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A B S T R A C T   

Water is a kind of vital natural resource, which acts as the lifeblood of the ecosystem and the energy source for 
the living and production activities of humans. Regularly mapping the conditions of water resources and taking 
effective measures to prevent them from pollutions and shortages are very important and necessary to maintain 
the sustainability of the ecosystem. As a preliminary step for image-based water resource analysis, the complete 
recognition and accurate extraction of water bodies are important prerequisites in many applications. Never-
theless, due to the issues of topology diversities, appearance variabilities, and land cover interferences, there is 
still a large gap to achieve the human-level water bodies interpretation quality. This paper presents a hierarchical 
attentive high-resolution network, abbreviated as WaterHRNet, for extracting water bodies from remote sensing 
imagery. First, by building a multibranch high-resolution feature extractor integrated with global feature se-
mantics aggregation, the WaterHRNet behaves laudably to supply high-quality, strong-semantic feature repre-
sentations. Furthermore, by inlaying an effective feature attention scheme with the comprehensive exploitation 
of both the spatial and channel feature significances, the WaterHRNet is forced to strengthen the semantic- 
determinate, task-aware feature encodings. In addition, by designing a hierarchical processing principle with 
the progressive enhancement of category-attentive feature semantics, the WaterHRNet performs effectively to 
export semantic-discriminative, target-oriented feature representations for precise water body segmentation. The 
WaterHRNet is elaborately verified both quantitatively and qualitatively on three remote sensing datasets. 
Evaluation results show that the WaterHRNet achieves an average precision of 98.44%, average recall of 97.84%, 
average IoU of 96.35%, and average F1-score of 98.14%. Comparative analyses also demonstrate the superior 
performance and excellent feasibility of the WaterHRNet in segmenting water bodies.   

1. Introduction 

Water is an irreplaceably crucial part of the natural resources. Sta-
tistically, about three fourths of the earth surface is covered by water. 
The diversities of waters include inland, coastal, and oceanic water 
bodies, which supply energy and material to industrial productions and 
daily lives, establish pathways for transportation activities, regulate the 
climate, and act as the lifespring of the ecosystem. Caused by the change 
of the global climate, the increase of industrial pollutions, and the im-
pacts of human activities, the surface water bodies are undergoing se-
vere issues with respect to quality and availability, especially the 

freshwater resources, thereby leading to serious destructions on the 
stability and sustainability of the ecosystem. Reasonable exploitation 
and utilization of the water resources are significantly necessary to 
maintain the earth’s water cycles. As well, reducing the consumptions 
and pollutions of the water resources is quite crucial to ensure the sus-
tainable improvement of human society and the balance of the natural 
ecosystem. Therefore, regularly monitoring the changes and conditions 
of the surface water bodies can provide timely evidence to analyze the 
influences of environmental factors and human activities, and direct the 
relevant departments to take effective measures to alleviate the further 
deterioration of the issues. 
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Compared with the traditional manual survey solutions, which are 
inefficient and laborious, remote sensing techniques provide a cost- 
effective and highly-efficient solution to map water bodies in a large 
area. The remote sensing images collected by satellite or airborne sen-
sors constitute the main data source used for water body mapping ap-
plications. The topological structures and spectral properties of water 
bodies can be well recorded and reflected in the remote sensing images. 
As a preliminary step in the process of water body mapping, recognizing 
and extracting water body contents in the remote sensing images play a 
crucial part in a variety of tasks, such as water body change detection 
(Sarp and Ozcelik, 2017), water quality analysis (Chu et al., 2018), and 
water body type categorization (Abid et al., 2021). Specifically, water 
body extraction aims at marking the image contents belonging to the 
water body regions in a per-pixel manner. In the literature, massive ef-
forts have been made to investigate advanced techniques for water body 
extraction on the purpose of either promoting the processing efficiency 
or upgrading the extraction accuracy (Li et al., 2022a). At the early 
stages, water bodies are segmented mainly based on spectral thresh-
olding (Nones, 2021), mathematical morphology techniques (Rishike-
shan and Ramesh, 2018), water indices (Jin et al., 2021), and machine 
learning approaches (Chen et al., 2020). However, the performance of 
these approaches is easily affected by the variations of data sources and 
the changes of test scenarios. As a result, their robustness and univer-
sality are limited to specific cases. Recent advancement of deep learning 
techniques in vision tasks has brought hopeful light to the intelligent 
interpretation of remote sensing images. Accordingly, intensive atten-
tion has been drawn to water body extraction by exploiting effective 
deep network architectures. Nevertheless, due to the challenging issues 
of water bodies including non-rigid and arbitrary topologies, color di-
versities, indeterminate boundaries, size variations (especially the 
small-size water bodies), and complexities of the surface conditions and 
environmental scenarios, there is still a large gap to reach the human- 
level processing quality towards water body extraction. As a matter of 
fact, there is great space for enhancing the extraction accuracy and 
imperative demand for developing advanced solutions to approach the 
objective of high-quality water body extractions. 

