel classification to define
the informational classes based on the spectral information of an im-
age (Zhu et al., 2017). Several DL semantic segmentation architectures
have been proposed by the computer vision community, and they have
been assessed and adapted for different domains, including remote
sensing image analysis (Yuan et al., 2021). Martins et al. (2021), for
example, verified the performance of different semantic segmentation
algorithms for tree mapping in urban areas with RGB images, and
noted that the DeepLab v3+ approach achieved the best results. An-
other study, Torres et al. (2021), showed that ResU-Net was better
for deforestation mapping in the Amazon forest, which presents an
unbalanced class problem. DL approaches have been tested to deal
with the labeling uncertainty problems and class imbalance aiming the
vegetation mapping using remote sensing data as can see in Bressan
et al. (2022).

The exploration of DL methods in remote sensing imagery has been
noted in different environmental applications, and, in recent years,
there are an increasing number of articles on deep learning for active
fire detection and burned area (BA) mapping. A recent search on Web
of Science (‘TS = ((deep learning) AND (wildfire OR burned area))’)
showed an increase of 104% and 80% of articles in this thematic in
2021 and 2020, respectively, compared to 2019. The majority of these
approaches are based on orbital imagery, due to it global coverage.
There are also assessments (Bushnaq et al., 2021; Bouguettaya et al.,
2022) using UAV (unmanned aerial vehicle) imagery for early fire
detection and mapping, but they are confined in small regions as
UAV surveying is a cost and time-consuming task. For orbital imagery
applications, several works (Hu et al., 2021; Arruda et al., 2021; Pinto
et al., 2020; Rashkovetsky et al., 2021) applied DL methods in orbital
images varying from the RGB spectral region to the short-wave infrared
(SWIR) to map burned areas, like those offered freely, for example, by
the Visible Infrared Imaging Radiometer Suite (VIIRS) systems, Landsat,
and Sentinel 2A/B satellites. However, the images from these sensors
present limitations in terms of temporal and spatial resolution. VIIRS
imagery, for instance, is acquired daily; however, with ground sample
distances (GSD) of 375 and 750 m. In contrast, Sentinel and Landsat
imagery have higher spatial resolutions (10 and 30 m); however, with
lower temporal resolutions of 5 and 16 days, respectively.

In terms of related works, Pinto et al. (2020) proposed a semantic
segmentation algorithm named BA-Net for temporal image analysis
of the VIIRS system to map burned areas that combines convolu-
tional neural network (CNN) and long-short-term memory (LSTM).
This approach was tested using data from five countries (Brazil, EUA,
Portugal, Mozambique, and Australia). Another study (Hu et al., 2021)
mapped burned areas in European countries like Portugal, Spain, Swe-
den, Greece, and Canada, using Landsat —8 and Sentinel-2 optical
imagery processed by several DL methods (U-Net, HRNet, Fast-SCNN,
and DeepLabv3+). The authors verified that DL methods provide higher
accuracy when compared to traditional machine learning methods (ran-
dom forest and support vector machine) and that HRNet outperforms
other DL methods in terms of generalization of a data source. For
mapping burned areas in a large area in Brazil (Savanna), Arruda
et al. (2021) combined Google Earth Engine (GEE) and multi-layer
perceptron (MLP), which does not compose the list of state-of-the-art
DL methods. Considering the balance between spatial (10-20 m) and
temporal resolutions (5 days), and also due to the availability of Syn-
thetic Aperture Radar (SAR) data (less affected by clouds), Sentinel data
have been frequently employed for burned area mapping. For example,
Sentinel-2 data was applied for mapping burned areas in Portugal,
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southern France, and Greece using DL (Pinto et al., 2021). Belenguer-
Plomer et al. (2021) combined Sentinel-1 SAR data and Sentinel-2
optical imagery with CNN for mapping burned areas. Also in this con-
text, Zhang et al. (2021) proposed a deep learning multi-source-based
method to combine SAR (Sentinel 1) and multispectral (Sentinel 2)
data, using PlanetScope normalized difference vegetation index (NDVI)
pre and post-fire data to generate the labeled dataset. These related
works show that mapping burned areas with DL methods using high
spatial-temporal resolution images like PlanetScope imagery is still
little explored. This strategy constitutes a demand in areas similar to
the Brazilian Pantanal and Amazon regions, characterized by intense
wildfires every year.

The Brazilian Pantanal is the largest wetland region in the world,
having as its main characteristic the flood pulse (Junk et al., 1989).
The flooding in the Pantanal presents both temporal and spatial varia-
tions, presenting areas that never flood and areas permanently flooded
(Moraes et al., 2013). These flooding variations associated with other
factors make the Pantanal an extremely heterogeneous ecosystem, mak-
ing it difficult to apply some remote sensing techniques. Therefore,
identifying burned areas, be it on vegetation next to flood pulses or
in dryer lands in the same biome, offers a potential challenge for
traditional image segmentation approaches. Methods that provide in-
formation about burned areas using high-spatial-resolution images may
return important information related to the quantification of emissions
from fires, mainly from small and fragmented burned areas. Also can
contribute to a better understanding of the causes, planning and impact
analysis, restoration strategy definition, fire management assessment,
etc.

