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A B S T R A C T   

As one of the most significant components of the ecosystem, waterbody needs to be highly monitored at different 
spatial and temporal scales. Nevertheless, waterbody variations in shape, size, and reflectivity, complicated and 
varied types of land covers, and environmental scene diversity, present colossal challenges in achieving accurate 
waterbody detection (WD). In this paper, we propose a novel network coupled with the Transformer and con
volutional neural network (CNN), termed WaterFormer, to automatically, efficiently, and accurately delineate 
waterbodies from optical high-resolution remotely sensed (HR-RS) images. This network mainly includes a dual- 
stream CNN, a cross-level Vision Transformer, a light-weight attention module, and a sub-pixel up-sampling 
module. First, the dual-stream network abstracts waterbody features at multi-views and different levels. Then, to 
exploit the long-range dependencies between low-level spatial information and high-order semantic features, the 
cross-level Vision Transformer is embedded into the dual-stream, aiming at improving WD accuracy. Afterwards, 
the light-weight attention module is adopted to provide semantically strong feature abstractions by enhancing 
discrimination neurons, and the sub-pixel up-sampling module is employed to further generate high-resolution 
and high-quality class-specific representations. Quantitative and qualitative evaluations demonstrated that the 
WaterFormer provided a promising means for detecting waterbody areas in satellite images under complex scene 
conditions. Moreover, comparative analyses with the state-of-the-art (SOTA) alternatives, e.g., MSFENet, 
MSAFNet, and BiSeNet, also verified the generalization and superiority of the WaterFormer in WD tasks. The 
assessment results exhibited that the WaterFormer gained an average accuracy of 97.24%, average precision of 
94.59%, average recall of 91.95%, average F1-score of 93.24%, and average Kappa index of 0.9133, respectively. 
Additionally, we presented an open-access HR satellite imagery waterbody dataset, a mesoscale dataset with 
high-quality and high-precision waterbody annotation to facilitate future research in this field. The dataset has 
been released at https://github.com/NJdeuK/WD_Dataset.   

1. Introduction 

Water, as one of the most essential elements in the Earth’s ecosystem, 
is critical for energy cycles, ecological coordination, and human society 
development (Vorosmarty et al., 2000; Yang et al., 2018; Liu et al., 
2020a). In particular, current global climate changes have intensified 
the conflict between human society and the natural environment, which 
makes how to scientifically manage and efficiently utilize water re
sources for balancing environmental protection and socio-economic 
development more important. (Pekel et al., 2016; Chen et al., 2020). 
Consequently, it is of great implication to analyze waterbody 

characteristics and its temporal-spatial distribution patterns. 
Currently, various Earth observation systems have been rapidly built 

to provide massive remote sensing data at different spatial–temporal 
scales (Li et al., 2022b). Due to the high-temporal and spatial resolution, 
large coverage area, rich spectrum information, clear geometric struc
tures, and texture features, the optical high-resolution remotely sensed 
(HR-RS) images have been widely utilized in different tasks, such as 
object identification (Zhang et al., 2022) and change detection (Li et al., 
2022a). However, waterbody detection or identification from HR-RS 
images still faces some challenges, as shown in Fig. 1. The difficulties 
are recapitulated as follows: 
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1) Waterbody variations in shape, size, and reflectivity. Natural en
vironments (e.g., land cover, topography, and climate) and human 
economic activities carve different appearances of waterbody areas, see 
Fig. 1(a). Ditches and artificial rivers are normally narrow and relatively 
short, while lakes and natural rivers are wide and long. In some areas, 
paddy fields and ponds are densely distributed and spotted. Moreover, 
the reflectivity of waterbodies greatly depends on their clarities and 
different contents (e.g., algae, sand, and sediment). 

2) Environmental scene diversity. Different natural environments 
shape waterbodies with different styles in RS images. As shown in Fig. 1 
(b) low-resolution satellite images blurred the edges or boundaries of 
objects, i.e., waterbody. On the contrary, HR-RS images provide clear 
texture and obvious edge contours of the objects. As shown in Fig. 1(c) 
the appearance of waterbody areas varies with environmental scenes. 
This is a challenge for deep learning (DL) algorithms to equalize the 
proportion of negative and positive pixels in the same batch samples. 

3) Complicated and varied types of land covers. The “same spectrum 
foreign matter” is always a huge challenge in optical HR-RS image 
interpretation tasks. As shown in Fig. 1(d) the spectral information of 
some waterbodies resembles with those of the shadows caused by high- 
rise objects, which could easily generate inaccurate alarms. In addition, 
some building roofs with high reflectivity, also affect the WD accuracy. 

4) Deficiency of specialized datasets. Whether supervised or weakly 
supervised learning requires a certain number of waterbody samples for 
learning waterbody semantic features from the satellite images. So far, 
excluding the Gao-fen challenge dataset presented by (Sun et al., 2021), 
many WD studies assessed their performance on land cover datasets, 
such as DeepGlobe, GID, and LoveDA (Demir et al., 2018; Tong et al., 
2020; Wang et al., 2021a). 

To tackle these challenging issues, an ever-increasing number of WD 
methods have been presented. Most traditional methods such as 
Normalized Difference Water Index (NDWI) and clustering or classifi
cation methods (e.g. Support Vector Machine (SVM) and K-means 
clustering) detected the waterbody from satellite images that required to 
adapt the thresholds or manually designed lower-level features, e.g., 
textural, geometrical edge features, and spectral (Mcfeeters, 2007; Wang 
et al., 2019; Liu et al., 2020b). These methods have acquired improved 

accuracies and efficiency in certain circumstances, but robustly, auto
matically, and accurately detect waterbodies from HR-RS images in 
large-scale areas is still a big challenge. 

Since the powerful abilities of semantic representation, high-level 
feature characterization, and robustness, the variety of deep learning 
networks (e.g., CNNs and the Vision Transformer (ViT) network (Dos
ovitskiy et al., 2021)) have drawn increasing attention to accurately and 
effectively detect, extract, and classify multi-scale waterbodies in com
plex scenes. It is noticed that most CNNs usually fail to establish long- 
range dependencies and represent heterogeneous object regions, 
resulting in the predicted results containing a large amount of “salt-and- 
pepper” noise. On the contrary, ViT can represent global relations, but it 
is poor in preserving local spatial detail information. Moreover, 
Transformer-based networks suffer from the issues of computational 
efficiency and input data size. 

Therefore, we proposed a novel CNN and Transformer fusion 
network (WaterFormer) to robustly and accurately detect waterbodies 
from HR-RS images. By integrating local spatial features with global 
contextual features, the WaterFormer describes waterbodies using fine- 
grained semantic feature representation. The WaterFormer architecture 
includes: 1) a dual-stream CNN-based baseline with parallel-in- 
branches, which generates multi-scale information-rich feature maps 
at different levels, 2) a Cross-Level Vision Transformer (CL-ViT), which 
establishes long-range dependencies between local and global features, 
and 3) a Light-Weight Attention (LWA) module and a Sub-pixel Up- 
Sampling (SUS) module are embedded into the WaterFormer, which 
inhibits and discriminates the irrelevant features capability of the 
network. The WaterFormer provides a promising detection result of 
variable waterbodies in shape, size, and reflectivity, environmental 
scene diversity, and complicated types of land cover in HR-RS images. 
The contributions of this paper are threefold as follows. 

1) We propose a coupled Transformer and CNN network for WD 
tasks, termed WaterFormer, where a dual-stream encoder-decoder CNN- 
based network is embedded with a CL-ViT module to integrate fine- 
grained spatial features and global contextual semantic information in 
a hierarchical and collaborative manner, which can accurately and 
completely detect waterbodies with varied shapes and different spatial 

Fig. 1. Challenges of WD from HR-RS images: (a) variable waterbody in shape, size, and reflectivity; (b) different sensor resolutions; (c) diversified scenes; (d) the 
shadows caused by high-rise objects and high reflectivity buildings. 
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resolutions in diverse scenes. 
2) We design a light-weight attention (LWA) module and a sub-pixel 

up-sampling (SUS) module to strengthen the abstraction and represen
tation capability of the output features. Specifically, the LWA module 
aims to enhance the semantic feature representation of waterbodies, 
preserve feature spatial details, and improve the utilization ratio of 
model parameters. The SUS module generates high-resolution and high- 
quality discriminative waterbody feature maps in the decoding contex
tual branch. 

3) We create a waterbody dataset from multi-source HR satellite 
images, named Multi-Sensor-Resolution Waterbody Dataset (MSRWD), 
which could be promoted to WD studies using DL techniques in the 
future. The dataset can be downloaded at https://github.com/ 
NJdeuK/WD_Dataset. 

The remaining parts of this paper is organized as follows. Section 2 
comprehensively reviews the literatures about WD studies. Section 3 
illustrates the architecture of the WaterFormer in detail. Section 4 pre
sents the experimental datasets, implementation details, as well as 
experimental results and analyses. Finally, Section 5 gives the 
concluding remarks. 

2. Related work 

Recently, the detection/identification of waterbodies has drawn 
increasingly attention in RS image interpretation tasks. In this section, 
we briefly reviewed the existing image-based works, including tradition- 
based and CNN-based WD methods, followed by Transformer-CNN 
fusion methods. 

2.1. Traditional waterbody detection 

In the past decades, a large number of WD methods have been 
developed. In terms of fundamental principles, traditional WD methods 
can be broadly divided into three major categories: threshold-based, 
machine-learning methods, and hybrid-based methods. 