In this paper, we construct an advanced hierarchical segmentation 
network architecture for serving water body extraction from remote 
sensing imagery. The architecture involves a multi-resolution backbone 
for semantic-strong feature abstraction, a dual-path feature attention 
module for semantic-significant feature promotion, and a hierarchical 
segmentation head for task-oriented feature emphasis and high-quality 
water body prediction. The proposed model demonstrates excellent 
performance on different water body cases, such as spatial extension 
diversities, texture appearance variations, and self-condition and sur-
rounding scenario changes. The contributions mainly include the 
following. (1) A novel lightweight and powerful feature attention prin-
ciple paralleling a channel-specific attention branch and a spatial- 
specific attention branch is built for promoting the contributions of 
the information-relevant and semantic-important features from both the 
channel and spatial perspectives. Formulated with a different architec-
ture from the existing feature attention mechanisms, the feature se-
mantic encoding quality is significantly improved by suppressing the 
impacts of the task-irrelevant features, enhancing the differences be-
tween the foreground and background features, and attending to the 
features in the foreground regions with a global perspective in both the 
channel and spatial domains. (2) A novel hierarchical segmentation 
scheme cooperated with a semantic-level enhancement module is 
designed for emphasizing the saliencies of the category-aware semantics 
and exporting a high-quality, task-oriented feature representation to 
satisfy the accurate water body extraction. Integrated with the semantic- 
level enhancement module to exploit category-attentive feature se-
mantics, the feature contrast between the background and foreground 
contents is significantly promoted to improve the feature semantic 
encoding quality. Employed by a hierarchical segmentation strategy, the 
segmentation results from the low-resolution feature maps can provide 

important region localization cues to the high-resolution feature maps 
and supervise the segmentation on the high-resolution feature maps to 
obtain accurate and detailed segmentation results. 

2. Related works 

A common characteristic of the deep network architectures is that 
hierarchical feature representations with different scales and semantic 
levels can be directly and effortlessly produced end-to-end scarcely 
requiring too much manual intervention. The output feature encodings 
serve robustly and precisely to portray the inherent properties of the 
semantic targets. As a result, due to the eye-catching success of deep 
network architectures in vision tasks, recent studies have devoted 
positively to conducting water body extraction with deep learning so-
lutions. Generally, most of the existing water body extraction frame-
works were formulated into pixel-level segmentation architectures, 
which can well handle the issues of size variations, non-rigid and arbi-
trary topologies of water bodies. Wang et al. (2020c) constructed a 
convolutional neural network (CNN) with a densely connected pattern 
for water body recognition. The dense connection architecture well 
supported the feature reuse and the network stability with the export of 
higher-quality semantics. Wang et al. (2020a) designed a fully con-
volutional network (FCN) by means of depthwise separable and residual 
convolutions for lake area identification. Similarly, multiscale dense 
connections were also employed to access large-range feature contents. 
The quality-improved feature semantics generated by using dense con-
nections promoted the localization accuracy of the large-area water 
bodies. However, by depending on the high-level small-size feature 
maps to recover the high-resolution prediction maps, they suffered from 
some accuracy degradations in extracting the small-size water bodies 
and determining the tight water body boundaries. Li et al. (2021c) took 
advantage of the spectral and spatial attributes to separate water bodies 
with a DenseNet formulation. In this architecture, feature compression 
and skip connection techniques were applied to boost the feature 
abstraction quality. With the inclusion of spatial cues for boosting se-
mantic differences, the water bodies showing varying colors and 
different contrasts were nicely extracted. However, the correct recog-
nition of small-size water bodies was still unsolved. Wang et al. (2020b) 
trained a multiscale CNN model, which combined the feature semantics 
from multiple scales to form a robust representation for water body 
prediction. The multiscale semantics encoded rich information 
regarding the water body at different resolutions. Zhang et al. (2021b) 
developed a cascaded FCN structure to alleviate the resolution loss issue. 
Worth mentioning, the conditional random field model was connected 
to refine the initial segmentation results. By promoting the feature se-
mantics and details in the high-resolution prediction maps, these models 
performed promisingly in recognizing the small-size water bodies and 
locating the water body boundaries. However, they still behaved un-
stably in the cases of complex environmental scenarios and surface 
conditions of water bodies. To sufficiently investigate the multilevel 
semantics, Duan and Hu (2020) stacked a multiscale refinement CNN 
architecture. In the refinement process, an erasing-attention component 
functioned to augment the feature semantics for scale-wise water body 
prediction. These predictions were eventually integrated to produce the 
refined segmentation output. Differently, Kang et al. (2021) suggested a 
context extractor to exploit multiscale feature contexts aiming at well 
depicting water bodies exhibiting varying forms. To be specific, the 
context information was delineated through multibranch atrous con-
volutions. By comprehensively considering multiscale feature contexts 
for semantic enhancement, the water bodies exhibiting low contrasts 
and heterogeneous surface properties were well segmented. However, 
the segmentation details were slightly coarse-grained, especially in the 
marginal regions. As for Zhang et al. (2021a), the feature attention 
mechanism was cooperated with the atrous convolutions to retrieve 
contextual and semantic-level details. As an alternative for multilevel 
feature fusion, Miao et al. (2018) formulated an encoder-decoder 
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architecture, which directly concatenated the feature semantics of the 
same scale from the encoder and decoder pathways. A high-resolution 
feature map was finally recovered for water body inference. In 
contrast, in the architecture of Yuan et al. (2021), multiscale semantics 
from the encoder pathway were integrated together as the auxiliary 
input to the decoder pathway for the purpose of feature enhancement. 
Xue et al. (2021) introduced a coordinate attention scheme into the 
encoder-decoder architecture, which functioned to highlight the 
important feature semantics from the spatial perspective. The integra-
tion of feature attention mechanisms and the formulation of encoder- 
decoder architectures enforced the models to characterize more task- 
oriented and semantic-stronger features, which enhanced the discrimi-
nations between the water bodies and their surrounding environments, 
thereby improving the extraction accuracy of the water bodies under 
different challenging conditions. However, some very small-size water 
bodies were still failed to be completely extracted. 