PlanetScope daily imagery with a ground sample distance ranging
from 3 to 5 meters are promising data to attend this demand. However,
a literature analysis points out a lack of studies on mapping burned ar-
eas using the PlanetScope imagery. Even though Norway’s International
Climate /& Forests Initiative (NICFI) recently provided free access to
Planet imagery for the world’s tropics regions, which encompasses most
of the Brazilian territory. Additionally, there is no information about
the performance of novel semantic segmentation methods, such as
SegFormer (Xie et al., 2021), DPT (Ranftl et al., 2021), ISANet (Huang
et al.,, 2019), or OCRNet (Yuan et al.,, 2020), to map burnt areas
using RGB and NIR images of high-spatial-temporal resolution like
PlanetScope images. Among these DL algorithms, both SegFormer and
DPT are characterized by using an encoder Vision Transformer-based.
The use of the ViT as a backbone in image semantic segmentation task
consist of a state-of-the-art approach (Xie et al.,, 2021; Ranftl et al.,
2021). The use of architecture models ViT-based on revolutionized au-
tomatic translation and natural language processing, and they are now
being investigated for classification and image segmentation (Zheng
et al.,, 2021b). SegFormer, for instance, has advantages in relation
to other ViT-based networks, mainly because it uses a hierarchically
structured encoder that returns multiscale feature outputs, while also
being constructed to avoid complex decoders (Xie et al., 2021). These
characteristics help in combining local and global attention with its
encoder, aggregating information from different layers of the network
to render more powerful representations, thus improving its learning.
It is also considered a lightweight type of network, which makes it
suitable for multiple hardware.

In this paper, we mapped burned areas in the largest tropical wet-
land of the world, the Brazilian Pantanal, combining novel ViT-based
deep learning methods and PlanetScope imagery. Pantanal experienced
catastrophic wildfires in 2019, and 2020, and significant wildfires
occurred in 2021 (Libonati et al., 2020; Leal Filho et al., 2021). We
also verified the generalization capability of the model for segmenting
burned areas in the Brazilian Amazon, which is also worldwide known
due to its environmental relevance. In Brazil, an online platform based
on the BA-Net, a deep learning method, was developed, providing
daily information of burned area for Brazil, including the Pantanal
and the Amazon regions, on an operational and near real-time basis,
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Fig. 1. A diagram simplifying the steps applied on the experiment.

the so called Alarmes Plaraform (https://alarmes.lasa.ufrj.br/) (Pinto
et al., 2020). This platform uses VIIRS data, therefore, providing coarse
burned area mapping. In this context, this work proposes a step toward
an automated procedure to produce daily high-resolution burned areas
over an extended region aiming for improving current early warning
systems. This article brings three-fold contributions:

1. The most detailed mapping of burned areas for distinct Brazillian
regions (Pantanal and Amazon) using PlanetScope imagery;

2. The assessment of different combinations of bands (B, G, R, NIR)
to verify the spectral impact over the analysis;

3. The evaluation of state-of-the-art ViT-based deep learning meth-
ods in performing said task.

2. Materials and methods

The method organized for this study is separated into 4 phases.
The first consists of a comparison between semantic segmentation deep
networks, including two ViT-based methods and five CNNs. The second
phase evaluates the effect of both transfer learning and fine-tuning
techniques on the performance of the overall best method, identified in
the previous phase. The third phase uses different band combinations
and a vegetation index to verify their influences on the network’s
segmentation. The fourth and final phase applies the best possible
model created for the Pantanal region to other tropical forest areas
inside the Amazon forest and verifies its generative capabilities. Fig. 1
summarizes the process described in detail in the following sections.

2.1. Study area

The Pantanal has about 160.000 km? covering the countries of Bo-
livia, Paraguay, and Brazil (Damasceno-Junior and Pott, 2021). Brazil
owns most of the Pantanal, which is more than 80% of the entire
territory of the biome (Damasceno-Junior and Pott, 2021; Garcia et al.,
2021). Elected biosphere reserve, it is one of the most conserved
ecosystems, maintaining about 80% of its native vegetation (Roque
et al., 2016). The most worrying factor for the conservation of the
Pantanal today is wildfires (Garcia et al., 2021; Libonati et al., 2020).
Around 8% of the Pantanal burns annually (de Oliveira-Junior et al.,

2020; Libonati et al., 2022). In the year 2020, one of the worst in
recent decades, fires in the Pantanal reached 43% of the entire territory,
leading to the death of about 17 million vertebrates (Libonati et al.,
2020; Garcia et al., 2021; Tomas et al., 2021; Libonati et al., 2022). In
addition, considering the last two decades, the Pantanal has shown a
tendency to increase the burned areas (Correa et al., 2022).

This scenario can be aggravated because it is predicted that the
climate change in the Pantanal will present a reduction in rainfall and
an increase in temperature (Silva et al., 2022), which may worsen the
situation of wildfires in the region. The Pantanal has a high diversity
of environments, the most representative being savanna environments,
such as grasslands and open savannas, but it also has forest environ-
ments, such as dry forests and seasonal forests (dos Santos Vila da Silva
et al., 2021; Pott and Pott, 2021). All these environments can present
variations in their flood levels (dos Santos Vila da Silva et al., 2021;
Pott and Pott, 2021). This variation allows the Pantanal to present
highly heterogeneous landscapes, which can vary abruptly between
completely different environments (Damasceno-Junior and Pott, 2021;
Pott and Pott, 2021). For this reason, to generate more generic models
we considered images acquired on several dates and three territories
within its region (see Fig. 2).