Firstly, the threshold-based methods detected/extracted waterbodies 
from HR-RS images based on the spectral reflectance characteristics. 
Regarding the number of employed bands, the threshold-based methods 
are further grouped into single-band (Shih, 1985) and multi-band 
threshold methods(Koponena et al., 2002). The former detected water
bodies by using a single spectral difference value, while the latter mainly 
performed WD by a set of multi-band mathematical logic operations, e. 
g., NDWI (Mcfeeters, 2007), HR-WI (Yao et al., 2015), Background 
Difference WI (BDWI) (Li et al., 2021), and Multi-Band WI (MBWI) 
(Wang et al., 2018). Moreover, using Sentinel-2 data, a Triangle WI 
(TWI) was proposed to accurately delineate WD results in ice- and snow- 
covered areas, urban areas with cast shadows, and mountainous regions 
with highly rugged terrain (Niu et al., 2022). Despite achieving high 
accuracy in various waterbody types and environmental conditions, the 
TWI did not take into account the influence of varying solar angles, 
changes in the physical and chemical characteristics of waterbodies, 
bathymetry, and the daily or seasonal variations in solar angles. Aroma 
et al. (2023) designed a deep-blue-NDWI (DBNDWI) for Landsat-8 
coastal/aerosol band and demonstrated that the DBNDWI achieved 
great accuracy improvement in medium spatial resolution images, 
compared to the Wavelet-based-NDWI (WAWI) and Weighted NDWI 
(WNDWI). 

Secondly, the machine learning based methods for WD from HR-RS 
images mainly include the following steps: training sample generation, 
feature engineering, and classifier selection. In terms of training data, 
the machine-learning methods are also further categorized into two 
groups: supervised and unsupervised methods. The unsupervised algo
rithms, such as Fuzzy C-means clustering and K-means clustering (Wang 
et al., 2019; Zhang et al., 2019), performed the waterbody detection 
efficiently, but obtained low reliability and poor results. The supervised 
methods such as SVM and Markov Random Fields (Liu et al., 2020b; 

Elmi et al., 2016) detected waterbodies from HR-RS images by exploit
ing their low-order spatial and spectral features such as edges, textures, 
and shapes. Nevertheless, these methods relied on domain expert 
knowledge and had limited feature expression capabilities, difficult to 
capture the deep-level semantic information and the spatial relationship 
between pixels. 

Thirdly, the hybrid-based methods precisely and accurately accom
plish WD tasks by integrating waterbody features (e.g., generated by 
some threshold-based methods) and machine-learning classifiers. 
Concretely, Gašparović and Singh (2022) proposed an automatic algo
rithm for urban waterbody mapping (AUWM) using Sentinel-2 data by 
combining a modified-NDWI (MNDWI), a K-means clustering algorithm, 
and pan-sharpening techniques. While the algorithm achieved high- 
quality waterbody mapping with the accuracy of 99.7 %, it exhibited 
considerable uncertainty applied to very tiny urban waterbodies. 
Rajendiran and Kumar (2023) proposed a surface water body extraction 
(SWBE) method, which explored Gabor filters for generating pixel level 
features (PLF), a variety of spectral indices for describing water features, 
and an eXtreme Gradient Boosting (XGB) algorithm for classifying water 
and no-water pixels from Resoucesat-2 images. The image processing 
processes of the hybrid methods for the WD tasks were intricate, tedious, 
and high uncertainty with multiple influencing factors. 

To summarize, the traditional methods heavily rely on expertise 
domain knowledge to conduct the feature engineering, suffer from the 
poor interpretation of spatial relationships, and limit the generality 
during the WD from the HR-RS imagery. 

2.2. Cnn-based waterbody detection 

With excellent feature abstracting capabilities and end-to-end auto
mation features, CNNs have been widely used in semantic segmentation. 
On one hand, HR-RS images characterize rich spectral information, fine 
texture features, as well as clear pixel geometry and topology, contrib
uting to the WD. On the other hand, such rich information also increases 
the difficulties of RS image interpretation. WD tasks can be simply 
regarded as a binary semantic segmentation. Comparatively, the CNN- 
based WD methods usually achieved better detection accuracies and 
correctness because these methods usually learned high-order features 
and semantic information rather than simple and low-order manually 
designed features, which had proven that CNNs have great potential in 
WD tasks. The fully convolutional network (FCN) and its variants, such 
as FCN8s or UNet, have achieved huge success in WD tasks (Li et al., 
2019; Feng et al., 2019; Li et al., 2018). To facilitate deep training, dense 
blocks were further embedded to improve the WD performances (Wang 
et al., 2020a). Nevertheless, those methods poorly explored deep global 
contextual information, nonconductive to the expression of high-level 
semantic features of objects. To address these issues, a multi-scale lake 
waterbody extraction network was proposed by Wang et al., (2020b), 
where a multi-scale densely-connected module was embedded into the 
encoder-decoder structure. To effectively detect waterbodies from aerial 
and satellite RS dictates, Zhang et al. (2021b) proposed a Multi-feature 
Extraction and Combination Network (MECNet) to enhance semantic 
information and increase the diversity of waterbody features. To detect 
waterbody with size and shape variations, a Multi-Scale Context 
Extractor Network, named MSCENet, was devised by Kang et al. (2021), 
where the Res2Net and strip pooling were utilized to integrate high- and 
low-level feature maps. 

Contrary to the traditional image-pixel annotations, a point anno
tation strategy was adopted in the Neighbor Feature Aggregation 
Network (NFANet) for WD tasks (Lu et al., 2022). NFANet could mini
mize its dependence on pixel-level labeled waterbody samples, but it 
will lose the context space information by utilizing neighboring features. 
Furthermore, the value of NFANet’s parameter was relatively large, 
reaching 278.7 M. A Multi-Scale Features Extraction Network (MSFE
Net), proposed by Liu et al., (2023a), faced the challenges posed by large 
spectral-spatial variations of waterbodies. At the same time, contrastive 

J. Kang et al.                                                                                                                                                                                                                                    

https://github.com/NJdeuK/WD_Dataset
https://github.com/NJdeuK/WD_Dataset


ISPRS Journal of Photogrammetry and Remote Sensing 206 (2023) 222–241

225

learning (CL) was employed to weaken the dependency of WD accu
racies on the number of training samples. However, the CL strategy had 
obvious improvement effects only when the labeled waterbody samples 
were insufficient. The WD accuracies of weak supervision methods (e.g., 
NFANet, and MSFENet) depended on the suitability of learning strate
gies and the performances of segmentation models. In particular, a 
segmentation model negatively affects the features accurately learned 
from labeled samples and the full use of unlabeled samples. Addition
ally, model convergence requires a significant time for model training. 
To improve the efficiency of model training and further mine waterbody 
semantic information, a Multiscale Successive Attention Fusion Network 
(MSAFNet) was proposed to detect waterbodies in complicated situa
tions (Lyu et al., 2023). To trade-off the efficiency and accuracy, Nie 
et al. (2023) presented a Squeeze-and-Excitation Bilateral Segmentation 
Network (SE-BiSeNet) for urban WD tasks. Compared with the other 
SOTA methods, the SE-BiSeNet demonstrated excellent performance in 
both accuracy and efficiency, with fewer parameters and computational 
requirements. Although these methods achieved a significant improve
ment on WD, they still were deficient in capturing fine-grained spatial 
features and local–global contextual semantic information modeling. 

2.3. Transformer-CNN fusion methods in RS tasks 

Transformer, a pure attention-based architecture, was first presented 
in natural language processing (NLP). ViT originally applied Trans
formers to visual tasks by using patch embedding. Specifically, feature 
maps or image inputs were divided into a set of patches, each of which 
was reshaped into a feature vector with positional information. Finally, 
the generated token embeddings were forwarded to the Transformers. 
Segmentation Transformer (SETR) achieved the SOTA performance by 
employing a CNN decoder into the ViT (Zheng et al., 2021). Compared 
to CNN-based networks, the ViT has the capability to capture long-range 
dependencies for powerfully representing global information. Thus, to 
obtain salient and high-order feature representation, many studies pre
sented Transformer-CNN fusion methods. Subsequently, an UNet-like 
Transformer Network (UNetFormer) was designed for efficient seg
menting urban scenes (Wang et al., 2022b), where the lightweight 
ResNet-18 and an efficient global–local attention mechanism were uti
lized as the encoder and decoder, respectively. Regarding the influence 
of image cropping processing on model contextual-aware, Ding et al. 
(2022) presented a Wide-Context Network (WiCoNet) to address the 
limitation of input image sizes. Inspired by the Transformer and UNet, Li 
et al., (2022a) proposed a hybrid Transformer and UNet Network 
(TransUNetCD) for change detection. Additionally, Transformers have 
been widely used for detecting other objects, such as buildings, roads, 
shadows, and waterbodies. For example, Wang et al. (2022) developed a 
BuildFormer to detect fine-grained buildings; Liu et al. (2023b) pro
posed a RoadFormer to accurately extract roads with highly structured 
and long-distance distributed, from RS images; Hu et al. (2023) designed 
a Multiscale Deformable Transformer Network (MDTNet) for alleviating 
residual errors in road extraction results; Transformer had been inno
vatively used in a dual-stream network (DTHNet) for discriminating 
shadows from dark waters, trees, roads, and other targets (Zhang et al., 
2023). Furthermore, Zhong et al. (2022) handled the issues of inaccurate 
lake boundary detection and lake over-detection via a Noise-canceling 
Transformer Network (NTNet). Although the NTNet had achieved ac
curate WD, its parameter of model size was larger than other comparison 
methods, which was 127.06 M. 

In summary, Transformer-CNN fusion methods have achieved sig
nificant results in RS tasks. Nonetheless, these methods struggle to 
achieve an optimal balance between detection efficiency and accuracy 
in the WD tasks. 