Since the widespread use and excellent performance of the U-Net 
architecture in various segmentation issues, it has also been paid 
intensive attention to serve the water body extraction task. Due to the 
recovery of a high-resolution feature map with improved feature se-
mantics and details, the U-Net architecture performed excellently when 
handling the small-size water bodies and the water bodies under 
different scenarios. Qin et al. (2022) designed a deep U-Net formulation 
for extracting small-area water bodies. The contracting route focused on 
abstracting different-level feature semantics and the expanding route 
combined these semantics and recovered a high-quality representation 
for water body segmentation. However, the extraction performance of 
this model differed greatly on the water bodies of different spectral 
properties and surface conditions. Aiming at accelerating the processing 
efficiency and saving the computational overhead, Wang et al. (2021b) 
trained a lightweight architecture based on the MobileNetV2 model. For 
postprocessing, morphological approaches were further applied to 
delete the noise in the exported water body map. As another option, 
Tambe et al. (2021) introduced an inception layer at each stage of the U- 
Net for lightweighting the model size, thereby achieving an alleviation 
on the computation burden. In these ways, both the time and memory 
consumptions were significantly reduced to well meet the real-time 
processing requirements, but at the cost of the extraction accuracy 
degradations due to the quality lowering of the encoded feature se-
mantics. Li et al. (2021a) proposed an improved U-Net structure by 
adding more skip connections for the purpose of boosting the feature 
encoding quality. Specifically, an S-shaped circular connection scheme 
was employed for cross-stage feature fusion. Moreover, deep features 
and handcrafted features were combined to emphasize the water body 
semantics. In He et al. (2021), a self-attention module was mounted on 
the skip connection pathway of the U-Net, which functioned for forcing 
the network to extract task-aware features. This was achieved by pro-
moting the contributions of the foreground features. Likewise, feature 
attention and pyramid modules were also taken into account for feature 
semantic boosting in Li et al. (2021b). By attending to the water body 
regions or enhancing the feature contrasts between the foreground and 
background contents to improve the feature representation quality and 
saliency, the water bodies showing low contrasts, blur boundaries, and 
heterogeneous spectral properties were well recognized and segmented. 
However, the increase of the model complexity led to the decrease of the 
processing efficiency and the increase of the model size. Feng et al. 
(2019) presented a cascaded processing pipeline for water body detec-
tion by combining the U-Net model and the conditional random field 
model. The U-Net pre-labelled the image contents into water bodies and 
the background. Then, the conditional random field model and 
superpixel-based region constraints were cooperated to attain finer 
prediction results. With the postprocessing procedure for region-wise 
semantic grouping, the background contents were effectively sup-
pressed and the water body boundaries were tightly adhered. However, 
due to the superpixel segmentation performance variations on different 
image scenarios, the segmentation details might be affected in the cases 

of complex environmental and surface circumstances. In addition, 
feature pyramid architectures (Li et al., 2019b), capsule networks (Yu 
et al., 2021), DeepLabV3 + models (Li et al., 2019a), self-supervised 
learning, weakly supervised learning, unsupervised learning, and 
transfer learning techniques (Dang and Li, 2021; Li et al., 2022b; Lu 
et al., 2022; Wang et al., 2021a), and multisource geospatial data fusion 
strategies (Kim et al., 2021) were also investigated for tackling water 
body extraction issues. 

Nevertheless, despite the expressive achievements made by the 
advanced deep learning models, there are still some challenges that 
impede the accurate extractions of water bodies with the remote sensing 
images. Typical challenges include limitations in spectral properties, 
variabilities in water body topologies, extensions, and distributions, 
complexities in water body scenarios and surface conditions, and de-
ficiencies in large-scale annotated datasets of water bodies with rich and 
diverse patterns. Specifically, the precise identification of the small-size, 
low-contrast, and blur-boundary water bodies is still a pending issue that 
cannot be well solved by the existing techniques. To cope with the above 
challenges, we propose a hierarchical attentive high-resolution network 
architecture for extracting water bodies based on remote sensing im-
ages. First, by formulating a pixel-level segmentation network archi-
tecture, the proposed model can deal with water bodies of varying 
topologies, extensions, and distributions. Second, by employing a mul-
tibranch multi-resolution network architecture as the feature extractor 
with the maintenance of a high-resolution stream, different-size water 
bodies can be well recognized and extracted, especially the small-size 
water bodies. Third, by integrating a dual-path feature attention mod-
ule for attending to the foreground feature semantics and suppressing 
the impacts of the background feature semantics, the water bodies under 
different environmental and surface conditions can be well differenti-
ated, especially the low-contrast, spectral-heterogeneous, and small-size 
water bodies. Finally, by designing a hierarchical segmentation scheme 
for leveraging the segmentation results from low-resolution feature 
maps to supervise the segmentation on high-resolution feature maps, the 
water body segmentation accuracy and detail are greatly improved, 
especially for the blur boundaries and small-area background contents. 
Nevertheless, adopted by a supervised learning strategy, the proposed 
model still requires large amounts of annotated data for high-quality 
model training. In addition, the extraction performance will be 
degraded in some extremely challenging conditions, such as occlusions. 