2.2. Data

The images comprised PlanetScope multispectral imagery datasets
(Blue—B, Green—G, Red—R, Near Infrared—NIR) with a ground sam-
ple distance (GSD) of 3.9 (+0.28) meters (PBC, 2021). PlanetScope
images are acquired by a constellation of approximately 130 nanosatel-
lites with a daily imaging coverage capacity of 200 million km?/day.
These images and freely accessible for research purposes, and are avail-
able orthorectified and in surface reflectance, that is, ready-to-use data.
This eliminates the need for radiometric calibration and atmospheric
correction of these scenes since images from different dates are used to
map the burned areas.

To gather the reference data (i.e. burned and unburned areas) in
PlanetScope imagery, manual labeling was performed by specialists
with the assistance of the Geographical Information System (GIS) open-
source software QGIS 3.22. Within the Pantanal, three areas containing
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burned regions were chosen to serve as ground truth to the compari-
son. In contrast, two areas containing burned regions in the Brazilian
Amazon were selected. For the Pantanal region, the burned areas
corresponded to 225,483.97 ha in total, which configures into 676,452
pixels marked as regions of interest. A total of 1502 fire or burning
areas/events were recorded within this region. As for the Amazon area,
a total of 11,906.88 ha of burned areas were identified, totalizing
35,720 pixels in 614 different areas. For the Pantanal region were
registered between July and September of 2021, and different burning
conditions were found, being from recently burned areas, areas that
were burned but were already presenting early stages of regeneration,
and areas partially covered by smoke from current active burning. To
verify the impact of different band combinations in the overall best
network, we used combinations among visible (Blue (B): 455-515 nm;
Green (G): 500-590 nm; Red (R): 590-670 nm) and Near-Infrared (NIR)
(780-860 nm), and the spectral index NDVI (Eq. (1)) as input for the
DL method.

NDVI=(NIR-R)/(NIR+ R) 1)

We split the areas into patches of size 512 x 512 pixels without
overlap due to the input dimension limitations of DL methods. A
total of 1282 patches were obtained from the images. Each band was
normalized between 0 and 1 according to Eq. (2). Normalization is
important in this case so that the bands are on the same scale when
training the networks.
b(i, j) — min(b)

b ) = ) = minth) 2

where b is a band, b(i,j) and b(i, j) are respectively the value of the
band at position (i, j) and its normalized value.

2.3. Deep learning methods

To segment and map the burned areas, we used state-of-the-art
semantic segmentation networks. We compared recent ViT-based meth-
ods, such as SegFormer (Xie et al., 2021) and DPT (Ranftl et al.,
2021), with known CNN-based methods, like OCRNet (Yuan et al.,
2020), FCN (Shelhamer et al., 2017), ISANet (Huang et al., 2019),
PSPNet (Zhao et al., 2016) and DeepLabV3+ (Chen et al., 2018). In
general, segmentation methods take an image as input and return a
pixel-wise classification. In our case, the result of each method is an
image with the class of each pixel that can be a background or a
burned area. Traditional DL methods use convolution, pooling, and
fully connected layers such as FCN, DeepLabV3+, PSPNet, ISANet, and
OCRNet. As stated, Transformers have been used as a replacement
for convolution layers to get global attention to the image. As tradi-
tional CNN methods are commonly explored in remote sensing, we
did not describe them in detail. Below, we only describe the focused
Transformers-based methods: SegFormer and DPT (Fig. 3.)

SegFormer (Xie et al.,, 2021) is an efficient semantic segmenta-
tion method that combines Transformers and multilayer perceptron
decoders. SegFormer can be divided into two main modules, encoder,
and decoder. In the encoder, multi-scale features are extracted from
the image through hierarchically structured Transformers. Unlike the
traditional Transformer, the position encoder on the encoder is imple-
mented through convolutional layers, as it has superior performance
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at different image resolutions. In the decoder, the multi-scale features
are aggregated to represent local and global information. Finally, the
merged features are used to segment the input image. Despite the sim-
ple decoder, SegFormer provided superior results in traditional image
datasets. We used the more powerful version, called SegFormer-B5 in
the original work.

Dense Prediction Transformer (DPT) (Ranftl et al., 2021) is com-
posed of an encoder—decoder structure. In the encoder, DPT uses vision
transformers as a backbone to extract representations at various resolu-
tions. The representations are composed of a set of tokens, i.e., image
patches embedded in a feature space. Then the tokens are used in se-
quential multi-headed self-attention blocks to apply a global operation,
as each token can attend to every other token. The decoder assembles
the tokens in a two-dimensional (image-like) representation at various
resolutions. These representations are progressively combined for a
pixel-by-pixel prediction.

2.4. Experimental setup and protocol

As aforementioned, We initially performed a comparison between
the state-of-the-art image segmentation methods applied in the burned
area recognition task. The following methods were considered in the
comparison: SegFormer (Xie et al., 2021), DPT (Ranftl et al., 2021),
OCRNet (Yuan et al., 2020), FCN (Shelhamer et al., 2017), ISANet
(Huang et al., 2019), PSPNet (Zhao et al.,, 2016) and DeepLabV3+
(Chen et al., 2018). For this comparison, the methods used four bands
(R, G, B, NIR) as input and the pre-trained ImageNet weights. In
general, the image segmentation methods are pre-trained on images
with only 3 bands (R, G, and B). As the input in this experiment has
four bands, the filters of the first layer of the backbone were randomly
initialized and the others were initialized with the pre-trained weights.

