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A B S T R A C T

Deforestation has become a major cause of climate change, and as a result, both characterizing the drivers
and estimating segmentation maps of deforestation have piqued the interest of researchers. In the computer
vision domain, Vision Transformers (ViTs) have shown their superiority compared to extensively utilized
convolutional neural networks (CNNs) over the last couple of years. Although, ViTs has several challenges,
specifically in remote sensing image processing, including their significant complexity that increases the
computation costs and their need for much higher reference data than that of CNNs. As such, in this paper,
we introduce an attention gates aided TransU-Net, called TransU-Net++ for semantic segmentation with an
application of deforestation mapping in two South American forest biomes, i.e., the Atlantic Forest and the
Amazon Rainforest. The heterogeneous kernel convolution (HetConv), U-Net, attention gates, and ViTs are
all utilized in the proposed TransU-Net++ to their advantage. The TransU-Net++ significantly increased the
performance of TransU-Net’s over the Atlantic Forest dataset by about 4%, 6%, and 16%, respectively, in
terms of overall accuracy, F1-score, and recall, respectively.Moreover, the results show that the developed
TrasnU-Net++ model (0.921) achieves the highest Area under the ROC Curve value in the 3-band Amazon
forest dataset as compared to other segmentation models, including ICNet (0.667), ENet (0.69), SegNet (0.788),
U-Net (0.871), Attention U-Net-2 (0.886), R2U-Net (0.888), TransU-Net (0.889), Swin U-Net (0.893), ResU-Net
(0.896), U-Net+++ (0.9), and Attention U-Net (0.908), respectively. The code will be made publicly available
at https://github.com/aj1365/TransUNetplus2.
1. Introduction

Forests, which cover a wide range of landforms, constitute tree
branches, herbs, vegetation, and numerous species of animals, includ-
ing mammals, algae, bacteria, and other life forms. Forests approxi-
mately cover 30% of the surface of the Earth and has a substantial
effect in the global environment and climatic conditions. Forest cover
is universally recognized to be crucial to the conservation of biodi-
versity, carbon capture, watershed protection, climate change mitiga-
tion (Bonan, 2008), bioclimatic equilibrium, precipitation level main-
tenance (Pires and Costa, 2013), and the long-term viability of broad
climatological regions (Boers et al., 2017). In brief, forests provide
a diverse set of ecosystem functions and livelihood opportunities for
human-being (Lausch et al., 2016; Schulze et al., 2019), making them
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beneficial for their financial, environmental, and recreation activities
roles, as well as playing a significant impact on Earth’s atmosphere
patterns (Etteieb et al., 2013; Vanhala et al., 2005). For example, the
Amazon rainforest accounts for roughly 5.6 million km2, accounting
for 50% of the remaining tropical forestland on the planet, and it
affects significantly to global and local climate stabilization (Alzu’bi
and Alsmadi, 2022; Maslin et al., 2005). Moreover, it is suggested that
the forest of the Amazon is a crucial part of a large-scale moisture
system that can be permanently impacted by forest loss (Boers et al.,
2017). Although forests are considered as an essential component of
the ecological system, they are degraded for a range of factors. Popula-
tion growth worldwide and the rising urbanization, together with the
degradation due to economic actions, have resulted in a significant shift
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(i.e., forest loss) in global forested land, particularly in tropical zones
such as Amazon forests of Brazil (Malhi et al., 2008).

Moreover, deforestation globally has risen dramatically in recent
years due to various factors, including natural catastrophes and an-
thropogenic activities, such as energy generation and construction.
For instance, in accordance with the National Institute for Space
Research (NISR), the loss of forest of Amazon increased drastically
in the 1990s (Müller, 2020), prompting numerous concerns about
the disappearance of the Amazon rainforest by 2030. The Amazon
Rainforest accounts for roughly 40% of the world’s surviving tropical
forests (Hubbell et al., 2008). As a result, the Amazon Rainforest’s
massive carbon sequestering functionality is critical to the regulation
of the global and continental environment, as it is predicted to capture
carbon by about 76 billion tonnes from 390 billion trees (Müller, 2020).
The Atlantic Forest biome is Brazilian’s economic driver, accounting for
70% of the country’s GDP, 2/3 of its industrialized economy, and home
to several of the greatest productive farmlands (Scarano and Ceotto).
The Atlantic Forest became one of the ‘‘hottest’’ ecological regions as a
result of the historic loss of habitat and breakdown brought on by urban
development, industrial growth, and agricultural production (Laurance,
2009; Rezende et al., 2018).

Nevertheless, South America’s explosive growth has already experi-
enced significant forest loss due to agricultural production and land for
constructions (García-Ayllón, 2016). As a result, the influence of defor-
estation contributes to global warming (Mikhaylov et al., 2020). Forest
loss accounts for nearly 10% of emissions of Earth’s greenhouse gas
(GHG), and average Earth’s temperatures have risen by over 1 degree
Celsius as of pre-industrial periods (Samset et al., 2020). As such, de-
livering high-quality, precise information in a timely manner regarding
changes in forest cover at various scales is crucial to improved surveil-
lance and monitoring of forest degradation. This entails the creation
and implementation of techniques designed to deal with the massive-
ness of forest cover zones as well as the high recurrence and level of
detail of existing satellite imagery in a reasonable time frame, which
also signifies that the manual operations and maintenance task must
be lowered to the maximum extent possible. Field investigation and
photo interpretation approaches have historically been used to observe
tropical forests (Bragagnolo et al., 2021a). The primary constraint of
such techniques is their labor-intensive characteristics that also neces-
sitate exhaustive human influence (Gong et al., 1994). Consequently,
the enormity of Brazil’s tropical forests renders them unaffordable. Nev-
ertheless, technological improvements in remote sensing have largely
driven the creation of a variety of methodologies used in forest regions
surveillance, including Decision Trees (Hansen et al., 2013), Random
Forest (Ahmad et al., 2022; Yin et al., 2017), Regression Trees (Sexton
et al., 2013), and Maximum Likelihood (Hamunyela et al., 2017).
The main limitation of the traditional methods, such as the Random
Forest, is their manual feature extraction. As a result, the success of
traditional algorithms significantly relies on the proper selection of
features (i.e., feature engineering). This issue was addressed by the
deep learning techniques with their automatic feature extraction.