3. Methodology 

The overall structure of the designed hierarchical attentive high- 
resolution network for water body extraction (WaterHRNet) is pre-
sented in Fig. 1. To be specific, the WaterHRNet comprises three main 
functional components: the feature extractor, the feature attention 
module, and the segmentation head. The feature extractor is established 
as a multibranch HRNet formulation (Wang et al., 2021c) and serves for 
abstracting target semantics in different feature subspaces. The feature 
attention module inlaid in all branches of the HRNet is used for pro-
moting the produced feature semantics by attending to more task- 
oriented encodings. The segmentation head follows a hierarchical pro-
cessing pattern and functions to successively enhance the feature rep-
resentations with semantic-level constraints, eventually generating a 
high-quality feature map for water body prediction. 

3.1. HRNet feature extractor 

The HRNet architecture is a quite potential and creative design 
philosophy that is suitable and powerful to serve as the feature extrac-
tion backbone. Its novelty and advantage reflect in the exploitation of 
high-level feature semantics in different-resolution subspaces with a 
parallel pattern. Worth mentioning, in order to have a global perspective 
over all the subspaces to strengthen the output feature semantics, in-
formation exchange is constantly taken place among different feature 
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subspaces, eventually providing a set of strong semantics used for 
varying reasoning tasks. Therefore, considering the distinct attributes 
and excellent performance of the HRNet architecture in a broad range of 
vision issues, we also stack the feature extractor with the HRNet 
formulation aiming at supplying high-quality, strong, and task-aware 
feature encodings for more accurately identifying and pixel-wisely 
delineating the water bodies in the remote sensing images. 

As depicted by Fig. 1, the HRNet feature extractor is stacked by four 
convolution branches, each of which hammers at mining target feature 
encodings in a specific subspace with a designed spatial resolution. 
Particularly, from Branch 1 to Branch 4, the spatial resolutions of these 
subspaces are gradually lowered, resulting in a lower and lower reso-
lution feature map top-down. Note that, the sizes of the feature maps in 
each branch are totally the selfsame throughout, which benefits signif-
icantly for reducing the loss of the localization accuracy under each 
spatial resolution. Theoretically speaking, the higher-resolution feature 
semantics are beneficial to the determination of the small-area or 
elongated water bodies, while the lower-resolution feature semantics 
are helpful to the recognition of the large-range water bodies. As a 
result, the advanced parallel structure of the HRNet feature extractor 
perfectly satisfies the characterization and extraction of the water bodies 
with different spatial extensions. In the proposed WaterHRNet, Branch 1 
of the HRNet feature extractor preserves the highest resolution and the 
identical size to the input image. The other branches are gradually 
shrunk in spatial resolutions and sizes by a constant scaling coefficient of 
0.5 to exploit semantic attributes in a lower subspace. At the stage of 
cross-subspace information exchange, the higher-resolution semantics 
in an upper branch are downsampled into the desired resolution in the 
target branch based on strided convolution operations, whereas the 
lower-resolution semantics in a lower branch are upsampled into the 
desired resolution in the target branch based on deconvolution opera-
tions. Afterwards, these resolution-recalibrated semantics are concate-
nated to the directly copied feature semantics in the target branch and 
properly aggregated through a 1 × 1 convolution operation, eventually 
forming a global semantic augmented feature representation in the 
target branch. Precisely benefitted by the cross-subspace information 
exchange, the feature encodings in each branch are constantly refined by 
taking into account the global perspective of the feature semantics under 
all subspaces. At the inference stage, the set of multi-resolution feature 
semantics produced by the four branches will be treated as the semantic 
evidences to the segmentation head for water body prediction. 

3.2. Feature attention module 

To achieve position independence and local property interpretation, 
convolution operations employ a sliding window philosophy to portray 
the feature semantics within a receptive field that is restrained by the 
kernel size. The contextual semantics are gradually enriched as the 
layers go deeper to access larger receptive fields, thereby leading to the 
abstraction of higher-level feature representations. Nevertheless, there 
is still a fly in the ointment by merely relying on the convolutions. To be 
specific, the otherness and relevance of different feature channels, 
especially those reflecting the foreground, are not expressly taken into 
consideration, which behaves imperfectly to exploit strong, discrimi-
native feature encodings. Moreover, the significance and saliency of the 
spatial positions, particularly those occupying the foreground, are not 
intently paid close attention, which performs unsatisfactorily to inves-
tigate robust, task-oriented feature encodings. As effective solutions to 
feature semantic quality promotion, intensive efforts have been recently 
made to cooperate feature attention principles with the convolutions on 
the purpose of explicitly emphasizing the contributions of the useful and 
relevant feature semantics. Thus, aiming at further enhancing the se-
mantic quality of the exported features by the HRNet extractor, we 
construct a novel feature attention module and inlay it into each branch 
of the HRNet extractor at the position before carrying out cross-subspace 
information exchange for supervising feature abstraction. As Fig. 2 il-
lustrates, the attention module comprises dual parts: a channel-specific 
attention branch and a spatial-specific attention branch. These two 
branches function to accentuate the contributions of the important 
feature semantics from the channel and spatial perspectives, respec-
tively. Eventually, the attention module provides a semantic-enhanced 
feature representation by combining the recalibrated feature seman-
tics from these two branches. 