A total of 862, 104, and 316 image patches (512 x 512 pixels) were
used for training, validation, and testing the deep learning methods.
In training each method, the encoder weights were initialized either
with pre-trained weights or randomly, while the decoder weights were
initialized randomly. Following the original Transformer papers, we
used the AdamW optimizer for 80K iterations using a batch size of 2 for
SegFormer and DPT. The initial learning rate was 0.00006 and updated
by a Poly LR schedule with a factor of 1 by default. For CNN-based
methods (FCN, DeepLabV3+, PSPNet, OCRNet, ISANet), we used the
suggested parameters as SGD optimizer with a learning rate of 0.01,
the momentum of 0.9, and weight decay of 0.0005. As with the other

two methods, the training was performed for 80K iterations, but with a
batch size of 4 due to the lower memory consumption of the methods
based on CNNs.

We then explored the influence of transfer learning and fine-tuning
procedures on the overall-best method selected from the previous
comparison analysis. For this, we initialize the selected method back-
bone using several forms, a strategy known as transfer learning. The
first strategy (scratch) consists of initializing the network’s backbone
weights at random. The second strategy (Random Weights - 1st Layer)
was to randomly initialize only the weights of the first backbone
layer, as this layer depends directly on the number of channels in the
input image. The third and fourth strategies consist of initializing all
backbone layers with pre-trained weights, including the first layer with
the filter weights of R, G, and B band channels. The fourth channel of
the filters of the first layer, which corresponds to the NIR channel of
the input, was initialized randomly in the third strategy and with the
weights of the Blue channel in the fourth strategy.

Finally, we evaluated the influence of the multispectral bands on
burned area segmentation to determine the most important band chan-
nels. For that, we trained the overall-best method from the previous
phase with ImageNet pre-trained weights and produced experiments
with different configurations. Initially, we evaluated the use of only
three bands, as well as most proposed DL methods. The first row of
experimentation corresponds to the method using visible bands (R, G,
and B). In the second, third, and fourth inputs, we use NIR in place of
one of the visible spectrum bands. The idea is to understand how the
NIR impacts the burned area segmentation and which band (R, G, or
B) has pre-trained weights that can be used as NIR band weights. In
addition, these experiments make it possible to understand the impact
of each band. The organization of each input is also illustrated in Fig. 1.

To assess the generalizability of the generated model from the
previous experiments, we used the selected network with four bands
from the PlanetScope image collection to segment areas of the Brazilian
Amazon. The Brazilian Amazon is one of the most important areas
in the world, along with the Pantanal, as it represents a third of the
world’s tropical forests, and is home to the greatest biodiversity on
the planet in plants, animals, and microorganisms. Within the Brazilian
Amazon, two areas containing fire damage were chosen and manually
labeled to serve as ground truth to the comparison.

The experiments were computed in a desktop computer with In-
tel(R) Xeon(R) CPU E3-1270@3.80 GHz, 64 GB memory, and NVIDIA
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Table 1

Segmentation results of burned area using four bands (R, G, B, NIR).
Method ToU Pixel accuracy F-score

Background Burned area Background Burned area Background Burned area

FCN 89.48 90.35 92.9 96.4 94.45 94.93
DeepLabV3+ 87.96 88.18 95.51 91.91 93.59 93.72
PSPNet 88.56 89.05 94.61 93.57 93.93 94.21
OCRNet 89.67 90.37 93.85 95.61 94.55 94.94
ISANet 89.15 89.82 93.87 95.01 94.26 94.64
SegFormer 91.56 92.14 94.91 96.56 95.59 95.91
DPT 90.04 90.75 93.85 96.01 94.76 95.15

Titan V Graphics Card (5120 Compute Unified Device Architecture—
CUDA cores and 12 GB graphics memory). The methods were im-
plemented using mmsegmentation toolbox (https://github.com/open-
mmlab/mmsegmentation) on the Ubuntu 18.04 operating system. The
performance of the models is evaluated using the metric F1-score (F1)
(Eq. (5), pixel accuracy (Eq. (3)), and the Intersection over Union (IoU)
(Eq. (4)), as they are currently used to assess semantic segmentation
experiments (Xie et al., 2021; Yuan et al., 2020; Shelhamer et al., 2017;
Chen et al., 2018).

TP+TN

Accuracy = 3)
TP+TN+FP+FN
|GT N Prediction|
JoU=+—" """ 4
? |GT U Prediction| )

Fl—score=2- Prec-is.ion - Recall 5)
Precision + Recall

The F1-score metric is calculated based on the weighted average of
Precision and Recall, where an F1-score reaches it’s best value at 1 and
the worst score at 0. The precision metric is defined as the number
of True Positives (TP) divided by the number of true positives (TP)
plus the number of False Positives (FP). The Recall metric is defined
as the number of true positives (TP) over the number of true positives
(TP) plus the number of False Negatives (FN). The IoU, also known as
the Jaccard Index, is the ratio between the intersection and the union
between the ground truth (GT) and the prediction masks.