3. The proposed method 

3.1. WaterFormer architecture overview 

The architecture of our WaterFormer, which is composed of a dual- 
stream network, a CL-ViT module, a LWA module, and a SUS module, 
is presented in Fig. 2. The dual-stream network consists of two asym
metrical branches, including a spatial branch and a contextual branch, 
each of which employs an encoder-decoder architecture. The CL-ViT 
module (see Section 3.2), embedding at the top of the encoder, is uti
lized to map the spatial scene information and aggregate the contextual 
semantic knowledge between the dual branches. The LWA module (see 
Section 3.3) and the SUS module (see Section 3.4) are adopted to 
enhance semantic features at different scales and levels and to hierar
chically restore image resolutions and semantic information represen
tation in the contextual branch, respectively. 

It is challenging to trade-off spatial detail information and semantic 
features, which are critical for achieving high accuracy results. How
ever, current mainstream networks obtained semantic features at a 
single path via a down-sampling, to enlarge the receptive fields. The 
down-sampling inevitably loses spatial detail information. Thus, we 
adopt a dual-stream architecture, which is equipped with a spatial 
branch to obtain low-order features and spatial details information. 
Specifically, in this spatial branch, the encoder contains four stages of 
convolution layers, as shown in Fig. 2. The first convolution stage is 
stacked by three convolution layers, whose filter kernel size and padding 
uniformly are set to 3 and 1, respectively. The first convolution stride is 
set to 2 and the rest to 1. The number of the output channels is suc
cessively set to [32, 32, 64]. The filter kernel size, the number of output 
channels, stride, and padding for the remaining three convolution stages 
are [3, 64, 2, 1], [3, 64, 2, 1], and [1, 512, 1, 0], respectively. Therefore, 
in the spatial branch, the original input images are down-sampled at the 
scales of [1/2, 1/4, 1/8, 1/8], the final output feature maps are 1/8 of 
the original input image size. The feature map size is straightway scaled 
to the original image size via a bilinear interpolation up-sampling 
strategy. Note that the pooling operation is not applied in this branch. 

As shown in Fig. 2, the contextual branch is also designed with an 
encoder-decoder architecture to obtain global contextual information 
and represent high-level semantic feature. The ResNet-34 (He et al., 
2016) is employed in the encoder. Concretely, the original input images 
are down-sampled at the scales of [1/2, 1/4, 1/8, 1/16, 1/32]. Corre
spondingly, the number of the feature maps is gradually increased to 
[128, 64, 128, 256, 512]. Similarly, the decoder consists of five SUS 
modules to gradually generate high-quality and high-resolution water
body semantic feature maps. Especially, the LWA module is utilized to 
enhance the probability weight of waterbody pixels while restraining 
irrelevant background noise in feature maps at different level-scales. 
Skip connections are used to connect the waterbody semantic feature 
maps of the encoder with the corresponding up-sampled feature maps 
for feature detail recovery. Additionally, the CL-ViT module, which is 
designed at the top of each branch with 512 channels in the encoder, 
aims to construct long-range dependencies between the spatial and 
contextual branches. 

3.2. Cross-Level vision Transformer module 

We design a CL-ViT module to construct the long-range global 
feature interactions of the dual-branch features. The CL-ViT is stacked 
by multiple Transformer blocks, and it exports the overall feature rep
resentation of the spatial and contextual features. Note that, before 
patch embedding, the number of the feature channels is consistent, but 
the resolution-size is different. 

Our CL-ViT contains two input branches and one output branch, as 
shown in Fig. 3. Assuming the spatial encoding features S = [S1, S2, 
S3……SM] ∈ RM×H×W, where H, W, and M denote the height, width, and 
channel number of the feature maps, respectively. Let denote the 
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contextual encoding features as C = [C1, C2, C3……CN] ∈ RN×X×Y, 
where X, Y, and N denote the height, width, and channel number of the 
feature maps. Before inputting to the Transformer block, the Patch 
Embedding is applied to feature maps S and C. We take the feature map S 
as an example. S is first reshaped to a flattened 2D patch set, PS = [P1, 
P2, P3…….PM] ∈ RG×(M×P×P), for performing tokenization, where the 
number of the patches is G = HW/P2 and the patch size is P × P. Af
terward, the vectorized patch set PS is mapped into the latent D- 

dimensional embedding space TS ∈ RG×D via a trainable linear trans
formation, where D refers to the constant latent vector size of all the 
layers in the Transformer. Finally, the specific position embedding is 
learned and added to the patch embedding, to encode the patch spatial 
positional information. These steps can be represented as follows: 

ZS = [T1E1;T2E2;T3E3;…...; TGEG] +Epos (1)  

Fig. 2. Overview of the WaterFormer.  

Fig. 3. Vision Transformer (Left) and Cross-Level Vision Transformer (Right).  
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where E = [E1, E2, E3……EG] ∈ R(P×P×M)×D refers to the patch embed
ding projection, ZS ∈ RG×D and Epos ∈ RG×D refer to the deep features 
and the position embedding, respectively. After obtaining the contextual 
and spatial embedded tokens, TC and TS, the Transformer block is 
employed to conduct the feature projection relationship, which transfers 
the spatial detail information to the encoding contextual branch to 
generate context-rich feature representation. As shown in Fig. 3, each 
single Transformer total-block contains a Multi-Layer Perceptron (MLP) 
sub-block and a Multi-head Self-Attention (MSA) sub-block. The residual 
connection and normalization are employed in each inside Transformer 
block. The MSA aims to conduct the waterbody feature projection 
relationship between the two branches, obtaining high-order waterbody 
semantic with rich spatial-contextual information. The MLP effectively 
enhances the nonlinear transformation capability of the Transformer. In 
the inside of the Transformer block, the steps can be denoted as follows: 

Z = MSA(LN(Z)) + Z (2)  

Z̃ = MLP(LN(Z)) + Z (3)  

where LN denotes a Layer Norm function. Z̃ and Z represent the output 
and input patch embedding feature maps, respectively. The calculations 
detailed in the MSA sub-block are: 

Z =

[

Softmax(
QKT

̅̅̅̅̅̅̅̅̅
D/n

√ )

]

V (4)  

where V, Q, K ∈ RG×D/n are the value, query, and key matrices of LN(Z). 
n is the number of the MSA’s heads. Assuming ZS ∈ RG×D and ZC ∈ RO×D 

(G and O are the number of the flattened features) represent the spatial 
and contextual embedded tokens of the spatial branch and contextual 
branch, respectively. In the Transformer block, spatial query QC is 
mapped with ZC, while the contextual key KS and value VS are mapped 
with ZS: 

QC = ZCWQ ∈ RO×D/n,

KS = ZSWK ∈ RG×D/n,

VS = ZSWV ∈ RG×D/n,

(5)  

where WV, WK, WQ ∈ RD×D/n are the matching weights of the projection 
function. The self-attention mechanism is utilized to update Z, which is 
calculated as follows: 

Z =

[

Softmax(
QCKT

S̅̅̅̅̅̅̅̅̅
D/n

√ )

]

VS (6) 

These steps, together with the MLP calculations, are reduplicated L 
times, where the contextual dependencies between ZS and ZC are 

modeled and imposed. In consequence, the contextually embedded to
kens are mapped with the long-range dependencies from the spatially 
embedded tokens. In the end, the output embedded tokens are reshaped 
into the 2D feature maps, with waterbody semantic and fine-grained 
spatial information. We will analyze the different combinations of n 
and L on the WD performance in Section 4.4. 

3.3. Light-weight attention module 

Inspired by Yang et al. (2021), we adopted a LWA module to learn 
more discriminative neurons, enhancing waterbody semantic feature 
representation while preserving feature map spatial details, and also 
increasing the utilization ratio of the model parameters. As shown in 
Fig. 4, the LWA module efficiently highlights the neurons with a high 
degree of importance while suppressing the surrounding neurons via the 
following energy function: 

et(wt, bt, y, xi) = (yt − t̂)2
+

1
M − 1

∑M− 1

i=1
(y0 − x̂i)

2 (7)  

t̂ = wtt+ bt (8)  

x̂i = wtxi + bt (9)  

where x̂i and t̂ are the linear transformations of the other neurons 
feature map xi, which is the single channel of the input feature X ∈
RC×H×W, and the target neuron t. i denotes the index over spatial 
dimension. M (M = H × W) denotes the neurons number of in the cor
responding channel. bt and wt denote the bias and weight of the linear 
transformations, respectively. If yt equals to t̂ and x̂i equals to y0, et 
would be minimized. 

Note that all variables are scalar in Eq. (7), where x̂i and y0 are given 
to different values. Following this, the linear separability, between the 
other neurons and the target neuron t, is found via minimizing the en
ergy function. To understand this, the bilevel labels (i.e., − 1 and 1) are 
assigned to y0 and yt. In the final energy function, the regularization is 
added as follows: 

wt = −
2(t − ut)

(t − ut)
2
+ 2σ2

t + 2λ
(10)  

bt = −
1
2
(t + ut)wt (11)  

where σ2
t =

∑M− 1
i (xi − ut)

2
/(M − 1) and ut =

∑M− 1
i=1 xi/(M − 1) repre

sent the variance and mean, which calculates over all neurons except t in 
that channel. 

Fig. 4. Illustration of the LWA module.  
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Following the assumption that the latent representation in a single 
channel follows the same distribution (Hariharan et al., 2012). The 
minimal energy can be written as follows: 

e∗t =
4(σ̂2 + λ)

(t − û)2
+ 2σ̂2 + 2λ

(12)  

û =
1

M − 1
∑M

i=1
xi (13)  

σ̂2 =
1

M − 1
∑M− 1

i=1
(xi − û)2 (14) 

It is obvious that the more distinctive the feature of a neuron coming 
from the others, the higher the weight, the lower the value of energy et*. 
Thus, the value of 1/et* represents the importance of each neuron. Note 
λ is a coefficient, as a hyper-parameter during model training. To 
simplify the procedure, the whole refinement step of the LWA module is 
defined as: 

X̃ =

[

σ
(

1
E

)]

⊗ X (15)  

where E denotes the energy of the corresponding neuron.⊗ and σ refer to 
the element-wise multiplication and the sigmoid function.X̃ and X are 
the output and input feature maps, respectively. 