Deep learning has lately piqued the interest of remote sensing sci-
entists because of its capability to obtain discriminative characteristics
from images, such as satellite images (Jamali et al., 2022b; Rasti et al.,
2020; Ghamisi et al., 2019; Jamali et al., 2022b,a). It is being used
in a variety of complex surroundings and tasks, yielding significant
outcomes in image classification (Roy et al., 2020; Ma et al., 2019;
Roy et al., 2020; Roy et al., 2021) and object detection (Zhao et al.,
2019; Sandhya Devi et al., 2021). Nevertheless, one drawback of deep
learning models such as convolutional neural networks (CNNs) is that
it only indicates the likelihood of a feature of desire appearing in an
image but does not deliver knowledge of where the feature appears
in the image. As such, Long et al. recommended a fully convolutional
network (FCN) that permits the labeling of each pixel as a specific
class, i.e., a pixel-based image classifying method, named semantic seg-
2

mentation, as compared to image labeling, to overcome this restriction
and enlarge the variety of uses of CNNs. The semantic segmentation
process is additionally one of the difficult yet efficient techniques used
in image understanding and analysis (Hao et al., 2020), medical image
processing (Hesamian et al., 2019), and remote sensing (Kemker et al.,
2018; Qi et al., 2020).

The U-Net algorithm, introduced by Ronneberger et al. (2015) that
initially was employed in biomedical imaging, is one of the many
FCN structures. To improve segmentation performance, this structure
concatenates feature maps at various levels. The primary difference
of the U-Net model and traditional FCNs is explained as the greater
quantity of expansion networks, which permits the model to propagate
data to layers of higher resolution. The U-Net structure has been used
effectively in various studies, including remote sensing (Wang et al.,
2022a; Zhang et al., 2021a; John and Zhang, 2022). Moreover, an
attention-based U-Net algorithm was tested and discussed for forest
loss in Amazon that showed improvement of the U-Net model via
utilization of attention mechanism (John and Zhang, 2022). Waldeland
et al. (2022) employed a U-Net algorithm for forest monitoring taking
advantage of multispectral imagery of Sentinel-2 in Africa.

On the other hand, the CNNs’ intrinsic backbone restrictions pre-
vent them from accurately capturing the sequential characteristics
of satellite images’ spectral reflectance. This issue can be addressed
by the proper utilization of the self-attention mechanism with vision
transformers (ViTs) algorithms. besides, the inclusion of ViTs with
CNN networks has been shown to be a powerful tool for downstream
computer vision tasks (Wang et al., 2022c; Dutta et al., 2022; Gulzar
and Khan, 2022; Lu et al., 2023; Jamali et al., 2023). For instance,
for semantic image segmentation, Wang et al. employed and concluded
that the integration of ViTs with the CNN architecture will considerably
improve the segmentation results as compared to solo utilization of
CNNs (Wang et al., 2022c). The use of ViTs as the backbone for CNN-
based architectures for image segmentation was proposed and discussed
by Dutta et al. that illustrated the significant improvement of the results
with the inclusion of the ViTs (Dutta et al., 2022). Moreover, medical
image segmentation research by Gulzar and Khan demonstrated the
superiority of the integration of CNNs with ViTs as compared to the
use of only CNN models (Gulzar and Khan, 2022). Wang et al. explored
a lightweight ResNet-18 encoder to extract an efficient global–local
attention mechanism to model both global and local information in
the decoder by constructing an UNet-like transformer (UNetFormer) for
real-time urban scene segmentation (Wang et al., 2022b). Yuan et al.
introduced a CNN and Transformer as a complementary network for
medical image segmentation it improves feature representation ability
as well as achieves superior performance on multi-organ and cardiac
image segmentation tasks. (Yuan et al., 2023).

As such, we propose the TransU-Net++, an attention gates aided
TransU-Net (Chen et al., 2021), which incorporates the capabilities of
heterogeneous kernel convolution (HetConv), U-Net, Attention gates,
and ViTs for semantic segmentation. We propose a deep learning U-
Net-based semantic segmentation structure and made beneficial use
of the HetConv operation to capitalize heterogeneous kernels inside
the learning units for degradation-free feature representation learning.
Moreover, the utilization of attention gates substantially improves the
positional information extraction of the decoder network. In addi-
tion, the use of HetConv operations and attention gates significantly
improves the segmentation performance as compared to its baseline
TransU-Net algorithm.

This paper introduces a semantic segmentation framework the
TransU-Net++ for deforestation in the Atlantic and Amazon forests
region in Section 2, illustrates the experiments and result analysis
in Section 3, discusses the spatial transferability of the segmentation

models in Section 4, and highlights the concluding remarks in Section 5.
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Fig. 1. Graphical representation of the proposed architecture (a) TransU-Net++ and (b) Transformer encoder.
2. Materials and methods

2.1. Datasets and experimental settings

We utilized three sets of satellite imagery from SentinelHub to
assess the capability and efficiency of the TransU-Net++ algorithm for
deforestation mapping. The first set of data is a 3-band dataset, which
includes RGB-converted satellite images and forest loss masks of the
Amazon Rainforest (Bragagnolo et al., 2021b,a). The other two datasets
are 4-band data containing RGB and near-infrared (NIR) imagery of the
Atlantic and Amazon rainforests (Bragagnolo et al., 2021b,a), as seen
in Fig. 2. We utilized 400 training images in the two datasets of the
Amazon and Atlantic forests with four bands. It should be noted that
images have a 512 × 512 × 𝐶 shape, where 𝐶 denotes the number of
color bands. Each forest loss mask has a shape of 512 × 512 × 1. The
dataset producer divided a significant number of satellite images into
sub-images and generated masks by employing a customized k-means
model with the use of the software of GRASS-GIS 7.6.1 (Bragagnolo
et al., 2021b,a). In the first dataset, there are 30 images as training
(we used 21 images as training and 9 images as validation datasets)
and 15 images as validation data, where we used the validation images
as our test data. In the other two 4-band datasets, there are 499,
100, and 20 images as training, validation, and test data, respectively.
All experiments were done in an Intel Core-i7 CPU and NVIDIA RTX
2070 MAX-Q GPU in Python programming language. It should be
noted that all segmentation models have been developed in Tensorflow
2.7 with a learning rate, batch size, and epoch of 0.001, 1, and 40,
respectively, and the training is performed using the Adam optimizer.
For the implemented models, the input images had a dimension of
128 × 128 × 𝐶. It should also be noted that we utilized the mentioned
image as input size even though it will increase the computation costs
of some of the evaluated segmentation models, including Swin U-Net.
3