3. Results

This section presents the segmentation results of the burned areas in
the investigated regions of Pantanal using several DL based-methods for
the semantic segmentation task. Later on, we present the observations
of our best model to segment burned areas in two Amazon Forest
regions.

3.1. Comparison of image segmentation methods

The results for the IoU, pixel accuracy, and f-score metrics are
presented in Table 1. We report metrics separately for background
and burned area pixels for a complete analysis of the results, as the
occurrence of burned area pixels tends to be lower then the overall
background. As we can see, SegFormer excelled in most metrics for the
two classes, background and burned areas. Considering the IoU of the
burned area, the Segformer obtained 92.14 against 90.75 for the DPT,
the second-best method. This evidences the robustness of Transformers
against convolutional layers, as both methods are based on this recent
advance. Considering pixel accuracy, the best segmentations were from
SegFormer, FCN, and DPT with metrics above 96%. For the F-score, the
methods presented similar results for SegFormer, DPT, OCRNet, and
FCN.

We performed a multi-fold test running the four best methods
(Table 1) in two other splits of the dataset. In each split, the training,
validation and test sets are randomly constructed. Table 2 presents
the results for the three splits in addition to the average of each
method. We can see that SegFormer continues with the best results
in all metrics, further increasing the difference in its performance to

the other methods. The second best method remains the DPT, which
also uses transformers in its composition, which indicates that attention
mechanisms may have positively influenced the results.

To compare the methods statistically, we applied the Friedman test
followed by the Nemenyi post-hoc test using the IoU, pixel accuracy
and F-score of the burned area. These metrics were calculated based
on 316 images for the three repetitions. Friedman’s test with « = 0.05
rejected the null hypothesis that the methods have statistically similar
performance. Then, the Nemenyi post-hoc test was applied to verify
which pairs of methods present significantly different performance.
Table 3 shows that, for « = 0.05, SegFormer is superior to other
methods. On the other hand, the other methods do not show statistical
difference between them.

Finally, we performed an inference time experiment of all methods.
Table 4 shows the mean time in seconds and the standard deviation of
the methods. For this experiment we used all test images. We can see
that the model with the lowest average inference time is ISANet with
0.053 s. SegFormer, which has the best results in segmentation metrics,
maintains an acceptable time compared to the other methods, having
the third best time.

For qualitative analysis, Fig. 4 presents examples of the segmenta-
tion performed by all tested methods. The first row of images corre-
sponds to the RGB image while the second row to its ground-truth. The
third, fourth, and fifth rows correspond to the Segformer, DPT, OCRNet,
and FCN methods segmentation results, respectively. These methods
were the best according to the quantitative analysis. Qualitatively, the
best methods were SegFormer and FCN, achieving satisfactory results in
these areas. The DPT and OCRNet performed worse, failing to segment
significantly burned areas. The second example is partially covered by
smoke, which is a common occurrence when dealing with active burn-
ing areas and visible range imagery. For this, three methods achieved
good results (SegFormer, DPT, and FCN), but Segformer appears to
have achieved a better definition at the edges of the burned areas.

The third example is also partially covered with smoke and Seg-
Former continues returning the best qualitative results, mainly achiev-
ing better definition at the edges and better dealing with the atmo-
spheric pollution. The FCN, for instance, which had good qualitative
results, was not able to segment burned areas that were under the
smoke. Finally, the fourth example has a large burned area, occupying
practically the entire image patch. In this case, we consider that all
methods achieved good results. But, in general, SegFormer stands as
the most consistent method, presenting satisfactory qualitative results
for different situations, such as low-burned, large burned areas, and
images partially covered, among others.

3.2. Influence of transfer learning and fine tuning

To ascertain the impact of transfer learning and fine-tuning pro-
cesses, we chose the SegFormer, since it achieved satisfactory results,
both quantitatively and qualitatively. The previous results showed the
robustness of SegFormer against other methods using four bands (R, G,
B, NIR). We then trained the SegFormer (fine-tuning) to evaluate the
best initialization strategy, since the pre-trained ImageNet-1k weights
are composed of only three bands (R, G, B). The results of this experi-
ment were reported in Table 5. From this, it should be noted that the


https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

D.N. Gongalves et al.

International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103151

Table 2
Segmentation results of burned area for three splits of the dataset. BA and BG stand for Burned area and Background, respectively.
Method Splits IoU Pixel accuracy F-score
BG BA BG BA BG BA
Split 0 91.56 92.14 94.91 96.56 95.59 95.91
SeaFormer Split 1 90.24 90.38 93.19 96.66 94.87 94.95
8 Split 2 92.06 91.93 95.18 96.51 95.87 95.79
Mean(std) 91.28(+0.94) 91.48(+0.96) 94.42(+1.07) 96.57(+0.07) 95.44(+0.51) 95.55(+0.52)
Split 0 89.67 90.37 93.85 95.61 94.55 94.94
OCRNet Split 1 85.77 86.11 90.18 94.74 92.34 92.54
Split 2 89.59 89.34 94.2 94.69 94.51 94.37
Mean(std) 88.34(+2.22) 88.60(+2.22) 92.74(+2,22) 95.01(x0.51) 93.8(+1.26) 93.95(+1.25)
Split 0 90.04 90.75 93.85 96.01 94.76 95.15
DPT Split 1 88.25 88.38 92.22 95.41 93.76 93.83
Split 2 88.63 88.3 93.87 93.89 93.97 93.79
Mean(std) 88.97(x0.94) 89.14(x1.39) 93.31(x0.94) 95.10(+1.09) 94.16(x0.52) 94.25(x0.77)
Split 0 89.48 90.35 92.9 96.4 94.45 94.93
FCN Split 1 86.44 87.22 88.86 97.14 92.73 93.17
Split 2 89.21 89.15 93.1 95.5 94.3 94.26
Mean(std) 88.37(+1.68) 88.90(+1.57) 91.62(+2.39) 96.34(+0.82) 93.82(+0.95) 94.12(+0.88)
Table 3