The LWA module is embedded in the contextual branch at the scales 
of [1/2, 1/4, 1/8]. This module directly generates the full 3-dimensional 
(3D) weights of the feature map, enhancing the pixel weights of the 
regions of interest in each feature map while suppressing irrelevant 
background regions and aggregating the high-level decoder features. 
The waterbody semantic 3D weights refine the low-level encoding fea
tures, being indirectly conducive to the expression of waterbody se
mantic information in the decoding features. The specific phases can be 
depicted as follows: 

Fopt = Fhpt +Flpt = Fhpt +Atten
(
Fipt

)
⊗ Fipt (16)  

where Fopt, Fhpt, Flpt, and Fipt denote the output, high-level ouput, low- 
level output, and input feature maps, respectively. Atten (⋅) represents 
the process of generating 3D-waterbodies feature weights. ⊗ is the 
element-wise multiplication operational procedure. 

3.4. Sub-pixel up-sampling module 

Inspired by the pixel-shuffle up-sampling algorithms (Shi et al., 
2016), a SUS module is designed to generate more discriminative rep
resentations in the contextual branch, as illustrated in Fig. 5. The SUS 
module consists of one pixel-shuffle unit and two convolution layers 
with a kernel size of 1 × 1. The pixel-shuffle unit scales up the feature 
map size with a scaling step of two and reduces the channel dimension of 
the overall feature maps. The two convolution layers are employed to 
adjust and aggregate feature dimensions. The specific steps can be 
represented as follows: 

Fout = Fd ⊕ Fe = f [SU(f (Fin))] ⊕ Fe (17)  

where Fout, Fd, and Fe denote the output, input encoder, and input 
decoder feature maps, respectively. f (⋅) and SU (⋅) represent the 1 × 1 
convolution and pixel-shuffle operations. Additionally, assuming the 
low-resolution (LR) feature map is denoted as ILR ∈ Rr2C×W×H (r is the 
upscaling ratio), the high-resolution (HR) feature map as IHR ∈

RC×rW×rH, and l as the number of the layers. The projection function can 
be described as: 

IHR = SUl(ILR) = Wl ⊗ SUl− 1(ILR)+ bl (18)  

where bl and Wl are the biases and weights of the lth layer. As shown in 
Fig. 5(b), the upscaling ratio is set to 2, and the feature map size changes 
from (C × r2, H, W) to (C, H × r, W × r). 

The SUS module is prone to damage the correlation among pixels in 
the process of periodic arrangement. However, for a LR image feature 
and its corresponding HR image feature, the SUS module can enhance 
their correlations due to their structural similarity. Therefore, it can 
gradually recover a high-quality and high-resolution waterbody 

Fig. 5. Illustration of (a) the SUS module and (b) the upscale process of SUS (r = 2, C = 1).  
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semantic expression, improving the WD accuracy. 

3.5. The total loss function 

In pixel-level classification tasks, loss functions are employed to es
timate the discrepancy between the predicted map and the ground truth 
(GT) during sample training, and further optimize and adjust network 
parameters. As shown in Fig. 2, the two predicted maps are generated 
from the spatial and the contextual branches, respectively, in the pro
posed WaterFormer. Therefore, a dynamic weighted binary-cross- 
entropy (BCE) loss, named DCE loss, which consists of the spatial loss 
and the contextual branch loss, was performed to drive the training 
process, which is described as follows: 

LDCE = LBCE(PC, T)+αLBCE(PS,T) (19)  

α =

(

1 −
iter

all iter

)2

(20)  

where PC and PS, respectively, represent the segmentation maps gener
ated by the contextual and spatial branches. T represents the GT. α is a 
weighting parameter, whose value is decreasing with an increase of the 
iterations. 

4. Results and discussion 

In this section, the experimental datasets and implementation details 
are first reported. Next, comparative methods and evaluation indexes 
are introduced. Finally, the experimental results are discussed and 
analyzed in detail. 

4.1. Descriptions of datasets 

To verify the generalization and robustness of the WaterFormer, we 
tested it on the three HR-RS datasets, i.e., GID (Tong et al., 2020), 
LoveDA (Wang et al., 2021a), and MSRWD. Table 1 shows the funda
mental information of the experimental datasets. The details of these 
three datasets were explained in the following. 

1) GID: The dataset consists of GF-2 images, originally annotated 
with six land covers, i.e., building, farmland, forest, meadow, water
body, and background. To better facilitate WD tasks, an annotation mask 
was used to adjust these six land covers to two categories: waterbody 
and non-waterbody. We cropped the images into a set of non- 
overlapping image patches with the size of 512 × 512 pixels and 
removed both the mislabeled images and the images containing no 
waterbodies. Finally, the patches with their corresponding labels were 
randomly divided into three parts, i.e., model training set (containing 
2291 image pairs, accounting for 60 % of the dataset), model validation 
set (containing 764 image pairs, 20 %), and model testing set (con
taining 764 image pairs, 20 %). To reduce over-fitting, we augmented 
the training subsets via an offline data augmentation, including color 

dithering, salt-pepper noise interference, and image rotation at three 
directions of 90◦, 180◦, and 270◦. 

2) LoveDA: The LoveDA dataset has 4191 annotated images, with 
seven types of land covers, i.e., road, barren, agriculture, waterbody, 
forest, and background. Similarly, these seven land covers were also 
adjusted to two categories, i.e., waterbody and non-waterbody. Each 
image was also cropped into a set of non-overlapping image patches 
with a size of 512 × 512 pixels. The training, validation, and testing sub- 
sets included 4061, 2436, and 1624 images, respectively, and the cor
responding proportions of 50 %, 30 %, and 20 % of the whole dataset. 
We enlarged the training data via an online data augmentation, i.e., 
randomly image rotating, color dithering, and image flipping in hori
zontal and vertical directions. 

3) MSRWD: As there have been few publicly available datasets for 
WD, we constructed a fine-grained HR satellite image dataset, especially 
for WD tasks in this paper. This dataset consists of 660 images, including 
73 GF-2 images, 74 ZY-3 images, and 513 images acquired from the 
Google Earth services, thereby the multi-sensor-resolution waterbody 
dataset was termed as MSRWD. All images were annotated as waterbody 
and non-waterbody pixel-by-pixel. All images in the MSRWD dataset 
were uniformly clipped to a set of non-overlapping image patches with 
the size of 512 × 512 pixels. After the removal of the mislabeling images 
and the images with no waterbodies, 2419 image patches were 
remained. Finally, according to the ratios of 5:2:3, 1209, 485, and 725 
image patches were used as training, validation, and testing subsets, 
respectively. We also employed an offline data augmentation, including 
random rotation, color dithering, salt-and-pepper noise addition, 
translation transformation, and scale transformation. Note that, 
compared with the GID and LoveDA datasets, the MSRWD dataset is 
more challenging due to: (1) varied scales, reflectivity, sizes, and shapes 
of waterbodies, e.g., artificial, or natural rivers, ponds, ditches, lakes, 
and paddy-fields, and (2) complex scenes, e.g., urban–rural scene, hills 
landform, loess plateau, and variability in image spatial resolution. 

4.2. Network implementation details 

The WaterFormer and the comparison methods were implemented 
on Pytorch 1.10.0 and Python 3.8.12. The hardware environment of all 
experiments is a workstation with two 24 GB NVIDIA GeForce RTX 
3090, and an Intel(R) Xeon(R) Silver 4210R CPU (2.40 GHz, 10 cores, 
and 128 GB RAM). During the training stage, the Adam optimization 
algorithm was employed. The hyper-parameters of the GID, LoveDA, 
and MSRWD datasets were presented in Table 2. To better train the 
networks, an “ExponentialLR” scheme was employed for updating the 
learning rate, where the base of exponential, γ, was set to 0.98. 

4.3. Comparative methods and evaluation indexes 

To confirm the effectiveness of the WaterFormer on WD task, we 
compared it with four groups of the eight SOTA DL segmentation 
methods including CNN-based networks (e.g., LinkNet (Chaurasia and 
Culurciello, 2017), DeepLabV3+ (Chen et al., 2018)), attention-based 
networks (e.g., DANet (Fu et al., 2019), CCNet (Huang et al., 2020)), 
Prue Transformer-based networks (e.g., SwinUNet (Cao et al., 2022), 
CSwin (Dong et al., 2022)), and Transformer-CNN fusion networks (e.g., 
BANet (Wang et al., 2021b), TransFuse (Zhang et al., 2021a)), and six 
SOTA WD methods including MECNet (Zhang et al., 2021b), MSCENet 
(Kang et al., 2021), MSNANet (Lyu et al., 2022), BiSeNet (Nie et al., 

Table 1 
Experimental datasets.  

Dataset GID LoveDA MSRWD 

Data sources GF-2 Google Earth Google Earth, GF-2, 
ZY-3 

Spatial resolution 
(m) 

4.0 0.3 1.0, 4.0, 5.8 

Image size 
(pixels) 

7200 × 6800 1024 × 1024 1024 × 1024 

Annotation 
category 

6 7 2 

Total image 
number 

150 4191 660 

Tasks Object 
classification 

Object 
classification 

Waterbody 
detection  

Table 2 
Experimental hyper-parameters.  