2.2. Proposed methodology

Considering a remote sensing image 𝐗 ∈ 𝑅𝐻×𝑊 ×𝐶 where 𝐻 and
𝑊 define spatial height and width and 𝐶 presents the number of
color channels, respectively. The objective is to define 𝐘 =  (𝐗)
that represents the pixel label output map (i.e., classification map)
of input 𝐗 of the same spatial size of (𝐻 × 𝑊 ). The basic process
is to utilize a convolutional U-network, which maps input images
into high-level feature representations in the encoding steps and then
decodes it back to a full spatial resolution to generate a pixel-wise
label classification map. As shown in Fig. 1, we introduce the TransU-
Net++ as an improved version of the original TransU-Net model for
deforestation segmentation, which incorporates elements of HetConv,
U-Network, attention gates, and vision transformers (ViT). There are
several major benefits to using the TransU-Net++: (1) heterogeneous
kernel convolution (HetConv) incorporates point-wise convolution and
group-wise convolution to optimize the effectiveness of the generalized
representation; (2) skip connections that link a low-level feature to its
corresponding high-level feature, which improve knowledge transmis-
sion without deteriorating it, allowing us to create a lower complexity
structure that obtains increased semantic segmentation information
with a minimum amount of reference data; (3) ViT is a model based on
self-attention and has excellent ability to capture long-range features
dependencies, as well as obtaining global correlation; and (4) attention
gates that improve the positional information and learn to emphasize
on target objects of various sizes and shapes.

2.3. Description of the used models

Fig. 1 shows the overall of the proposed TransU-Net++ network,
which is detailed in the following sections. The individual components
of the TransU-Net++ network are detailed in the following subsections:
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Fig. 2. Map of the 4-bands Atlantic Forest and 3- and 4-bands Amazon Rainforest biomes located in Brazil, South America.
Fig. 3. Schematic representation of attention gates (AG).
2.3.1. Transformer encoder
The image input of 𝐗 is reshaped into a set of flattened 2D patches,

𝑥𝑖𝑝 ∈ 𝑅𝑃 2×𝐶{𝑖 = 1, 2,… , 𝑁}, where each patch has a size of (𝑃 × 𝑃 )
and the number of image patches are defined as 𝑁 . The vectorized
patches 𝑥𝑝 are mapped into a latent embedding space of d-dimensional
by employing a linear projection layer that can be trained. The posi-
tion embedding is also added with the spatial information of patches
(i.e., positional embedding) and this will provide more details on the
locations of various features, as stated (Dosovitskiy et al., 2020):

𝑧0 =
[

𝑥1𝑝𝐸; 𝑥
2
𝑝𝐸; .....; 𝑥

𝑁
𝑝 𝐸

]

⊕𝐸𝑝𝑜𝑠 (1)

where the projection of patches embedding is defined by 𝐸 ∈ 𝑅(𝑃 2 .𝐶)×𝐷

and 𝐸𝑝𝑜𝑠 ∈ 𝑅𝑁×𝐷 illustrates the positional embedding matrix. 𝐿 layers
of multi-head self-attention (MSA) and multi-layer perceptron (MLP)
blocks constitute the ViT encoder. As such, the feature representation
of the 𝑙th layer is calculated as:

𝑧′𝑙 =𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1 (2)

𝑧𝑙 =𝑀𝐿𝑃 (𝐿𝑁(𝑧′𝑙)) + 𝑧
′
𝑙 (3)

where the layer normalization is expressed by 𝐋𝐍(.) and the encoded
image representation in 𝑙th layer is defined by 𝑧𝑙.

2.3.2. Decoder with HetConv layers and attention gates
Instead of using the classical CNN-based decoder network in the

original TransU-Net segmentation algorithm, we utilized a decoder
network that benefits from both additive attention gates and heteroge-
neous convolution (HetConv), as seen in Figs. 3 and 4. The concept of
4

Fig. 4. Step of the heterogeneous kernel convolution, which combines both the
features.

additive attention gates (AGs) were adopted from Oktay et al. (2018a)
while the heterogeneous kernel convolutions were taken from Singh
et al. (2019). The steps of the HetConv2D operations are explained in
Algorithm 1 where ⊕ denotes pointwise addition operation.

The feature map is gradually down-sampled in the architecture of
a standard CNN model to acquire a reasonably large receptive field
as well as the semantic contextual knowledge. Thus, low spatial level
features can model the relationship between features and their respec-
tive location at the global scale. Nevertheless, reducing false-positive
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Algorithm 1: HetConv2D Convolution.
Data: Input:𝑋, Output:𝑌 , 𝐾 (3,3) and 𝐾 (1,1)

1 Function HetConv2D(𝑋, 𝐾 (1,1)
𝑝𝑜𝑖𝑛𝑡, 𝐾

(3,3)
𝑑𝑒𝑝𝑡ℎ):

2 𝑌𝑝𝑜𝑖𝑛𝑡 = BN(ReLU(Conv2D(𝑋, 𝐾 (1,1))))
3 𝑌𝑑𝑒𝑝𝑡ℎ = BN(ReLU(Conv2D(𝑋, 𝐾 (3,3))))
4 𝑌 = 𝑌𝑝𝑜𝑖𝑛𝑡 ⊕ 𝑌𝑑𝑒𝑝𝑡ℎ
5 return 𝑌

estimation of small features with high shape variability remains chal-
lenging. To make the work easier to divide into different and future
segmentation stages and increase accuracy, current segmentation de-
signs rely on additional prior element localization principles. It was
shown that the same goal could be accomplished by inserting AGs into
a typical CNN model. This does not need training of multiple models or
the addition of many extra parameters. In contrast with the localization
concept employed in multi-stage CNNs, AGs restrict feature responses
in the irrelevant regions without the need for cropping a region of
interest (ROI) during feature extraction. As shown in Fig. 3, the salient
areas of an image are identified by the attention coefficients, 𝜓𝑖 ∈ [0, 1],
which then prune the feature responses to keep only the activations
relevant to a given specific task. The element-wise multiplication of
inputs and attention coefficients yields the result of AGs which is
expressed as:

𝑋𝑙
𝑖 = 𝑋𝑙

𝑖 ⊗𝜓 𝑙𝑖 (4)

A single scalar attention value is generated for each pixel vector 𝑋𝑙
𝑖 ∈

𝐵𝑙 , where 𝐵𝑙 refers to the quantity of feature maps present in the 𝑙th
ayer. A gating vector is applied to each pixel 𝑖 is given a gating vector
𝑖 ∈ 𝑅𝐵𝑔 to determine focus zones in an input image, as illustrated in
ig. 3. Thus, contextual knowledge is included in the gating vector to
rune lower level feature maps. Additive attention is defined as:

𝑙
𝑎𝑡𝑡 = 𝛺𝑇 (𝑅𝑒𝐿𝑈 (𝜃𝑇𝑥 𝑥

𝑙
𝑖 + 𝜃

𝑇
𝑔 𝑔𝑖 + 𝑏𝑔)) + 𝑏𝛺 (5)

𝑙
𝑖 = 𝜎(𝑠𝑙𝑎𝑡𝑡(𝑥

𝑙
𝑖 , 𝑔𝑖,𝑊𝑎𝑡𝑡)) (6)

here 𝑊𝑎𝑡𝑡 denotes the trainable parameters to compute the attention
oefficient which are shared among the linear projection layers 𝜃𝑔 ∈
𝐵𝑔×𝐵𝑖𝑛𝑡 , 𝜃𝑥 ∈ 𝑅𝐵𝑙×𝐵𝑖𝑛𝑡 , 𝛺 ∈ 𝑅𝐵𝑖𝑛𝑡×1 with the kernel of sizes 1 × 1 × 1
nd the bias vectors 𝑏𝑔 ∈ 𝑅𝐵𝑖𝑛𝑡 and 𝑏𝛺 ∈ 𝑅. 𝜎 presents the Sigmoid
ctivation function.

The decoder part of the network consists of four layers of UpSam-
ling2D. The feature maps of 𝑙th transformer encoder layer 𝑋𝑙 is passed

through the UpSampling2D layer to match the shapes and the output
of its corresponding AG layer, 𝑋𝑙

𝑖 are then concatenated which taken
care in each level of the decoder network. The 𝑙th layer of the decoder
network 𝑈 𝑙

𝑑𝑒𝑐 can be formulated as follows,

∼
𝑋
𝑙
= 𝑈 𝑙

𝑑𝑒𝑐 (𝑋
𝑙
𝑖 , 𝑈𝑆(𝑋

𝑙),𝑊ℎ𝑒𝑡) (7)

where upsampling operation is denoted by US and𝑊ℎ𝑒𝑡 and
∼
𝑋 represent

the trainable parameter of the HetConv layer and output feature maps
of the decoder network, respectively.

It should be noted that HetConv layers replace Conv2D layers,
which are employed in the TransU-Net segmentation algorithm (Chen
et al., 2021) to fuse the convolutional level of multiple receptive
features. It is worth mentioning that the HetConv layers employ depth-
wise convolutional groups with kernel sizes of (3 × 3) and a point-wise
Conv2D with a kernel size of (1×1). It should be noted that the feature
map of depth-wise convolutions is added to the point-wise convolution
to produce the results of the HetConv functions, as illustrated in Fig. 4.
5

2.3.3. TransU-Net++ segmentation model
To increase the accurate prediction of deforestation mapping, an

attention gates aided TransU-Net (TransU-Net++) segmentation algo-
rithm is proposed, which utilizes the merits of the transformer and
U-Net together with the attention gates to determine deforested regions
using remote sensing images. Let us consider 4-band Amazon and
Atlantic Forests as an example dataset, where the proposed network,
TransU-Net++, takes the input images of sizes 128 × 128 × 4. In the
TransU-Net++, the initial feature extractor uses HetConv layers, and
there are four groups of depth-wise Conv2D of sizes 128×128×32 and a
point-wise Conv2D of size 128×128×128. The encoder network utilizes
three max-pooling layers that down-samples the input image into an
output map of size 16 × 16 × 128. Afterward, the resulting feature map
is passed to the transformer encoder layers. There are four blocks of
transformer encoders in the developed TransU-Net++ segmentation
algorithm where the final output map has a size of 8 × 8 × 44, which is
passed to a HetConv layer consisting of 4 groups of depth-wise Conv2D
of sizes 8×8×32 and a point-wise Conv2D of size 8×8×128. The output
feature map of the HetConv layer is sent to the decoder layer that
uses an UpSampling2D layer as explained in the previous subsection,
resulting in an output feature map of size 16×16×128 and the attention
gate with a feature map of size 16 × 16 × 64. The HetConv layer and
AG results are then concatenated as shown in Eq. (7), resulting in an
output map of 16 × 16 × 192. Afterward, the output map is sent to the
second UpSampling2D layer, resulting in an output feature map of size
32×32×192 and the attention gate with a feature map of size 32×32×16.
The HetConv layer and AG results are then concatenated, resulting in
an output map of 32×32×208. Then, the output map is sent to the third

pSampling2D layer, resulting in a feature map of size 64×64×208 and
the attention gate with a feature map of size 64 × 64× 16. The HetConv
layer and AG results are concatenated, resulting in a feature map of
64 × 64 × 224. Finally, the output map is sent to the last UpSampling2D
layer, resulting in a feature map of size 128×128×224. A 2D convolution

ith the kernel size of (1 × 1) and a sigmoid activation function are
tilized at the last level of decoding to project the output map of the
ast HetConv layer into the targeted deforestation maps.