Nemenyi post-hoc test applied to IoU, pixel accuracy and F-score of the burned area
for the three repetitions.

Methods SegFormer OCRNet DPT FCN

SegFormer 1 0.003 0.018 0.031

OCRNet 0.003 1 0.9 0.875

DPT 0.018 0.9 1 0.9

FCN 0.031 0.875 0.9 1
Table 4

Mean time and standard deviation of
methods in all test images.

Method Time per second
SegFormer 0.062(+0.051)
FCN 0.059(+0.098)
DPT 0.069(+0.059)
OCRNet 0.064(+0.074)
ISANet 0.053(+0.083)
DeepLabV3+ 0.063(+0.091)
PSPNet 0.063(+0.090)

pre-trained weights are of critical importance for the proper training of
segmentation methods since they returned better results.

For this study, we noticed that even with multispectral imagery,
which is not the focus of the images on ImageNet, using pre-trained
weights is better than using random weights. For example, there is an
increment from 88.83 to 93.28 IoU for the burned area when using
random and pre-trained weights, respectively. There is still a small
increment in the IoU of the burned area when the first layer is also
initialized, either with the random NIR channel or with replicated
weights of the B channel (last two rows of Table 5).

3.3. Influence of the image bands input

To verify the impact of different data inputs on the SegFormer
network, we tested specific groups of spectral bands (RGB + NIR) and a
spectral index (NDVI) to determine if the network is capable of dealing
with burned area segmentation tasks when mixing different informa-
tion. Table 6 shows the results with the different band combinations.
From the previous results, the B band weights are the best to initialize
the NIR band. For comparison, the fifth row of the table presents the
results using the four bands from the previous experiment, which can
be seen as a baseline.

We observed that there is no significant impact between using all
of the 4 bands (R, G, B, and NIR) of the sensor, and 3 bands with the
NIR receiving the pre-trained weights of the B band. Ultimately, we

evaluated the inclusion of NDVI as a fifth band in the input images
according to the results in the last row of the table. The objective is to
evaluate if a spectral index is known to be relevant to the network,
though since is a combination of the other bands, it may help the
learning process. However, the results showed that the DL method can
learn band combinations as relevant as the NDVI since the results did
not improve with its addition, deeming it irrelevant.

Lastly, regarding the Pantanal region, we observed that the Seg-
Former network was capable of dealing properly with different envi-
ronmental conditions, such as the ones presented in the images (Fig. 5).
SegFormer was capable of distinguishing burned areas in both old and
new stages, as well as not confusing waterbodies with some of the
darker burned portions. Since Pantanal is a wetland, it is often common
for the presence of water at surface level. As for areas partially covered
by smoke from the fires, SegFormer was still better than the other
implemented methods, as previously presented (Fig. 4).

3.4. Generalization to other burned areas

The final experiment was conducted to establish the robustness and
generalization of the model created in the previous steps with the
SegFormer network. For that, we applied the SegFormer trained only
on Pantanal images to segment burned areas in two Brazilian Amazon
forest regions, which were also burned. The results are displayed in
Table 7. The results in the Brazilian Amazon regions show that the
method was able to generalize to other areas, obtaining results similar
to those in the Pantanal regions. Regarding the IoU for the burned area,
the method reached 92.15 and 92.03 for the two areas of the Brazilian
Amazon, while 93.28 was obtained for the Pantanal. The other metrics
were similar to the IoU.

The visual results of the segmentation of the Brazilian Amazon
are organized in Figs. 6 and 7. The pixels in red represent the True
Positives, i.e., pixels where the method and ground truth are both
considered burned areas. The pixels in green and blue represent the
errors in the prediction, respectively, the False Positives and False
Negatives. It is possible to notice, from the visual results, that the
method adequately predicts the vast majority of the burned areas. The
main errors occurred in small portions that are difficult to label or
define the class, such as the errors shown in Fig. 6.

4. Discussion

Segmenting burned areas in the largest wetland ecosystem on the
planet is an important procedure that environmental and governmental
institutions can use in decision-making tasks. As regarded previously,
current information for the affected areas mapped in this study is
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Fig. 4. Examples of segmentation for all methods. The first row corresponds to the RGB image while the second one corresponds to the groundtruth. The third, fourth and fifth
rows corresponds to the segmentation of Segformer, DPT, OCRNet and FCN.