Hyper-parameter GID LoveDA MSRWD 

Epoch 50 120 60 
Batch size 2 4 4 
Initial learning rate 2.5e-5 1e-4 1e-4  
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2023), MSAFNet (Lyu et al., 2023), MSFENet (Liu et al., 2023a). 
Furthermore, to quantitatively analyze the WD performance of 

different methods, five commonly used metrics, i.e., F1-score (F1), recall 
(R), precision (P), Kappa coefficient (KC), and overall accuracy (OA), 
were adopted by comparing the GT with the prediction pixel maps. 

OA =
TP + TN

TP + FP + TN + FN
(21)  

P =
TP

TP + FP
(22)  

R =
TP

TP + FN
(23)  

F1 =
2 × P × R

P + R
(24)  

Pe =
(TP + FN) × (TP + FP)

(TP + TN + FP + FN)
2 +

(TP + FP) × (TN + FN)

(TP + TN + FP + FN)
2 (25)  

KC =
OA − Pe

1 − Pe
(26)  

where TP, TN, FP, and FN are the number of correct waterbody detection 
pixels, correct no-waterbody detection pixels, incorrect waterbody 
detection pixels, and undetected waterbody pixels, respectively. 

4.4. Parameters setting analysis 

In the WaterFormer, there are three adjustable parameters, i.e., L and 
n in the CL-ViT module and λ in the LWA module, which significantly 
affect the WD performance. In this section, we conceived and designed 
two groups of experiments on the GID, LoveDA, and MSRWD datasets, to 
investigate the sensitivity of the WaterFormer to the selection of the 
aforementioned three parameters. 

The n and L were the number of the MSA heads and the number of 
Transformer blocks, respectively. In this group of experiments, we 
assigned the original values of n and L to 2 and 4, respectively. We varied 
n from 2 to 8, and L from 4 to 8. Fig. 6 shows the experimental results of 
the three datasets on OA and F1 when using different combinations of L 
and n. Obviously, the best OA values on the MSRWD, GID, and LoveDA 
datasets were obtained at n = 8 and L = 4, respectively. Also, the highest 
F1 values were acquired on the MSRWD, GID and LoveDA datasets at n 
= 8 and L = 4. As shown in Fig. 6, as the number of heads in the MSA unit 

increases, the OA and F1 values gradually increase with the same 
Transformer blocks on the LoveDA. There was no observed pattern of 
variation for the MSRWD and GID. The reason might be that the multi- 
head attention mechanism facilitates modeling the spatial information 
between the two CNN branches for the dataset with higher spatial res
olution. However, the WaterFormer achieved a relatively stable WD 
performance, especially, on the GID and MSRWD datasets when n 
invariant and L increased. The reason might be that extensive Trans
former blocks cause overfitting, and thus degrading the overall WD 
performance. 

The λ is the parameter in the LWA module, which affects the 3D 
weights by determining the value of the energy function. We used n = 8 
and L = 4, and varied λ from 10-6, 10-5, 10-4, 10-3 to 10-2 on the GID, 
LoveDA, and MSRWD datasets. The OA and F1 values obtained by the 
WaterFormer, were presented in Fig. 7. It can be observed that the 
greatest OA and F1 on the LoveDA and MSRWD were acquired when λ =
10-4. The best values of OA and F1 were obtained when λ was 10-4 or 10- 

3. The reason behind this discrepancy may be that the spatial resolution 
of the GID images is lower than those of the LoveDA and MSRWD im
ages. When processing low-resolution images, it is hard to distinguish 
the targets or peripheral neurons for the corresponding energy gener
ated by λ = 10-4 and λ = 10-3. 

4.5. Comparison with SOTA DL methods 

Figs. 8-10 present a visualization comparison of the WD results on 
the GID, LoveDA, and MSRWD datasets. The comparative methods and 
the GT were marked by red and blue boxes, respectively. The yellow 
boxes represent the WaterFormer. Additionally, Table 3 reports the 
quantitative verification results of the WD results acquired by those 
comparative methods. 

a) GID: Fig. 8 assumes a subset of some typical WD results acquired 
by the comparative methods on the GID dataset. On the whole, visual 
inspection showed that the WaterFormer was superior to other methods 
under complicated scenes. To be more specific, as shown in the first rows 
of Fig. 8, the images contained many bright artificial buildings and 
shadows spreading around the tiny straight river. The WaterFormer 
achieved the best visual performance, and the WD map was greatly 
consistent with the GT. In the second rows of Fig. 8, most of the methods 
achieved better WD results. In particular, the WaterFormer and Trans
fuse clearly and accurately delineated the fine inlets, benchlands, and 
river islands. As shown in the third rows of Fig. 8, there was a large lake 
with dark spectrum brightness. Note that the WaterFormer and BANet 
accurately and completely delineated the lake, whereas the rest of the 

Fig. 6. Effects of the hyper-parameters in Transformer on the accuracies of the WaterFormer. (a) OA and (b) F1.  
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methods obtained poor WD results with false alarms and uncertain 
areas. In addition, the WaterFormer generated WD maps with more 
accurate and smoother boundaries than others. In the bottom row of 
Fig. 8, there exists a remarkable “synonyms spectrum” phenomenon in 
the image with densely distributed buildings and a tiny cross-river 
bridge. The WD result obtained by the WaterFormer was also consis
tent with the GT. Thus, benefiting from the advantages of the CL-ViT 
module, the WaterFormer accomplished the promising WD perfor
mance when handling the waterbodies with complicated scenarios and 
multi-scale characteristics (e.g., geometric and spectral variations). 

As shown in TABLE 3, our WaterFormer achieved the best WD ac
curacies against the reference methods. More specially, compared with 
the LinkNet, the WaterFormer achieved a better WD performance, with 
an improvement of 2.01 %, 1.46 %, 2.86 %, 2.18 %, and 4.04 % of OA, P, 
R, F1, and KC, respectively. These values are 4.08 %, 3.91 %, 4.85 %, 
4.39 %, and 8.19 %, respectively, comparable to DeepLabV3 +. The 
reason is that the dual-stream CNN encoder has a stronger feature 
abstraction ability than the light-weight Xception and the single-branch 
residual architecture. In particular, compared with the CNN-based 
attentional networks, our WaterFormer obtained a mean increase of 
1.33 %, 1.75 %, 1.06 %, 1.41 %, and 2.67 % of OA, P, R, F1, and KC, 
respectively. This is because the CL-ViT module mapped the spatial 
detail information into high-level semantic feature maps, improving WD 
integrality and accuracy. Additionally, our method was superior to the 
pure Transformer-based networks by a gain of 0.34 %, 0.33 %, 0.39 %, 
0.36 %, and 0.66 % of OA, P, R, F1, and KC, respectively. The Water
Former, integrating the CNN with the Transformer, had a stronger 
ability to capture local features of waterbodies than the pure 
Transformer-based methods. Unlike the BANet, the better WD perfor
mance of the WaterFormer benefited from the LWA module to enhance 
waterbody semantic features at multiple levels while preserving the raw 
feature map spatial details. Compared with TrusFuse, the WaterFormer 
obtained a slight improvement of 0.03 %, 1.33 %, and 0.04 % of OA, P, 
and KC, respectively. This is because the SUS module gradually recovers 
a high-quality and high-resolution waterbody semantic expression. 

b) LoveDA: Fig. 9 shows the WD results obtained by the comparative 
approaches. It can be seen that our WaterFormer could refine the 
waterbody boundaries and reduce the false alarms, thus generating finer 
detection maps, as presented in the first row of Fig. 9. In the second and 
third row of Fig. 9, the waterbody surrounded by artificial buildings and 
bare soil appear strong spectral reflectivity. The WaterFormer generated 
the WD result maps, extremely consistent with the GT. When dealing 
with the waterbody isolated, staggered with buildings and vegetation, or 
covered with shadows, as observed in the bottom row of Fig. 9, the 

WaterFormer completely and correctly delineated the waterbody, while 
the other methods failed because little spatial information was fully 
mapped into the high-level semantic feature maps during forward 
propagation. Thus, this can be drawn a conclusion that the WaterFormer 
has a superior robustness and noise suppression capability. 

As reported in Table 3, the WaterFormer presented a considerable 
performance boost over other methods with OA, F1, R, and KC values 
reaching 95.30 %, 85.24 %, 82.91 %, and 0.8245, respectively. 
Compared with LinkNet and DeepLabV3+, our WaterFormer acquired a 
mean increase of 0.74 %, 0.83 %, 4.21 %, 2.66 %, and 3.08 % for OA, P, 
R, F1, and KC, respectively. However, these improvements are 0.55 %, 
0.59 %, 3.18 %, 1.98 %, and 2.29 %, respectively, comparable to the 
DANet and CCNet. This is because the attention mechanism is more 
beneficial for the constructed long-distance correlation of each pixel 
than other optimization units in the clear-texture and fine-detail images. 
The WaterFormer outperformed the BANet, with a great increase of 
1.01 %, 4.03 %, 7.47 %, and 4.58 % of OA, F1, R, and KC, respectively. 
Furthermore, these values are 0.36 %, 2.06 %, 6.53 %, and 2.21 %, 
respectively, comparable to the TransFuse. 

c) MSRWD: As shown in Fig. 10, the ZY-3 and GF-2 satellite images 
were presented in the first and second rows, and the Google images were 
in the last three rows. Accordingly, we found that the WaterFormer 
achieved superior results to the other methods. Take the example of the 
ZY-3 image, the river presents thin, long, and meander. Furthermore, it 
can be carefully observed that the LR-RS images presented typical sur
face objects (e.g., buildings, roads, and farmlands) with rough texture, 
blurred edges, and monotonic spectrums. In fact, detecting waterbodies 
accurately and completely from such images is still an extraordinarily 
challenging task. However, the WaterFormer still achieved the SOTA 
WD results with a clear and complete delineation of waterbodies. In 
contrast, the GF-2 images contain rich spectrum information. The 
WaterFormer missed detections, that is, waterbody with bright reflec
tivity or containing eutrophic matters were largely missed. The last three 
rows of Fig. 10 present the Google images, containing regular farmland 
water nets, densely distributed large waterbodies, and thin-long artifi
cial irrigation canals. The narrow waterbody areas were detected 
completely and precisely by the WaterFormer, comparable to the other 
methods. As shown in the fourth row of Fig. 10, the WaterFormer 
delineated accurate waterbody boundaries, whereas the DeepLabV3+, 
SwinUNet, BANet, and TransFuse achieved poor WD results without fine 
and smooth boundaries. The reason might be that the SUS module is 
capable of enhancing the correlation between pixels in similar topo
logical structure images. Therefore, it improved the detection results of 
waterbody boundaries. In addition, for the thin-long artificial irrigation 

Fig. 7. Effects of the hyper-parameters in LWA module on the accuracies of the WaterFormer. (a) OA and (b) F1.  