The channel-specific attention branch serves to increase the weights 
of the task-relevant feature channels. In this regard, the input feature 
map with the dimension of H × W × C (H, W, and C mean the height, 
width, and channel number) is first transformed into feature represen-
tations F1 ∈ RH×W×C and Q1 ∈ RH×W×1 via two separate 1 × 1 convo-
lutions. F1 acts as a feature response map, each of whose position reflects 
the task-sensitive feature response corresponding to the same point on 
the input feature map. In other words, a larger value at a position en-
codes a stronger feature response. Q1 is a spatial weighting map, which 
measures the significance of the feature response at a position. That is, 
the feature response associated with a larger weight will be considered 

Fig. 1. Overview of the developed water body extraction network.  
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more. To simplify channel feature relevance investigation, F1 and Q1 
are, respectively, reshaped into a feature matrix V1 ∈ RC×N and a feature 
vector SW ∈ RN×1, where N––H × W. Afterwards, V1 is multiplied with 
SW via matrix multiplication operations to weighted aggregate the 
feature responses in each channel of V1, resulting in a channel infor-
mativeness vector CI ∈ RC×1. Particularly, in order to normalize the 
contributions of the feature responses, the softmax function is operated 
on SW before conducting matrix multiplication. Here, each entry of CI 
reflects the feature informativeness relating to a channel in the input 
feature map. Next, to exploit the interdependencies among different 
channels, two fully-connected layers are further appended to compre-
hensively interpret the channel-wise informativeness. The last layer 
outputs a channel attention vector CA ∈ RC×1, where each element en-
codes the relevance and importance relating to a channel in the input 
feature map. To well characterize the channel feature relevance on the 
same baseline, CA is normalized by the sigmoid function. Eventually, by 
multiplying each attentive factor in CA to all the positions in the corre-
sponding channel of the input feature map, we finalize a semantic- 
enhanced feature representation FC ∈ RH×W×C that expressly upgrades 
the contributions of the informative and relevant channel feature 
semantics. 

The spatial-specific attention branch serves to concentrate more on 
the semantics related to the foreground positions. In this regard, like-
wise, given the input feature map, two separate 1 × 1 convolutions are 
first operated to transform it into feature representations F2 ∈ RH×W×C 

and Q2 ∈ RH×W×C. Specifically, Q2 is further processed via global 
average pooling (GAP) to compress each channel into a single element, 
resulting in a feature vector CW ∈ R1×C. Similarly, F2 is also regarded as a 
feature response map that reflects the task-sensitive feature responses at 
the positions of the input feature map. Whereas, CW behaves as a 
channel weighting map, which measures the strength of the feature 

responses in each channel. It means that the feature channel associated 
with a larger weight will cast more contributions. To simplify spatial 
feature correlation exploitation, F2 is reshaped into a feature matrix V2 
∈ RC×N. Then, V2 is multiplied by CW via matrix multiplication opera-
tions to weighted aggregate the feature responses at each position of V2, 
resulting in a spatial informativeness vector SI ∈ R1×N. Specifically, in 
order to normalize the contributions of the feature responses, CW is 
operated by the softmax function before conducting matrix multiplica-
tion. Here, an element in SI mirrors the feature informativeness relating 
to a position in the input feature map. Next, to mine the correlations 
among different positions, two fully-connected layers are further con-
nected to intently analyze the spatial informativeness with a bottle-neck 
pattern. After reshaping the output of the last layer into a feature map SA 
∈ RH×W×1 along the row direction, we obtain a spatial attention map, 
each of whose elements encodes the relevance and saliency relating to a 
position in the input feature map. To well characterize the spatial 
feature relevance on the same baseline, SA is also normalized by the 
sigmoid function. Finally, by multiplying each attentive factor in SA to 
the corresponding position in each channel of the input feature map, we 
attain a semantic-enhanced feature representation FS ∈ RH×W×C that 
expressly highlights the significance of the salient and task-relevant 
spatial feature semantics. 

As Fig. 2 illustrates, the semantic-recalibrated feature representa-
tions FC and FS from the channel-specific and spatial-specific attention 
branches are ultimately concatenated and rationally integrated through 
a 1 × 1 convolution, finalizing a desired semantic-upgraded feature 
representation that coinstantaneously emphasizes the channel-spatial 
relevant and important feature semantics. Noteworthily, by designing 
a shallow network architecture without too many complex and 
computationally intensive matrix multiplication and convolution oper-
ations, the proposed feature attention module is quite lightweight and 

Fig. 2. Structure of the designed feature attention module.  
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efficient. 

3.3. Segmentation head 

As shown in Fig. 1, the HRNet extractor exports a set of multi- 
resolution feature semantics for supervising the determination of 
water bodies. Theoretically, the lower-resolution feature semantics 
behave excellently to smooth the noise influences, thereby beneficial to 
suppress the interior texture heterogeneities of water bodies. In contrast, 
the higher-resolution feature semantics behave promisingly to depict 
target details, thereby favorable to the delineation of water body 
boundaries. Thus, by organically fusing the multi-resolution feature 
semantics, we formulate the segmentation head as a hierarchical pro-
cessing structure, which progressively optimizes the feature semantics in 
the higher-resolution branches based on the predictions in the lower- 
resolution branches in a bottom-up manner. Concretely, first, a pri-
mary prediction map is inferred using the feature semantics in Branch 4. 
For each branch, the prediction map involves two category-specific 
channels with a softmax output form: one for the water body and the 
other for the background. Then, the prediction map alongside with the 
feature semantics in the current branch are input to a semantic-level 
enhancement module (SLEM) for the generation of category-attentive 
feature semantics. These category-attentive feature semantics are 
further added to the feature semantics in the upper branch to supervise 
feature semantic enhancement. Next, the semantic-level-enhanced fea-
tures are applied to infer a higher-resolution prediction map in the upper 
branch. As detailed in Fig. 1, the above procedure is hierarchically 
repeated bottom-up to progressively enhance the higher-resolution 
feature semantics. Eventually, the semantic-level-enhanced features 
produced in Branch 1 with the highest quality are leveraged to predict 
the final water body segmentation map. 