;:;rfelftation results of burned area with random weights (scratch) and pre-trained weights (Imagenet-1k).
Method ToU Pixel accuracy F-score
Background Burned area Background Burned area Background Burned area
Scratch 88.83 88.83 93.31 95.25 94.09 94.52
Random weights 91.56 92.14 94.91 96.56 95.59 95.91
(1st Layer)
Random weights 92.77 93.26 95.57 97.15 96.25 96.51
(NIR Channel)
NIR channel 92.82 93.28 95.86 96.92 96.28 96.52
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Table 6
Segmentation results of burned area by combining different bands.
Method ToU Pixel accuracy F-score
Background Burned area Background Burned area Background Burned area
R, G B 92.2 92.73 95.22 96.9 95.94 96.23
R, G, NIR 92.81 93.27 95.87 96.9 96.27 96.52
R, NIR, B 91.82 91.82 95.59 96.14 95.74 96.0
NIR, G, B 92.39 92.92 95.3 97.04 96.05 96.33
R, G, B, NIR 92.82 93.28 95.86 96.92 96.28 96.52
R, G, B, NIR, NDVI 92.75 93.20 95.85 96.85 96.24 96.48

Area with water-bodies Area covered by smoke

RGB

0om 100m 200 m 0om 100 m 200 m

Ground-truth

SegFormer

Area recently burned Burned area in early regeneration

0om 100m 200 m 0om 100 m 200 m

™ e N | U B | M N |

Fig. 5. Exemplification of different burned areas conditions as observed during the analysis and its segmentation result with the SegFormer network.

Table 7
Segmentation results for the Pantanal and two areas of the Brazilian Amazon.
Area IoU Pixel accuracy F-score
Background Burned area Background Burned area Background Burned area
Brazilian Amazon 1 99.56 92.15 99.57 99.76 99.78 95.91
Brazilian Amazon 2 99.31 92.03 99.61 96.42 99.66 95.85
Pantanal 92.82 93.28 95.86 96.92 96.28 96.52

produced by an online platform based on a DL method that uses VIIRS
data (Pinto et al., 2020), which has coarse spatial resolution. For
that, we demonstrated that the combination of deep learning methods
and remote sensing imagery, such as the PlanetScope with RGB +
NIR spectral bands and a spatial resolution of 3.9 (+0.28) meters, is
suitable to map these areas in two of the most important environmental
regions in Brazil, the Pantanal and the Amazon Forest. Not only does
the method prove feasible to return high-detailed maps, but it also
demonstrates the potential of using such data (PlanetScope), which
revisits the areas daily. Since this constellation provides imagery data
for each day, it is possible to increase the frequency in monitoring
both active burning, as well as investigating previously burned areas,
being useful for environmental planning in both controlling the current
damages and restoring the destroyed areas.

As stated, we aimed to evaluate the performance of vision trans-
former (ViT-based) networks in dealing with the segmentation of
burned and not-burned areas. ViT networks are capable of including

both local and global information within their architecture (Dosovitskiy
et al., 2020). This advantage over traditional CNNs based architectures
should be evaluated in environmental studies, for example, but it was
not yet tested in RGB + NIR high-spatially detail imagery with global
coverage to perform the segmentation of burned area task for exam-
ple. When comparing SegFormer and DTP performances with already
known CNN-based methods (FCN, DeepLabV3+, PSPNet, OCRNet, and
ISANet) its segmentation metrics (IoU, Pixel Accuracy, and F-Score)
were quantitatively slight higher than these networks. Although this
was emphasized by Table 1, when conducting a visual analysis, we
were able to pinpoint problems within the CNN-based segmentation,
especially when considering smaller burned areas, edges, and partially
covered areas by smoke. This was ascertained by information exem-
plified in Fig. 4, demonstrating that both qualitative and quantitative
analysis should verify the semantic segmentation results.

As previously stated, in recent literature, few studies investigated
the capability of ViT-based networks to map fire-related issues. Dewan-
gan et al. (2022) introduced what they called the Fire Ignition Library
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Fig. 6. Visual results of the segmentation of the burned area 1 in the Brazilian Amazon. (a) RGB image. (b) Segmentation with True Positives (red pixels), False Positives (green

pixels), and False Negatives (blue pixels).

(FIgLib), which consists of a publicly available dataset containing ap-
proximately 25,000 labeled wildfire smoke images from fixed-view
cameras. They also presented their network, SmokeNet, which uses
ViT combined with convolutional layers and long-short-term memory
cells. Ghali et al. (2022), on the other hand, presented a deep ensem-
ble learning method combining the EfficientNet-B5 and DenseNet-201
models to classify wildfires in aerial images. Their approach also in-
troduced a transformers comparison, achieving superior results, with
F-scores higher than 99% for the ViT-based architectures implemented.
Lastly, another paper from Ghali et al. (2021) addressed the problem
related to the early detection of forest fires to predict their spread di-
rection and investigated the performance of transformers in classifying
imagery from publicly available datasets. Regardless, although these
studies did not focus on the same aspects of remote sensing imagery
as ours, they demonstrated the potential and tendency of ViT-based
methods to promote higher accuracies than traditional deep learning

10

networks, which we also observed here in this study with the network’s
comparison.