J. Kang et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 206 (2023) 222–241

232

Fig. 8. Visual analysis of WD results using the GID: (a) Raw image (b) LinkNet; (c) DeepLabV3+; (d) DANet;(e) CCNet; (f) SwinUNet; (g) CSwin; (h) BANet; (i) 
TransFuse; (j) WaterFormer; and (k) GT. 
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canals, our WaterFormer obtained the WD maps more consistent with 
the GT. 

Our WaterFormer obtained the best WD accuracies with OA, P, R, F1, 
and KC values reaching 98.62 %, 97.62 %, 96.04 %, 96.83 %, and 
0.9595, respectively, as shown in Table 3. The WaterFormer out
performed all CNN-based methods, obtaining an increase of 0.84 %, 
1.58 %, 2.30 %, 1.97 %, and 2.50 % of OA, P, R, F1, and KC, respectively. 

These values are 0.54 %, 0.79 %, 1.73 %, 1.28 %, and 1.62 %, respec
tively, compared to the SwinUNet and CSwin. This might be because the 
pure Transformer-based methods advanced the establishment of long- 
range dependencies in the pixel-level segmentation tasks. Compared 
with the BANet, the WaterFormer obtained an increase of 0.94 %, 1.29 
%, 3.12 %, 2.23 %, and 2.83 % of OA, P, R, F1, and KC. The reasons 
might be that the feature encoding ability of the light-weight ResT-Lite, 

Fig. 9. Visual analysis of WD results using the LoveDA: (a) Raw image (b) LinkNet; (c) DeepLabV3+; (d) DANet; (e) CCNet;(f) SwinUNet; (g) CSwin; (h) BANet; (i) 
TransFuse; (j) WaterFormer; and (k) GT. 

J. Kang et al.                                                                                                                                                                                                                                    



ISPRS Journal of Photogrammetry and Remote Sensing 206 (2023) 222–241

234

embedded in the Transformer-branch of the BANet, is seriously poor, 
while the utilization of multi-scale strengthened features is more effec
tive than that of the aggregated features to achieve semantic represen
tation for these great challenging datasets. Finally, the WaterFormer 
achieved a gain of 0.20 %, 1.10 %, 0.48 %, and 0.60 % for OA, R, F1, and 
KC, compared to the TransFuse. The statistics also verified that the CL- 

ViT module contributed to long-range dependency. Through the 
comparative analyses, we could draw a conclusion that, owing to the 
superiority of mapping spatial local features into global context infor
mation, our WaterFormer was capable of abstracting waterbody se
mantic features from HR images. 

Fig. 10. Visual analysis of WD results using the MSRWD: (a) Raw image (b) LinkNet; (c) DeepLabV3+; (d) DANet; (e) CCNet; (f) SwinUNet; (g) CSwin; (h) BANet; (i) 
TransFuse; (j) WaterFormer; and (k) GT. 
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4.6. Comparison with SOTA WD methods 

To further substantiate the advantages of our WaterFormer, a 
comparative analysis was conducted between the WaterFormer and the 
existing SOTA WD methods. Fig. 11 present a visualization comparison 
of the WD results on the GID, LoveDA, and MSRWD datasets. The 
comparative methods and the GT were marked by red and blue boxes, 
respectively. The yellow boxes represent the WaterFormer. Addition
ally, TABLE 4 reports the quantitative verification results of the WD 
results acquired by those comparative methods. 

a) Quantitative analysis: As shown in TABLE 4, our WaterFormer 
performed obvious superiority over all the SOTA WD methods in terms 
of OA, R, F1, and KC. Specifically, the WaterFormer acquired the best 
OA, R, F1, and KC of 97.81 %, 96.89 %, 97.66 %, and 0.9560 on the GID, 
respectively. For the OA, R, F1, and KC, the values were 95.30 %, 82.91 
%, 85.24 %, and 0.8245 on the LoveDA, respectively. While on the 
MSRWD, the values for OA, R, F1, and KC were 98.62 %, 96.04 %, 96.83 
%, and 0.9595, respectively. More specially compared with the other 
WD methods, the MSFENet obtained the second-best R, F1, and KC on 
the three datasets. The reason behind this might be that the dense atrous 
convolution module embedded in the network eliminates the semantic 
gap and enhances waterbody feature expression, greatly improving the 
WD accurateness. With respect to the GID, the WaterFormer obtained a 
mean increase of 3.07 %, 1.58 %, 5.06 %, 3.43 %, and 6.19 % of OA, P, 
R, F1, and KC, compared with the MECNet, MSCENet, MSNANet and 
BiSeNet, respectively. The MSAFNet obtained the best P indices of 99.62 
% and 92.51 % on the GID and the LoveDA, respectively. However, the P 
value of the MSAFNet was lower than other methods on the MSRWD. 
This is primarily because the MSAFNet utilizes the pre-trained ResNet- 
50 backbone to generate multi-level feature maps, which indicates high 
P values of the GID and LoveDA, while the MSRWD is more complicated 
and challenging in comparison to the former datasets. Relative to the 
MECNet, the proposed WaterFormer had a small decrease in P on the 
MSRWD. Specifically, its P dropped by 1.35 % on the MSRWD. The 
reason might be that the deep supervision strategy is adopted to impose 
loss constraints to raise the P value of the WD results. This loss function 

employed in the MECNet was demonstrated to be more effective 
compared with the DCE loss on the MSRWD. 

b) Qualitative analysis: Visual inspection is also performed to 
analyze the effectiveness of the proposed WD method. Fig. 11 indicates 
that the proposed WaterFormer outperformed the comparative methods. 
The WaterFormer obtained the WD results, extremely consistent with 
the GT than most of the comparative methods. Specifically, as observed 
in the first row of Fig. 11, the city and the tiny cross-river bridge sur
rounded by the waterbody, and the artificial buildings with various 
colors, shapes, and styles, could cause false positives and negatives in 
the WD task. However, the WaterFormer obtained the best visual per
formance, and the WD results were closely aligned with the GT. In the 
second and third rows of Fig. 11, most of the WD methods obtained poor 
WD results. Only the WaterFormer plainly and accurately delineated the 
fine waterbody boundaries. In particular, as shown in the fourth row of 
Fig. 11, there were three distinct waterbody regions distributed, with 
different spectral brightness. Note that the WaterFormer, MSCENet, and 
MSAFNet correctly and completely delineated the waterbody regions, 
marked by the dashed rectangles, whereas the rest of the methods ob
tained poor WD results with false alarms and uncertain areas. This is 
primarily because the transfer learning pretrained strategy utilized in 
the MSCENet and MSAFNet accelerates network training convergence 
and enhances the waterbody feature extraction ability. 

Additionally, as seen in Fig. 11, ZY-3, GF-2, and Google images in the 
MSRWD were arranged from the fifth to the eighth rows. The first two 
low spatial resolution images exhibited fine-broken spatial distribution 
waterbodies with significant global contextual semantic knowledge. 
While the last high spatial resolution image showed delicate and 
exquisite waterbodies with rich spatial local information. Compared 
with the six WD methods, our WaterFormer accurately and completely 
detected the narrow and tiny waterbody areas in the complicated urban 
scenes. Moreover, for the widely distributed waterbodies in the subur
ban scenes, the WaterFormer generated the WD maps with smoother 
boundaries and more veracious. The reason is that the WaterFormer 
obtained superior performance lying in the integration of fine-grained 
spatial features and global contextual semantic information in a hier
archical and collaborative way. 

4.7. Computational efficiency analysis 

The floating-point operations (Flops), number of parameters (Par
ams), and weight parameters size were summarized to explore the 
complexity of the experimental methods, as shown in Fig. 12. Notably, 
our WaterFormer had 45.09G Flops, 32.082 M Params, and 131 MB 
weight parameters size. Among all the methods, although the BANet 
required the smallest numbers of the involved Params, Flops, and weight 
parameters size, its WD performance was modest, which demonstrated 
the low parameter utilization rate. As shown in Fig. 12(a1) -(c1), 
DeepLabv3+, DANet, and CCNet had the highest value of Flops, Params, 
and weight parameters size because of the complicated features encoder 
part in these networks. Besides, the SwinUNet, BANet, and WaterFormer 
spent the numbers of Flops smaller than other DL segmentation 
methods, which also confirmed that our WaterFormer was relatively 
light-weight and uncomplicated in model complexity. Furthermore, 
compared with the BiSeNet and MSAFNet, the WaterFormer had the 
higher value of Flops, Params and weight parameters size, as presented 
in Fig. 12(a2) -(c2). This is due to the use of the dual-stream network and 
the CL-ViT module. 