The SLEM functions to aggregate the contextual semantics of each 
individual category from a global perspective to constitute a unified 
category-oriented semantic encoding. As Fig. 3 depicts, the SLEM 
combines the feature map F and the prediction map P from the current 
branch as the input and exports a contextual category-attentive semantic 
feature map FE. To be specific, the positional semantics in feature map F 
can be organized into two category sets based on the prediction map P as 
follows: 

SF =
{

F[i,j,∗]|argmax
(
P[i,j,∗]

)
= 2

}
(1)  

SB =
{

F[i,j,∗]|argmax
(
P[i,j,∗]

)
= 1

}
(2)  

where 1 and 2 represent the category entry indices of the binary softmax 

outputs of the prediction map corresponding to the background and the 
foreground, respectively; F[i,j,∗] andP[i,j,∗], respectively, refer to the se-
mantic vectors from F and P at position (i, j); SF and SB are the semantic 
vector sets associated with the foreground and the background, 
respectively. Likewise, the positional predictions in prediction map P 
can be also organized into two category sets as follows: 

CF =
{

P[i,j,2]|argmax
(
P[i,j,∗]

)
= 2

}
(3)  

CB =
{

P[i,j,1]|argmax
(
P[i,j,∗]

)
= 1

}
(4)  

where CF and CB are the category confidence sets associated with the 
positions being inferred as the foreground and the background, 
respectively. Next, to constitute a unified category-oriented semantic 
encoding, we comprehensively and globally aggregate the contextual 
semantics in each category as follows: 

RF =
∑

k

eCF[k]

∑
neCF[n]

SF[k] (5)  

RB =
∑

k

eCB[k]

∑
neCB[n]

SB[k] (6)  

where SF[k], SB[k], CF[k], and CB[k] denote the k-th term in the corre-
sponding set; RF and RB are, respectively, the constituted category- 
attentive semantic representations of the foreground and the back-
ground (Fig. 3). Finally, these two semantic representations are used to 
design the semantic feature map FE as follows: 

FE[i,j,∗] =

{
RF, if argmax

(
P[i,j,∗]

)
= 2

RB, if argmax
(
P[i,j,∗]

)
= 1 (7) 

Note that, in order for feature semantic enhancement in the upper 
branch, FE is further upscaled into the twice size and concatenated to the 
feature semantics from the upper branch. Afterwards, a 1 × 1 convo-
lution is operated on the concatenated features to generate a category 
semantic enhanced feature representation in the upper branch. 

3.4. Loss function 

As a matter of fact, the quality of the prediction results in the lower 
branches impacts significantly on the determination of the category- 
attentive feature semantics used for semantic-level feature enhance-
ment, thereby affecting the feature representation performance and the 
segmentation accuracy in the upper branches. Thus, to well supervise 
the optimization of the WaterHRNet towards high-quality water body 
extraction, each of the four branches is bound by a binary ground-truth 
segmentation map, in which the positions marked with labels of 1 
belong to the water body areas and the positions marked with labels of 
0 signify the background areas. The loss function is formulated as the 
weighted summation of the losses from all the branches as follows: 

L =
∑4

i=1
2i− 4( Li

FL + Li
IoU

)
(8)  

where Li
FL is defined by the focal loss (Lin et al., 2017) of the softmax 

predictions corresponding to the labelled ground truths in the i-th 
branch; Li

IoU is formulated by the intersection over union (IoU) loss (Qin 
et al., 2019) between the binary segmentation results and the ground- 
truth segmentation map in the i-th branch. Specifically, considering 
the size discrepancy between the prediction maps in different branches, 
a weighting coefficient of 2i-4 is introduced to balance the contributions 
of the branches to the overall loss of the network. 

Fig. 3. Overview of the semantic-level enhancement module (SLEM).  
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4. Results and discussions 

4.1. Datasets 

For convincingly verifying the capability of the constructed Water-
HRNet in water body extraction issues, confirmatory experiments were 
intensively conducted on the following three datasets: GE-Water (Yu 
et al., 2021), CN-Water (Yu et al., 2021), and LandCover.ai (Bogus-
zewski et al., 2021). The GE-Water dataset was specifically built for 
water body extraction tasks. It consists of 9000 satellite images con-
taining different types and topologies of water bodies collected all 
around the world using the Google Earth engine. These water bodies 
vary greatly in patterns, sizes, shapes, appearances, and environmental 
scenarios. Every image is pixel-wisely annotated by the water body and 
the background ground truths and formatted into 800 × 800 pixels in 
size. The CN-Water dataset is also a water body extraction dataset. The 
images in the CN-Water dataset were captured by the GaoFen-2 satellite 
in China. It includes a total of 1000 images containing water bodies of 
mainly rivers, lakes, ponds, and coastal areas. Every image is cropped 
into 800 × 800 pixels in size and associated with an annotated binary 
label map for depicting the water body regions and the background. In 
contrast, the LandCover.ai dataset collected in Poland was initially 
constructed for land cover classification purposes. In this dataset, the 
land covers were annotated into four categories including building, 
woodland, water, and road. It comprises 33 aerial images having the 
image resolution of about 9000 × 9500 pixels and another 8 aerial 
images having the image resolution of about 4200 × 4700 pixels. In 
order to reasonably examine the performance of the WaterHRNet, the 
land covers in the LandCover.ai dataset were simply categorized into 
two types: water and non-water. Furthermore, to well facilitate model 
construction and examination, each image in this dataset was split into 
image blocks with 800 × 800 pixels based on a 200-pixel overlapping 
size along both directions. Therefore, the final dataset used for perfor-
mance evaluation contains 8368 image samples. To be specific, the 
images in the three datasets are all optical images with red, green, and 
blue color channels. For each dataset, 60 % of the images were randomly 
picked out to form the training set, 5 % of the images were selected at 
random to constitute the validation set, and the other 35 % of the images 
were treated as the test set. 