When considering a daily mapping approach, with active fires ad-
vancing in the area, orbital imagery is affected by atmospheric pollu-
tion resulting from the smoke, that by covering portions of the area,
makes it difficult to determine the real damage at the time of the
analysis. Additionally, it may also be difficult to determine the fire
direction, which is important when considering animal and human
rescue tasks, as well as promoving damage control actions in these
areas. This may not be a hindrance when considering spectral data from
the SWIR regions, mostly because of its capacity to penetrate some of
the smoke particles in the atmosphere. However, for only RGB + NIR
regions, our experiment demonstrated that CNN-based architectures
have a hard time dealing with it, while the ViT-based networks were
capable to circumvent this problem, which we assume, considering
both the local and global information. Because of that, the ViT-based



D.N. Gongalves et al.

250 m

International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103151

Fig. 7. Visual results of the segmentation of the burned area 2 in the Brazilian Amazon. (a) RGB image. (b) Segmentation with True Positives (red pixels), False Positives (green

pixels), and False Negatives (blue pixels).

methods proved to be more suitable to resolve said problem with image
of the VNIR (visible and near-infrared) regions. Because of this initial
comparison, we chose to conduct additional tests with the overall-best
method, SegFormer, and we were able to improve its accuracy further.

One important verification regarding our approach was investi-
gating the transfer learning and fine-tuning conditions. Since most
pre-trained networks are from RGB imagery datasets, like ImageNet-1Kk,
our study compared the overall impact of pre-trained networks against
the SegFormer method initialized with randomly generated weights and
verified that even though the pre-trained models originate from RGB
type of data, it returned in overall better results (Table 5). We also
examined the influence of different band inputs into the network and
noticed that it affected its performance, but still, the combination of
RGB + NIR bands remains the overall best approach when dealing with
segmenting burned areas. The spectral index NDVI was also added,
but it did not improve the method’s accuracies. This may be due to
this index being a simple mathematical operation between the R and
NIR bands and since they are also inserted as input variables into the
network, one of the infinite possible combinations performed by the
network could result in a similar value (Ramos et al., 2020). This is
an important indicator since the introduction of spectral indexes in the
analysis may result in redundant information, and as only the spectral
bands appear to be sufficient, it reduces the amount of work necessary
to prepare a dataset.

Additionally, it should be noted that mapping burned areas in
wetlands are also a difficult task for humans mainly because of the
amount of humid and water bodies surrounding the environment (Higa
et al.,, 2022). When considering only RGB + NIR information, some
of these regions tend to confuse manual labeling processes because it
is difficult to distinguish between highly-burned areas (darker pixels)
and some lakes or abandoned water courses throughout the wetlands
areas. Regardless, the DL methods tested were quite capable of dealing
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with the wetland’s natural characteristics. However, as an indicator
of the model’s generalization, the SegFormer method considering the
pre-trained weights and the four spectral bands of the PlanetScope
platform was used to map burned areas into two different Amazon
Forest regions. Quantitatively ( Table 7) it returned similar results when
in comparison against the Pantanal region, and visually (Figs. 6 and 7)
both areas were well detected. The model was capable of differentiating
both natural water bodies, as well as agricultural regions of bare soil,
being few regions confused with humid soils, presenting darker pixels.

Further studies should consider the combination of preliminary
segmentation methods and DL networks, evaluating the impact of, for
example, weakly-supervised methods and how well the methods are
capable of improving the original segmentation. Another important
piece of information to be evaluated is an analysis regarding multi-
temporal imagery segmentation. Daily monitoring of wildfires is not
only important to control an active burning, but also to detect and
act on it, as soon as possible, minimizing the damage before it spreads
into larger extensions. Lastly, techniques of domain adaptation to deal
with multiple sensor data, as well as few-shot and sparse labeling
investigations may be useful in novel approaches to improving the
current method’s generalization. These processes are considered state-
of-the-art approaches (Qin and Liu, 2022; Zheng et al., 2021a) in
computational vision tasks, and remote sensing imagery may greatly
benefit from its integration with current ViT or CNN-based methods to
investigate wildfires. Regardless, the current method proved satisfac-
tory performance over difficult analysis situations, and it is indicative
that visible to near-infrared regions and high-spatial detailed imagery
is suitable to map burned areas in the wetlands.

5. Conclusion

We investigated the capabilities of deep learning methods, in spe-
cific Transformer-based networks, in mapping burned areas in the
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Brazilian Pantanal wetlands. The results demonstrated that the net-
works based on vision transformers resulted in better accuracy than
traditional CNNs architectures. The architecture SegFormer returned
the best segmentation metrics, with an F1 score of 95.91%. We dis-
covered that, when all layers are initialized with pre-trained weights
from RGB imagery of ImageNet-1k, the segmentation results are bet-
ter than randomly generated weights. Furthermore, the spectral band
combinations affected the method’s performance, but the addition of a
spectral index like NDVI did not impact the segmentation task, mostly
because the network is capable of achieving similar band combinations
in its interactions. Still, the tests performed with SegFormer and various
band combinations as input revealed that using an image of RGB+NIR
is the best option (F1-score of 96.52 percent) for distinguishing burned
from not-burned areas in multispectral high-spatial imagery. The ex-
perimental results in the Brazilian Amazon images also indicate that
the model generated for Pantanal can be generalized to other areas
(F1-Score of Brazilian Amazon areas equal 95.91% and 95.85%). We
conclude that Transformer-based networks are fit to deal with burned
forest areas in both Pantanal and Amazon forests, with high-spatial-
resolution imagery mapping, and that future studies should focus on
vision transformer’s architectures to perform said task.
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