.4. Comparison models

The developed model, TransU-Net++, is evaluated against several
tate-of-the-art segmentation models, including U-Net (Ronneberger
t al., 2015), U-Net+++ (Huang et al., 2020), Attention U-Net (Oktay
t al., 2018b), Swin U-Net (Cao et al., 2021), ResU-Net-a (Diakogian-
is et al., 2020), SegNet (Badrinarayanan et al., 2017), ICNet (Zhao
t al., 2018), ENet (Paszke et al., 2016), R2U-Net (Alom et al., 2018),
ttention U-Net-2 (John and Zhang, 2022), and TransU-Net (Chen
t al., 2021). The ResU-Net benefits from the architecture of the ResNet
NN model to improve the information propagation during training.
he Swin U-Net utilizes the cutting-edge Swin Transformer algorithm,
hile the TransU-Net employs the first-generation vision Transformer

o model the long-range dependencies in the segmentation framework.
oth the Attention U-Net and Attention U-Net-2 take the advantage
f the attention mechanism in their structures, while the R2U-Net
tilizes a recurrent residual convolutional neural network (RRCNN)
or improved representation learning. In addition, the U2-Net employs

two-level nested U-structure in its baseline structure. The SegNet
as intended to be memory and computational time efficient during

raining. It also has a relatively limited amount of trainable variables.
he encoder network’s design is similar to the well-known VGG-16 CNN
etwork. The ENet algorithm was primarily designed for applications
ith low latency operation for real-time pixel-wise semantic segmen-

ation. To solve the problem of the major fraction of computation
or pixel-wise label inference, ICNet segmentation model incorporates
ulti-resolution branches under proper label guidance.
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Fig. 5. Segmentation maps over 3-band Amazon Forest dataset obtained using (a) Ground Truth, (b) U-Net, (c) Attention U-Net, (d) R2U-Net, (e) ResU-Net (f) Swin U-Net, (g)
U-Net+++, (h) Attention U-Net-2, (i) TransU-Net, and (j) TransU-Net++, respectively.
Table 1
Segmentation results of the Amazon 3-band Forest dataset in terms of Overall accuracy (%), F1-score (%), Precision (%),
Recall (%), and Deforestation area, respectively.
Algorithm OA Precision Recall F1-score Deforestation area (hectare)

UNet (Ronneberger et al., 2015) 86.61 79.24 97.50 87.38 1143.85
UNet+++ (Huang et al., 2020) 89.61 83.27 97.92 89.77 1148.89
R2UNet (Alom et al., 2018) 88.32 81.07 98.55 87.75 1156.25
AttUNet (Oktay et al., 2018b) 90.58 85.94 95.97 90.22 1126.01
AttUNet-2 (John and Zhang, 2022) 88.19 81.37 97.60 88.03 1145.54
SwinUNet (Cao et al., 2021) 89.20 86.10 92.28 89.11 1082.72
ResUNet-a (Diakogiannis et al., 2020) 89.34 84.06 95.85 88.68 1124.61
SegNet (Badrinarayanan et al., 2017) 79.01 80.98 73.25 77.53 859.43
ICNet (Zhao et al., 2018) 67.71 79.04 44.05 57.88 516.77
ENet (Paszke et al., 2016) 69.45 72.52 57.97 65.18 680.14
TransUNet (Chen et al., 2021) 88.61 82.98 95.78 88.55 1123.92
TransUNet++ 91.96 88.29 95.88 91.48 1124.92
Ground Truth – – – – 1173.26
2.5. Accuracy evaluation

Segmentation results are assessed in terms of overall accuracy (OA),
F-1 score, precision, and recall values.

𝑂𝐴 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

𝐹 − 1 = 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(11)

The TP, FP, and FN present true positive, false positive, and false
negative values, respectively.

3. Results

3.1. 3-band Amazon forests segmentation results

As seen in Table 1, the TransU-Net++ shows the highest segmen-
tation performance in terms of overall accuracy (91.96%), F1-score
(91.48%), and precision (88.29%) as compared to the other segmen-
tation models. The highest recall value was obtained by the R2U-Net
6

algorithm (98.55%). Results indicate that the TransU-Net++ consider-
ably improves the segmentation results of the TransU-Net algorithm
by approximately 3%, 3%, and 6% in terms of F1-score, overall accu-
racy, and precision, respectively. In terms of visual interpretation, the
best segmentation results with the least noisy maps were achieved by
the Attention U-Net, R2U-Net, ResU-Net, and the TransU-Net+++, as
shown in Fig. 5. The Swin U-Net and U-Net+++ showed much higher
noises than other discussed algorithms. The least desirable segmenta-
tion results were obtained by SegNet, ICNet, and ENet segmentation
models, as seen in Table 1. Moreover, as illustrated in Fig. 6, the
R2U-Net segmentation model demonstrated the best deforestation zone
mapping, although it resulted in the over-classification of deforested
areas. On the other hand, the developed model of the TransU-Net++
segmentation algorithm shows much less confusion between deforested
and forest areas as compared to the R2U-Net, while it considerably
improves the results of the TransU-Net segmentation algorithm.

3.2. 4-band Amazon forests segmentation results

As seen in Table 2, the TransU-Net++ algorithm achieves the high-
est performance as compared to the other segmentation models in
terms of overall accuracy (97.2%) and F1-score (97.18%). In addition,
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Fig. 6. Confusion matrices over 3-band Amazon Forest dataset obtained using (a) U-Net, (b) U-Net+++, (c) Attention U-Net, (d) Attention U-Net-2, (e) ENet, (f) ICNet, (g) R2U-Net,
(h) ResU-Net, (i) SegNet, (j) Swin U-Net, (k) TransU-Net, and (l) TransU-Net++, respectively.
Table 2
Segmentation results of the Amazon 4-band Forest dataset in terms of Overall accuracy (%), F1-score (%), Precision (%),
Recall (%), and Deforestation area, respectively.
Algorithm OA Precision Recall F1-score Deforestation area (hectare)

UNet (Ronneberger et al., 2015) 96.52 94.14 99.23 96.59 1632.20
UNet+++ (Huang et al., 2020) 96.09 96.07 96.14 96.15 1581.32
R2UNet (Alom et al., 2018) 96.74 98.84 94.61 97.03 1556.17
AttUNet (Oktay et al., 2018b) 97 96.1 98 96.85 1611.96
AttUNet-2 (John and Zhang, 2022) 96.75 97.19 96.31 96.77 1584.08
SwinUNet (Cao et al., 2021) 92.94 88.7 98.49 92.74 1619.94
ResUNet-a (Diakogiannis et al., 2020) 92.88 99.52 86.24 93.61 1418.45
SegNet (Badrinarayanan et al., 2017) 92.66 92.78 92.59 92.47 1522.90
ICNet (Zhao et al., 2018) 89.53 91 87.84 89.36 1444.81
ENet (Paszke et al., 2016) 88.6 82.59 97.9 88.8 1610.74
TransUNet (Chen et al., 2021) 94.11 89.87 99.48 93.89 1636.20
TransUNet++ 97.2 97.51 96.9 97.18 1593.89
Ground Truth – – – – 1644.83
the highest precision and recall values were obtained by the ResU-
Net and TransU-Net algorithms with values of 99.52% and 99.48%,
respectively. Moreover, the segmentation results of TransU-Net algo-
rithm were considerably improved by the TransU-Net++ technique
by approximately 3%, 3%, and 7% in terms of overall accuracy, F1-
score, and precision, respectively. The least desirable segmentation
results statically and visually were obtained by the SegNet, ENet, and
ICNet models, as shown in Fig. 7. Although the TransU-Net algorithms
resulted in the best recall value and better deforestation zone mapping
as compared to the other segmentation algorithms, it demonstrated a
much higher over-classification of the deforested area as compared to
the developed TransU-Net++ algorithm, as seen in Fig. 8.
7