4.2. Network implementation 

At the model optimization stage, the WaterHRNet was trained using 
the Adam optimizer supervised by the loss function defined in Eq. (8) in 
a cloud computing environment. This platform is packed with ten 16-GB 
GPUs, a 128-GB memory, and a 16-core CPU. During training, each 
training batch is bound with two image samples on each GPU and 
intently processed for 800 epochs towards model parameter optimiza-
tion. The learning rate was initialized to be 0.001 and decayed to 0.0001 
in the last 400 epochs. Specifically, training sample augmentation was 
also taken into account aiming at promoting the model quality. To this 
end, first, a training sample was horizontally flipped to form a duality 
image. Then, this couple of images were, respectively, clockwise rotated 
with a step interval of 90 degrees to form another three images for each. 
As a result, a training sample was eventually augmented into eight 
variants. The augmented training set was further randomly permutated 
and finally leveraged for model construction and optimization. 

4.3. Water body extraction assessment 

To supply quantified and convincing assessments on the water body 
extraction performance, we employed the following four metrics widely 
used in semantic segmentations: precision, recall, IoU, and F1-score. 
These four metrics appraise the model capability from different aspects. 
To be specific, precision focuses on the correctly marked water body 
pixels in the entire predicted water body elements. Recall concerns the 

successfully recognized water body pixels in the annotated ground 
truths. IoU and F1-score assess the overall performance by comprehen-
sively taking into account both the true predictions and the false pre-
dictions. For all metrics, the larger the values, the better the model 
performance. 

For providing more convincing evidence to testify the practical 
feasibility and advanced superiority of the WaterHRNet, a group of 
contrastive analyses were also carried out with some state-of-the-art 
deep network models serving for water body extraction issues. The 
considered models include the multiscale lake water extraction network 
(MSLWENet) (Wang et al., 2020a), the dense-local-feature-compression 
network (DLFC-Net) (Li et al., 2021c), the multiscale refinement 
network (MSR-Net) (Duan and Hu, 2020), the multiscale context 
extractor network (MSCENet) (Kang et al., 2021), the multifeature 
extraction and combination network (MECNet) (Zhang et al., 2021a), 
the improved U-Net (Qin et al., 2022), the deep multifeature water body 
segmentation network (W-Net) (Tambe et al., 2021), and the self- 
attention capsule feature pyramid network (SA-CapsFPN) (Yu et al., 
2021). Amongst the above eight models, different strategies are 
employed to reasonably aggregate the multilevel/multiscale feature 
semantics with the purpose of obtaining strong feature representations 
for high-quality water body inference. Specifically, the MSLWENet, 
DLFC-Net, MSCENet, and MECNet are formulated as the encoder- 
decoder architecture, the improved U-Net and W-Net follow the archi-
tecture of the U-Net, and the MSR-Net and SA-CapsFPN are designed 
with the FPN architecture. In addition, feature attention schemes are 
intently considered in the MSR-Net, MECNet, and SA-CapsFPN for task- 
aware feature semantic promotion purpose. Aiming at conducting 
comparative assessments on the same baseline, all the eight models were 
optimized and examined on the same datasets and on the same cloud 
computing platform used in this paper and coupled with the same 
training data augmentation principle. Quantified evaluations on these 
models also took place using the same precision, recall, IoU, and F1-score 
metrics. 

Tables 1, 2, and 3 record the quantified assessment results obtained 
by the WaterHRNet and the eight compared models on the three test 
datasets. As reported by the statistics in these tables, the WaterHRNet 
demonstrated excellent extraction accuracies on all the three datasets. 
The high precision metric indicated that the water body regions were 
correctly recognized and well separated from the non-water targets, 
thereby leading to a small number of false detections. Moreover, the 
high recall metric indicated that the majority of the water body areas 
were successfully located and accurately segmented from the back-
ground, thereby resulting in a small number of missing detections. The 
promising performance can be also reflected by the high values of the 
IoU and the F1-score metrics. Concretely speaking, on the GE-Water 
dataset, the WaterHRNet obtained the water body identification accu-
racy of 97.72 %, 96.94 %, 94.80 %, and 97.33 % on precision, recall, 
IoU, and F1-score, respectively. As for the CN-Water dataset, the preci-
sion, recall, IoU, and F1-score evaluation results were, respectively, 
98.97 %, 98.86 %, 97.85 %, and 98.91 %. On the LandCover.ai dataset, 
the WaterHRNet achieved a performance of 98.62 %, 97.73 %, 96.41 %, 

Table 1 
Water body extraction performances achieved by different models on the GE- 
Water dataset.  