Additionally, we analyzed the computational consumption of our 
WaterFormer by comparing it with the eight DL segmentation and the 
six WD methods. Fig. 13 and Fig. 14 show the training time and infer
ence time comparison of nine methods on the three datasets. As shown 
in Fig. 13(a1) -(c1), the LinkNet, SwinUNet, and CSwin methods, which 
were a single-branch with the encoding–decoding structure, required 
the lowest mean training time on the three datasets. On the contrary, the 
DeepLabV3+, DANet, and CCNet methods required a longer training 

Table 3 
Quantiaive comparison results of GID, LOVEDA, and MSRWD (BOLD: BEST; 
BOLD-ITALIC: SECOND BEST).  

Methods  GID LoveDA MSRWD  
OA(%)/P(%)/R 
(%)/F1(%)/KC 

OA(%)/P(%)/R 
(%)/F1(%)/KC 

OA(%)/P(%)/R 
(%)/F1(%)/KC 

LinkNet  95.80/96.98/ 
94.03/95.48/ 
0.9156 

94.62/86.13/ 
80.00/82.96/ 
0.7977 

98.28/97.47/ 
94.60/96.01/ 
0.9492 

DeepLabV3+ 93.73/94.53/ 
92.04/93.27/ 
0.8741 

94.51/87.63/ 
77.40/82.20/ 
0.7897 

97.14/95.58/ 
91.15/93.31/ 
0.9150 

DANet  96.18/95.53/ 
96.40/95.97/ 
0.9234 

94.91/87.53/ 
80.37/83.80/ 
0.8079 

97.47/93.70/ 
94.81/94.25/ 
0.9264 

CCNet  96.78/97.85/ 
95.26/96.54/ 
0.9353 

94.59/86.71/ 
79.09/82.72/ 
0.7953 

98.22/97.40/ 
94.39/95.87/ 
0.9474 

SwinUNet  97.35/97.76/ 
96.60/97.18/ 
0.9469 

94.20/88.66/ 
74.02/80.68/ 
0.7731 

98.04/97.14/ 
93.79/95.44/ 
0.9419 

CSwin  97.60/98.47/ 
96.41/97.43/ 
0.9519 

94.38/87.27/ 
76.87/81.74/ 
0.7844 

98.12/96.52/ 
94.83/95.66/ 
0.9447 

BANet  96.96/96.92/ 
96.62/96.77/ 
0.9390 

92.73/82.06/ 
71.14/76.21/ 
0.7195 

97.68/96.33/ 
92.92/94.60/ 
0.9312 

TransFuse  97.78/97.11/ 
98.22/97.66/ 
0.9556 

94.94/91.31/ 
76.38/83.18/ 
0.8024 

98.42/97.79/ 
94.94/96.35/ 
0.9535 

WaterFormer  97.81/98.44/ 
96.89/97.66/ 
0.9560 

95.30/87.71/ 
82.91/85.24/ 
0.8245 

98.62/97.62/ 
96.04/96.83/ 
0.9595  
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time due to the higher complexity of their network architectures by 
utilizing atrous convolutions. Note that, compared with BANet and 
TransFuse, the WaterFormer obtained an average increase of 1.32 h and 
1.35 h for the training times on the LoveDA and MSRWD datasets, 
respectively. The reason might be that the dynamic weighted binary- 
cross-entropy loss, composed of two BCE losses, was employed in the 
WaterFormer, which required more training time. However, for the GID 
dataset, the whole training time is only 21.793 h, comparable to the 
BANet and TransFuse. As presented in Fig. 13(a2) -(c2), except for the 
BiSeNet and MSAFNet, our WaterFormer took the least time to complete 
model training on the three datasets. Moreover, the inference time of all 
methods were shown in Fig. 14(a2) -(c2). The time that our Water
Former generated the WD result map was 39.042 s, 77.541 s, and 
39.106 s on the GID, LoveDA, and MSRWD, respectively. Therefore, the 
WaterFormer achieved a better balance between WD accuracies and 
computational efficiencies. 

4.8. Ablation analysis 

To reveal the effectiveness of the two segmentation branches, the CL- 
ViT module, the SUS module, and the LWA module, this section presents 
several ablation studies. Fig. 15 shows a visualization comparison of the 
ablation studies and Table 5 reports the quantitative WD results. Note 

that, we named the WaterFormer that removed the contextual branch 
and the spatial branch as WaterFormer-S-branch and WaterFormer-C- 
branch, respectively. We named the WaterFormer only with the SUS 
module as WaterFormer-SUS and termed the WaterFormer without the 
LWA module as WaterFormer-SUS-CLViT. Finally, the bilinear up- 
sampling algorithm was replaced with the SUS module in the Water
Former-LWA-CLViT. 

1) Effect of the segmentation branch: The WD experimental results 
of the WaterFormer-S-branch, the WaterFormer-C-branch, and the 
WaterFormer were analyzed. As shown in the second, third, seventh 
columns of Fig. 15, our WaterFormer generated the waterbody heat 
map, extremely consistent with the GT than those of WaterFormer-S- 
branch and WaterFormer-C-branch. 

Compared with the WaterFormer-S-branch and WaterFormer-C- 
branch, our WaterFormer acquired a mean increase of 5.71 %, 2.94 %, 
and 1.29 % for OA, 6.22 %, 11.82 %, and 3.07 % for F1, 11.47 %, 13.38 
%, 3.88 % for KC on the GID, LoveDA, and MSRWD, respectively, as seen 
in TABLE 5. This is because the WaterFormer can accurately and 
completely detect waterbodies with varied shapes and different spatial 
resolutions by integrating fine-grained spatial features and global 
contextual semantic information. 

2) Effect of the CL-ViT module: Fig. 15 presents the influence of the 
CL-ViT module on the performance of the method trained with the GID, 

Fig. 11. Visual analysis of WD results using the MSRWD: (a) Raw image (b) MECNet; (c) MSCENet; (d) MSNANet; (e) BiSeNet; (f) MSAFNet; (g) MSFENet; (h) 
WaterFormer; (i) GT. 
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LoveDA, and MSRWD datasets. The WaterFormer-SUS-CLViT achieved 
the better performance against the WaterFormer-SUS by reducing the 
false alarms and improving the integrity of the small-thin waterbodies, 
thus generating a finer detection map, as shown in the second and sixth 
rows of Fig. 15. The fourth and seventh rows of Fig. 15 show the 
waterbodies surrounded by vegetation and buildings with strong spec
tral reflectivity. Moreover, the WaterFormer-SUS-CLViT generated the 
promising WD maps, closed to the GT. 

As seen in Table 5, the CL-ViT module improved the WD perfor
mance, with an OA increase of 1.03 %, 0.46 %, and 0.35 %, and an F1 
increase of 1.16 %, 1.5 %, and 0.83 %, and a KC increase of 2.08 %, 1.78 
%, and 1.05 % on the GID, LoveDA, and MSRWD, respectively. That is 
due to the CL-ViT module constructed the dependencies between spatial 
and contextual information, thus achieving synergistic complementarity 
of global semantic knowledge and local rich detail information. 

3) Effect of the LWA module: To validate the efficacy of the LWA 

module, an ablation study was performed. As shown in the first, third, 
and eighth rows of Fig. 15, the WD maps were highly consistent with the 
GT, and showed a higher confidence of waterbody pixels in each heat 
map, comparable to the WaterFormer-SUS and WaterFormer-SUS- 
CLViT. 

Table 5 summarizes the quantitative results of the ablation study, in 
terms of OA, F1, and KC. One can observe that the WaterFormer ach
ieved the best performance, i.e., the OA and F1 values reaching 97.81 % 
and 98.62 % for the GID, as well as 97.66 % and 96.83 % for MSRWD, 
respectively. For the WaterFormer-SUS-CLViT, the OA and F1 values 
decreased to 97.65 % and 98.46 % for the GID, and 97.50 % and 96.47 % 
for the MSRWD, respectively. This powerfully proved that the LWA 
module conduced to waterbody semantic feature enhancement while 
preserving feature map spatial details at different levels. However, the 
module degraded the OA and F1 values to 95.30 % and 85.24 %, 
respectively, for the LoveDA dataset. The reason is that the LWA module 
poorly explores the spatial contextual relationships, especially for the 
LoveDA dataset with sub-meter HR-RS images. 

4) Effect of the SUS module: The SUS module generates high- 
resolution waterbody feature maps and high-quality discriminative 
waterbody feature maps in the decoding contextual branch. We tested its 
performance by removing the SUS module from our WaterFormer. It can 
be seen that WaterFormer-LWA-CLViT reduced the false alarms and 
refined the waterbody boundaries, thus the WD results were inconsistent 
with the GT, as presented in the first row to the sixth row of Fig. 15. 

Table 5 demonstrates that the proposed WaterFormer without the 
SUS module obtained an accuracy decrease in OA, F1, and KC on the 
GID, LoveDA, and MSRWD, respectively. Specifically, its OA drops by 
3.18 %, 1.04 %, and 1.28 % on the three datasets, respectively; its F1 
drops by 3.18 %, 2.93 %, and 2.82 %, respectively; and its KC drops by 
6.33 %, 3.57 %, and 3.65 %, respectively. The reason might be that the 
SUS module can further weaken the semantic gap between the contex
tual branch encoder and decoder and eliminate dislocation and 
misalignment of waterbody features. The experimental results indicate 
that the SUS module is a key component in the WaterFormer for the WD 
task. 

5. Conclusion and future work 

This paper presents a coupled Transformer and CNN Network, 
named WaterFormer, to precisely and accurately detect waterbodies 

Table 4 
Quantiaive comparison results of GID, LOVEDA, and MSRWD (BOLD: BEST; 
BOL-ITALIC: SECOND BEST).  