3.3. 4-band Atlantic forests segmentation results

As seen in Table 3, the TransU-Net++ algorithm obtained the high-
est segmentation performance compared to other segmentation models
in terms of F1-score (90.57%), recall (93.96%), and overall accuracy
(93.97%). The best segmentation results in terms of precision (89.53%)
was achieved by Attention U-Net segmentation model. The TransU-
Net++ segmentation technique substantially improved the results of
the original TransU-Net technique by approximately 4%, 6%, and
16%, respectively, in terms of overall accuracy, F1-score, and recall,
respectively, as shown in Table 3. In terms of visual interpretation, the
best deforestation maps were obtained by the R2U-Net, Swin U-Net, U-
Net+++, and TransU-Net++, as seen in Fig. 9. The worst deforestation
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Fig. 7. Segmentation maps over 4-band Amazon Forest dataset obtained using (a) Ground Truth, (b) U-Net, (c) Attention U-Net, (d) R2U-Net, (e) ResU-Net (f) Swin U-Net, (g)
U-Net+++, (h) Attention U-Net-2, (i) SegNet, (j) ICNet, (h) ENet, (k) TransU-Net, and (l) TransU-Net++, respectively.
Table 3
Segmentation results of the 4-band Atlantic Forest dataset in terms of Overall accuracy (%), F1-score (%), Precision (%),
Recall (%), and Deforestation area, respectively.
Algorithm OA Precision Recall F1-score Deforestation area (hectare)

UNet (Ronneberger et al., 2015) 88.84 76.42 93.44 84.05 965.13
UNet+++ (Huang et al., 2020) 87.4 87.91 69.6 77.92 718.87
R2UNet (Alom et al., 2018) 92.98 86.52 92.07 89.26 950.97
AttUNet (Oktay et al., 2018b) 91.83 89.53 83.89 87.97 866.59
AttUNet-2 (John and Zhang, 2022) 92.41 85.38 91.6 88.28 946.17
SwinUNet (Cao et al., 2021) 93.05 87.22 91.35 89.48 943.55
ResUNet-a (Diakogiannis et al., 2020) 92.99 87.78 90.34 89.32 933.18
SegNet (Badrinarayanan et al., 2017) 82.95 74.52 69.78 72.66 720.79
ICNet (Zhao et al., 2018) 78.52 68 60.18 65.53 621.73
ENet (Paszke et al., 2016) 83.43 73.63 73.87 74.45 763.05
TransUNet (Chen et al., 2021) 90.25 88.67 79.1 85.58 817.21
TransUNet++ 93.97 87.76 93.96 90.57 970.54
Ground Truth – – – – 1032.92
maps were seen by SegNet and ICNet segmentation models. In addition,
segmentation maps illustrated that the deforestation map of TransU-
Net++ had a significant improvement as compared to the original
TansU-Net segmentation algorithm, as seen in Fig. 9. As illustrated in
Fig. 10, as compared to other segmentation algorithms, the developed
TransU-Net++ model showed much less confusion for the deforestation
zone mapping.
8

4. Discussion

4.1. Spatial transferability of segmentation algorithms

To evaluate the spatial transferability of the discussed segmentation
algorithms, we trained them with the 4-band Amazon forests dataset
and tested them with the 4-band Atlantic forests dataset. In terms
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Fig. 8. Confusion matrices over 4-band Amazon Forest dataset obtained using (a) U-Net, (b) U-Net+++, (c) Attention U-Net, (d) Attention U-Net-2, (e) ENet, (f) ICNet, (g) R2U-Net,
(h) ResU-Net, (i) SegNet, (j) Swin U-Net, (k) TransU-Net, and (l) TransU-Net++, respectively.
of precision, the TransU-Net++ considerably shows better statistical
results as compared to the other segmentation algorithms, including IC-
Net, SegNet, ResU-Net, U-Net+++, Attention U-Net-2, U-Net, R2U-Net,
Attention U-Net, TransU-Net, Swin U-Net, and ENet by approximately
23%, 19%, 9%, 8%, 8%, 5%, 4%, 4%, 3%, 3%, and 2%, respectively.
Moreover, the TransU-Net++ algorithm obtained the highest segmenta-
tion performance as compared to other segmentation models in terms of
precision (77.64%), F1-score (83.1%), and overall accuracy (88.21%),
respectively. Moreover, the TransU-Net++ improves the segmentation
results of the TransU-Net by about 1%, 2%, 2%, and 3%, respectively,
in terms of recall, overall accuracy, F1-score, and precision, as seen in
Table 4. The best segmentation results in term of recall was achieved
by the Attention U-Net with a value of 94.18%. In terms of visual inter-
pretation, the best deforestation maps were obtained by the Attention
U-Net, R2U-Net, and TransU-Net++, while the worst visual results were
obtained by SegNet, ICNet, and ENet segmentation models, as seen in
Fig. 11. The worst deforestation maps were obtained by TransU-Net
algorithm. Moreover, as illustrated in Fig. 12, there was less confusion
between deforested and forest areas by the developed TransU-Net++
algorithm as compared to the TransU-Net segmentation model.

4.2. Area under the ROC curve

Moreover, Fig. 13 demonstrates the Area under the ROC Curve
of different implemented segmentation models. Results proved the
superiority of the developed TrasnU-Net++ model as compared to other
segmentation algorithms obtaining the highest AUC values in all study
areas, including Amazon-Atlantic (0.889), the 3-band Amazon (0.921),
the 4-band Atlantic (0.94), and 4-band Amazon (0.972) datasets. More-
over, the TransU-Net++ algorithms improved the AUC value of the
9

base TransU-Net model by approximately 1%, 3%, 3%, and 7% in the
Amazon-Atlantic, 4-band Amazon, 3-band Amazon, and 4-band Atlantic
datasets, respectively, as seen in Fig. 13.

4.3. Ablation study

We included the ablation study to better recognize the importance
of the heterogeneous kernel convolutions and Attention gates in the
developed segmentation model of the TransU-net++. As seen in Ta-
ble 5, the inclusion of the HetConv and attention gates improved
the segmentation results of the base TransU-Net model. The overall
accuracy was improved by about 3%, 3%, and 4%, respectively, with
the inclusion of the HetConv, attention gates, and both functions in
the 3-band Amazon dataset. In the 4-band Amazon forest, the proposed
functions of Hetconvs and attention gates increased the segmentation
accuracy of the base TransU-Net model. For instance, the inclusion of
the HetConv, attention gates, and both attention gates and HetConv
functions considerably enhanced the segmentation results of the base
TransU-Net model by approximately 5%, 7%, and 8%, respectively,
in terms of precision statistical index, as seen in Table 6. Moreover,
the inclusion of the attention gates, HetConv, and both attention gates
and HetConv functions considerably enhanced the segmentation results
of the base TransU-Net model by approximately 11%, 15%, and 16%,
respectively, in terms of recall statistical index in the 4-band Atlantic
dataset, as illustrated in Table 7. As illustrated in Table 8, the inclusion
of the attention gates and Hetconvs enhanced the segmentation perfor-
mance of the base TransU-Net algorithm. For example, the precision
obtained by the TransU-Net model was increased by about 1% and 3%,
respectively, by adding attention gates and both attention gates and
HetConv in the Amazon to Atlantic forest dataset.
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Fig. 9. Segmentation maps over 4-band Amazon Forest dataset obtained using (a) Ground Truth, (b) U-Net, (c) Attention U-Net, (d) R2U-Net, (e) ResU-Net (f) Swin U-Net, (g)
U-Net+++, (h) Attention U-Net-2, (i) SegNet, (j) ICNet, (h) ENet, (k) TransU-Net, and (l) TransU-Net++, respectively.
Table 4
Segmentation results of the Amazon-Atlantic Forest dataset in terms of Overall accuracy (%), F1-score (%), Precision (%),
Recall (%), and Deforestation area, respectively.
Algorithm OA Precision Recall F1-score Deforestation area (hectare)

UNet (Ronneberger et al., 2015) 86.36 72.23 92.13 80.96 951.63
UNet+++ (Huang et al., 2020) 85.54 70.3 93.71 80.23 967.93
R2UNet (Alom et al., 2018) 87.2 73.22 93.65 81.71 967.35
AttUNet (Oktay et al., 2018b) 87.41 73.41 94.18 82.16 972.84
AttUNet-2 (John and Zhang, 2022) 85.53 70.16 94.11 79.44 972.06
SwinUNet (Cao et al., 2021) 87.3 73.71 92.84 81.93 959.00
ResUNet-a (Diakogiannis et al., 2020) 85.12 69.25 94.94 79.24 980.66
SegNet (Badrinarayanan et al., 2017) 78.16 61.9 79.9 69.01 825.29
ICNet (Zhao et al., 2018) 75.27 58.45 74.56 65.49 770.10
ENet (Paszke et al., 2016) 80.8 74.96 58.69 67.87 606.19
TransUNet (Chen et al., 2021) 86.87 73.93 90.14 81.4 930.58
TransUNet++ 88.21 76.26 90.87 83.1 938.6
Ground Truth – – – – 1032.92
4.4. Feature maps visualization of AGs and CNN layers

To better visualize how the attention gates and convolutional layers
generate intermediate features, here we present the feature maps of
the first attention gate, last convolutional layer, and the output map
of four randomly selected images resulting from the TransU-Net++
segmentation algorithm, as seen in Fig. 14. The results of the feature
maps produced by the attention gates show how these function could
precisely signify the deforested areas, resulting in a better model per-
formance for forest lost mapping, as presented in Fig. 14. As discussed
10
in previous subsections, the inclusion of the attention gates in the
developed TransU-Net++ segmentation model significantly improved
the results of the baseline TransU-Net model. For instance, in the At-
lantic dataset, the TransU-Net++ segmentation technique significantly
improved the segmentation results of the base TransU-Net model by
about 4%, 6%, and 16%, respectively, in terms of statistical indices
of overall accuracy, F1-score, and recall, respectively, as illustrated in
Table 3. As such, achieved segmentation results signify and proves that
the high importance of such concepts (i.e., attention gates) necessary
in advanced and efficient segmentation algorithms.



International Journal of Applied Earth Observation and Geoinformation 120 (2023) 103332A. Jamali et al.
Fig. 10. Confusion matrices over 4-band Atlantic Forest dataset obtained using (a) U-Net, (b) U-Net+++, (c) Attention U-Net, (d) Attention U-Net-2, (e) ENet, (f) ICNet, (g)
R2U-Net, (h) ResU-Net, (i) SegNet, (j) Swin U-Net, (k) TransU-Net, and (l) TransU-Net++, respectively.
Table 5
Segmentation results of the 3-band Amazon Forest dataset in terms
of Overall accuracy (%), F1-score (%), Precision (%), and Recall (%),
respectively.
Algorithm OA Precision Recall F1-score

TransU-Net (Chen et al., 2021) 88.61 82.98 95.78 88.55
TransU-Net-Het 91.50 87.33 96.15 90.97
TransU-Net-AGs 91.12 87.19 95.43 90.75
TransU-Net++ 91.96 88.29 95.88 91.48

Table 6
Segmentation results of the 4-band Amazon Forest dataset in terms
of Overall accuracy (%), F1-score (%), Precision (%), and Recall (%),
respectively.
Algorithm OA Precision Recall F1-score

TransU-Net (Chen et al., 2021) 94.11 89.87 99.48 93.89
TransU-Net-Het 97.11 96.93 97.33 97.09
TransU-Net-AGs 96.79 95.09 98.69 96.58
TransU-Net++ 97.20 97.51 96.9 97.18