Methods  GID LoveDA MSRWD  
OA(%)/P(%)/R 
(%)/F1(%)/KC 

OA(%)/P(%)/R 
(%)/F1(%)/KC 

OA(%)/P(%)/R 
(%)/F1(%)/KC 

MECNet  95.57/97.69/ 
92.81/95.19/ 
0.9110 

94.45/87.82/ 
76.72/81.89/ 
0.7864 

98.25/98.97/ 
92.98/95.88/ 
0.9477 

MSCENet  96.38/96.16/ 
96.17/96.17/ 
0.9275 

95.19/90.80/ 
78.60/84.26/ 
0.8144 

98.31/97.41/ 
94.82/96.09/ 
0.9502 

MSNANet  91.69/96.64/ 
85.35/90.64/ 
0.8323 

94.29/87.39/ 
76.11/81.36/ 
0.7801 

97.06/96.67/ 
89.64/93.02/ 
0.9117 

BiSeNet  95.32/96.96/ 
92.99/94.93/ 
0.9059 

94.88/87.34/ 
80.33/83.69/ 
0.8066 

97.55/97.70/ 
90.96/94.21/ 
0.9266 

MSAFNet  94.65/99.62/ 
89.00/94.01/ 
0.8922 

95.27/92.51/ 
77.35/84.26/ 
0.8150 

97.46/94.05/ 
94.36/94.20/ 
0.9258 

MSFENet  96.48/95.91/ 
96.65/96.28/ 
0.9294 

95.15/88.27/ 
81.17/84.57/ 
0.8170 

98.36/97.22/ 
95.22/96.21/ 
0.9517 

WaterFormer  97.81/98.44/ 
96.89/97.66/ 
0.9560 

95.30/87.71/ 
82.91/85.24/ 
0.8245 

98.62/97.62/ 
96.04/96.83/ 
0.9595  

Fig. 12. Comparison of the DL and WD model properties: (a) Flops; (b) Params; (c) Weight Parameters Size.  
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from HR-RS images. In the WaterFormer, a dual-stream deep CNN-based 
architecture is employed to acquire high-order and high-quality task- 
aware feature semantics knowledge for generating highly precise water 
maps. By embedding the CL-ViT into the network, the WaterFormer 
learned contextual properties by constructing the long-range depen
dence between the low-order spatial information and high-level se
mantic features. In addition, by adopting the LWA module, WaterFormer 
highlighted the feature channels tightly related to the waterbodies and 
concentrated on the spatial features of waterbodies, while effectively 
suppressing the background noise. Furthermore, by devising the SUS 
module over the feature expression, the WaterFormer generated high- 
resolution and high-quality discriminative representations of feature 

maps. 
To facilitate the WD under different environments, we released a 

highly professional and high-quality MSRWD dataset. Through exten
sive experiments on GID, LoveDA, and MSRWD, we gained a promising 
performance in detecting waterbodies with large variations in size, 
shape, and environment. Comparative experiments are performed with 
the Transformer-based, CNN-based, hybrid-based methods, and the 
specialized waterbody detection methods, the WaterFormer better 
models both spatial scene information and global contextual semantic 
knowledge, thus achieving competitive and advantageous performance 
in WD tasks. 

Notwithstanding the significant advancements achieved through the 

Fig. 13. Training time comparison of the SOTA DL and WD method. (a) GID;(b) LoveDA;(c) MSRWD.  

Fig. 14. Inference time comparison of the SOTA DL and WD method. (a) GID;(b) LoveDA;(c) MSRWD.  
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proposed WaterFormer in this paper, it is important to acknowledge its 
inherent shortcomings in the field of detecting waterbodies from optical 
RS images. Firstly, there is a pressing necessity to reinforce the gener
alization performance of the proposed method to accommodate the 
diverse range of images characterized by low resolutions, temporal 
variations, and large geographical regions. Secondly, advanced WD 
networks will be developed in future research to achieve superior ac
curacy while minimizing time costs. Finally, amidst the multifaceted and 
diverse advancements in RS sensors, a large volume of multimodal and 
heterogeneous data (e.g., SAR and hyperspectral images) can be utilized 
for WD tasks to compensate for the limitations of optical imagery. 

Funding Sources 

This research was partially funded by the National Natural Science 
Foundation of China under Grants No. 41971414 and 42101451, and 
also partially funded by the Emerging Interdisciplinary Project of Cen
tral University of Finance and Economics from China. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

Aroma, R.J., Raimond, K., Estrela, V.V., 2023. A coastal band spectral combination for 
water body extraction using Landsat 8 images. Int. J. Environ. Sci. Technol. https:// 
doi.org/10.1007/s13762-023-05027-z. 

Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q., Wang, M., 2022. Swin-Unet: 
Unet-Like Pure Transformer for Medical Image Segmentation. In: Proceedings of the 
European Conference on Computer Vision (ECCV), pp. 205–218. https://doi.org/ 
10.1007/978-3-031-25066-8_9. 

Chaurasia, A., Culurciello, E., 2017. In: LinkNet: Exploiting Encoder Representations for 
Efficient Semantic Segmentation, in, pp. 1–4. https://doi.org/10.1109/ 
VCIP.2017.8305148. 

Chen, F., Chen, X., Van de Voorde, T., Roberts, D., Jiang, H., Xu, W., 2020. Open water 
detection in urban environments using high spatial resolution remote sensing 
imagery. Remote Sens. Environ. 242 https://doi.org/10.1016/j.rse.2020.111706. 

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-Decoder with 
Atrous Separable Convolution for Semantic Image Segmentation. In: Proceedings of 
the European Conference on Computer Vision (ECCV), pp. 801–818. https://doi.org/ 
10.1007/978-3-030-01234-2_49. 

Demir, I., Koperski, K., Lindenbaum, D., Pang, G., 2018. DeepGlobe 2018: A Challenge to 
Parse the Earth through Satellite Images. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 172–181. 
https://doi.org/10.1109/cvprw.2018.00031. 

Ding, L., Lin, D., Lin, S.F., et al., 2022. Looking Outside the Window: Wide-Context 
Transformer for the Semantic Segmentation of High-Resolution Remote Sensing 

Fig. 15. Visual analysis of the ablation experiments on GID, LoveDA, and MSRWD: (a) Raw image; (b)WaterFormer-S-branch; (c) WaterFormer-C-branch; (d) 
WaterFormer-SUS; (e) WaterFormer-SUS-CLViT; (f) WaterFormer-LWA-CLViT; (g) WaterFormer;(h) GT. 

Table 5 
Quantiaive comparison results of the ablation study on GID, LOVEDA, and 
MSRWD.  

Model GID LoveDA MSRWD 
OA(%)/F1(%)/ 
KC 

OA(%)/F1(%)/ 
KC 

OA(%)/F1(%)/ 
KC 

WaterFormer-S- 
branch 

89.66/88.90/ 
0.7923 

89.99/64.54/ 
0.5889 

96.42/91.61/ 
0.8934 

WaterFormer-C- 
branch 

94.55/93.98/ 
0.8903 

94.74/82.30/ 
0.7925 

98.24/95.92/ 
0.9480 

WaterFormer-SUS 96.62/96.34/ 
0.9321 

95.15/84.47/ 
0.8160 

98.11/95.64/ 
0.9444 

WaterFormer-SUS- 
CLViT 

97.65/97.50/ 
0.9529 

95.61/85.97/ 
0.8338 

98.46/96.47/ 
0.9549 

WaterFormer-LWA- 
CLViT 

94.63/94.48/ 
0.8927 

94.26/82.31/ 
0.7888 

97.34/94.01/ 
0.9230 

WaterFormer 97.81/97.66/ 
0.9560 

95.30/85.24/ 
0.8245 

98.62/96.83/ 
0.9595  

J. Kang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1007/s13762-023-05027-z
https://doi.org/10.1007/s13762-023-05027-z
https://doi.org/10.1007/978-3-031-25066-8_9
https://doi.org/10.1007/978-3-031-25066-8_9
https://doi.org/10.1109/VCIP.2017.8305148
https://doi.org/10.1109/VCIP.2017.8305148
https://doi.org/10.1016/j.rse.2020.111706
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/cvprw.2018.00031


ISPRS Journal of Photogrammetry and Remote Sensing 206 (2023) 222–241

240

Images. IEEE Trans. Geosci. Remote Sens. 60, 1–13. https://doi.org/10.1109/ 
TGRS.2022.3168697. 

Dong, X., Bao, J., Chen, D., Zhang, W., 2022. CSWin Transformer: A General Vision 
Transformer Backbone with Cross-Shaped Windows. In: Proceedings of the IEEE/ 
CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi. 
org/10.1109/cvpr52688.2022.01181. 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., 2021. An image is worth 
16×16 words: Transformers for image recognition at scale. In: Proceedings of the 
International Conference on Learning Representations (ICLR), pp. 1–20. 

Elmi, O., Tourian, M., Sneeuw, N., 2016. Dynamic River Masks from Multi-Temporal 
Satellite Imagery: An Automatic Algorithm Using Graph Cuts Optimization. Remote 
Sens. 8 https://doi.org/10.3390/rs8121005. 

Feng, W., Sui, H., Huang, W., Xu, C., An, K., 2019. Water Body Extraction From Very 
High-Resolution Remote Sensing Imagery Using Deep U-Net and a Superpixel-Based 
Conditional Random Field Model. IEEE Geosci. Remote Sens. Lett. 16, 618–622. 
https://doi.org/10.1109/lgrs.2018.2879492. 

Fu, J., Liu, J., Bao, Y., Tian, H., Fang, Z., Li, Y., Lu, H., 2019. Dual Attention Network for 
Scene Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), pp. 3141–3149. https://doi.org/10.1109/ 
cvpr.2019.00326. 
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