4.5. Computation cost

The computation costs of the developed segmentation models are
compared in terms of time, as illustrated in Fig. 15. The highest compu-
tation cost was for training the segmentation models of ENet and Swin
U-Net, as shown in Fig. 15 in all four datasets. The least required train-
ing time was seen for the model i.e., U-Net and U-Net+++. Moreover,
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Table 7
Segmentation results of the 4-band Atlantic Forest dataset in terms
of Overall accuracy (%), F1-score (%), Precision (%), and Recall (%),
respectively.
Algorithm OA Precision Recall F1-score

TransU-Net (Chen et al., 2021) 90.25 88.67 79.10 85.58
TransU-Net-Het 92.46 84.82 92.65 88.35
TransU-Net-AGs 92.14 86.45 89.03 88.08
TransU-Net++ 93.97 87.76 93.96 90.57

Table 8
Segmentation results of the Amazon to Atlantic Forest dataset in terms
of Overall accuracy (%), F1-score (%), Precision (%), and Recall (%),
respectively.
Algorithm OA Precision Recall F1-score

TransU-Net (Chen et al., 2021) 86.87 73.93 90.14 81.40
TransU-Net-Het 83.88 67.09 95.90 78.25
TransU-Net-AGs 86.73 73.28 91.12 81.31
TransU-Net++ 88.21 76.26 90.87 83.10

the computation cost of the developed TransU-Net++ algorithm was
slightly better as compared with the baseline TransU-Net segmentation
model.

Although some of the segmentation models illustrated slightly bet-
ter segmentation performance in some of the experimental datasets
in terms of statistical indices, the proposed TransU-Net++ model il-
lustrated superior segmentation results visually and statistically as
compared to the base TransU-Net segmentation algorithm. Moreover,
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Fig. 11. Segmentation maps over 4-band Atlantic Forest dataset that was trained with the Amazon dataset (a) Ground Truth, (b) U-Net, (c) Attention U-Net, (d) R2U-Net, (e)
ResU-Net (f) Swin U-Net, (g) U-Net+++, (h) Attention U-Net-2, (i) SegNet, (j) ICNet, (h) ENet, (k) TransU-Net, and (l) TransU-Net++, respectively.
based on the visual and statistical performances as discussed and
presented in previous sections, overall the results produced by the
TransU-Net algorithms proved to be more consistent as compared to
the other segmentation models. For instance, results demonstrated the
superiority of the developed TrasnU-Net++ model as compared to other
segmentation algorithms obtaining the highest AUC values in all study
areas, including Amazon-Atlantic (0.889), the 3-band Amazon (0.921),
the 4-band Atlantic (0.94), and 4-band Amazon (0.972) datasets.

Though the developed segmentation model of TransU-Net++ was
applied and evaluated for deforestation mapping, we do believe that
the attention gates-aided version of the TransU-Net++ segmentation
algorithm would show better and enhanced segmentation results as
compared to the baseline TransU-Net model in other computer vision
tasks (e.g., remote sensing segmentation, medical image segmentation
and Smoke Semantic Segmentation, and much more). The different
variants of TransU-Net proposed by many researchers (Zhang et al.,
2021b; Yang and Mehrkanoon, 2022; He et al., 2022; Pan et al., 2023)
etc. were due to the utilization of the widely used self-attention mech-
anism, becoming the successful segmentation framework. The reason
behind this is because of the fine-grained long-range feature depen-
dency captured through the self-attention in the transformer encoder
block during training. In the future, the developed architecture could
be evaluated in the medical image segmentation domain.

5. Conclusion

We present TransU-Net++, an enhanced attention gates-aided ver-
sion of TransU-Net segmentation algorithm, for semantic segmentation.
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The proposed TransU-Net++ took advantage of the strengths and
functionality of heterogeneous kernel convolution (HetConv), U-Net,
attention gates, and vision transformers (ViTs). The developed model
was evaluated for deforestation mapping using Sentinel-2 imagery.
The obtained deforestation segmentation results proved the superi-
ority of the TransU-Net++ algorithm as compared to several other
cutting-edge CNN and vision-based segmentation models, including
U-Net+++, Attention U-Net, Swin U-Net, ResU-Net-a, SegNet, ICNet,
ENet, R2U-Net, and TransU-Net. Moreover, the developed TransU-
Net++ model not only illustrated superior segmentation performance
than other cutting-edge segmentation algorithms but also had a much
better spatial information transferability. While trained on the Amazon
forest and tested on the Atlantic forest, the TransU-Net++ algorithm
achieved the highest segmentation accuracy (90.87%) over the other
segmentation models in terms of recall, including ICNet, SegNet, ResU-
Net, U-Net+++, Attention U-Net-2, U-Net, R2U-Net, Attention U-Net,
TransU-Net, Swin U-Net, and ENet by approximately 23%, 19%, 9%,
8%, 8%, 5%, 4%, 4%, 3%, 3%, and 2% and substantially improved the
segmentation results of the original TransU-Net segmentation technique
by the margins of about 1%, 2%, 2%, and 3%, respectively, in terms
of recall, overall accuracy, F1-score, and precision statistical indices. In
addition, the results of ablation studies demonstrated the importance of
the inclusion of the introduced concepts of the HetConvs and additive
attention gates in the TransU-Net segmentation model. For instance,
For instance, the inclusion of the HetConv, attention gates, and both
attention gates and HetConv functions considerably enhanced the seg-
mentation results of the base TransU-Net model by approximately 5%,
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Fig. 12. Confusion matrices over 4-band Atlantic Forest dataset that was trained with the Amazon dataset using (a) U-Net, (b) U-Net+++, (c) Attention U-Net, (d) Attention
U-Net-2, (e) ENet, (f) ICNet, (g) R2U-Net, (h) ResU-Net, (i) SegNet, (j) Swin U-Net, (k) TransU-Net, and (l) TransU-Net++, respectively.

Fig. 13. Area under the ROC Curve of different segmentation models.
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Fig. 14. Feature maps of the attention gates and the last layer of four deforestation images; (a)–(d) RGB images of four randomly selected images, (e)–(h) their respective
deforestation ground truth maps, (i)–(l) their respective attention gate maps, (m)–(p) their feature maps of the last convolutional layer in the TransU-Net++ algorithm, and (q)–(t)
their predicted deforestation maps using the TransU-Net++ algorithm.
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Fig. 15. A comparison of computation cost in term of running time over the different segmentation algorithms.
%, and 8%, respectively, in terms of the precision statistical index in
he 4-band Amazon Forest dataset.
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