Model Precision (%) Recall (%) IoU (%) F1-score (%) FPS 

WaterHRNet  97.72  96.94  94.80  97.33 18 
MSLWENet  92.84  92.17  86.05  92.50 17 
DLFC-Net  92.55  91.94  85.60  92.24 20 
MSR-Net  94.86  93.77  89.24  94.31 25 
MSCENet  92.72  92.13  85.92  92.42 19 
MECNet  95.33  94.62  90.43  94.97 20 
Improved U-Net  90.86  90.02  82.55  90.44 12 
W-Net  91.17  90.35  83.08  90.76 10 
SA-CapsFPN  96.65  95.88  92.80  96.26 7  
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and 98.17 %, respectively, on the precision, recall, IoU, and F1-score in 
extracting water body regions. 

As for the compared models, the SA-CapsFPN, MECNet, and MSR-Net 
demonstrated apparently more advanced water body extraction capa-
bilities than the rest five models, whereas the W-Net and improved U- 
Net performed less promisingly amongst all the models. To be specific, 
the performance differences between the best model SA-CapsFPN and 
the worst model improved U-Net with respect to the average IoU and F1- 
score metrics are about 10.67 % and 5.97 %, respectively. For the SA- 
CapsFPN, capsule primitives are used to constitute a feature pyramidal 
structure and feature attention and contextual semantic augmentation 
philosophies are also cooperated for high-quality, target-sensitive 
feature representation characterization, thereby resulting in the dra-
matic performance advantage. The performance gains of the MECNet 
and MSR-Net also benefit from the consideration of multilevel feature 
fusion and the integration of task-aware feature attention. In contrast, by 
using only the pure U-Net architecture, the W-Net and improved U-Net 
demonstrated relatively weaker capabilities, especially when tackling 
the small-area water bodies and the water bodies showing severe 
heterogeneities. 

Comparatively, most of the models behaved the best on the CN- 
Water dataset, while they performed relatively less promisingly on the 
GE-Water dataset. For instance, for the WaterHRNet, the performance 
differences with regard to the IoU and F1-score metrics were about 3.05 
% and 1.58 %, respectively, between the CN-Water and the GE-Water 
datasets. For the SA-CapsFPN, the extraction accuracies with respect 
to the IoU and F1-score metrics on the CN-Water dataset were improved 
by about 3.8 % and 2.01 %, respectively, compared with those on the 
GE-Water dataset. In fact, among the three datasets, the conditions of the 
water bodies in the GE-Water dataset are more complicated and chal-
lenging than the other two datasets, such as severe shadow covers, dim 
boundaries, land cover overlappings, and appearance heterogeneities, 
thereby causing more false alarms due to high semantic similarities and 
missing more true contents due to low semantic certainties. Conse-
quently, the degradations of the precision and the recall metrics inevi-
tably resulted in the performance decline which can be clearly reflected 
by the values of the IoU and the F1-score metrics. 

However, through comparative analyses, we confirmed that the 

proposed WaterHRNet showed significant improvement over all the 
compared models. For instance, the WaterHRNet achieved a perfor-
mance gain by about 2.03 % and 1.07 % with regard to the IoU and F1- 
score metrics in comparison with the SA-CapsFPN. As well, the perfor-
mance superiority is even higher compared with the improved U-Net 
(improved by about 12.7 % and 7.04 % for the IoU and F1-score metrics). 
Therefore, we concluded that the proposed WaterHRNet fitted excel-
lently and performed superiorly in water body extraction tasks. 

Noteworthily, the scenario complexities of the three datasets are also 
embodied in the following conditions: water color diversities, water 
body extension variations, topological structure changes of water 
bodies, surrounding environment variabilities of water bodies, and 
pattern differences of water bodies (e.g., closed water bodies and open 
water bodies). All these tough issues brought remarkable ordeals to 
examine the model performance. Fortunately, the proposed Water-
HRNet handled excellently in extracting the water bodies of varying 
conditions under diverse scenarios. The advanced properties of the 
WaterHRNet benefitted from the following design philosophies. First, by 
stacking an HRNet extractor to abstract feature semantics in different 
subspaces along with the cross-subspace feature integration from a 
global perspective, the WaterHRNet is capable of providing multi- 
resolution, high-quality, and strong-semantic feature representations, 
which perform supportably to identify water bodies of varying condi-
tions. Second, by inlaying a novel feature attention module to emphasize 
the significance of the informative and useful feature semantics by 
comprehensively taking into consideration the channel and spatial 
feature relevance, the WaterHRNet is further boosted to export 
semantic-determinate and task-aware feature representations, which 
support beneficially to recognize true water body regions. In addition, 
by designing a hierarchical segmentation principle to progressively 
enhance the target saliencies with category-attentive semantics, the 
WaterHRNet can finalize finer and finer target-oriented feature repre-
sentations, which behave superiorly to predict more accurate water 
body segmentation maps. Overall, the proposed WaterHRNet achieved 
an average performance of 98.44 %, 97.84 %, 96.35 %, and 98.14 % 
with regard to the precision, recall, IoU, and F1-score on the three 
datasets. 

To conduct visual verifications on the performance of the proposed 
WaterHRNet, Fig. 4 shows a set of water body extraction results from 
these three test datasets. Elaborative observations show that the water 
bodies of different types, varying patterns, diverse topologies, various 
appearances, and multifarious self and surrounding scenarios were 
correctly recognized and nicely segmented with quite small numbers of 
omissions and commissions. Note that, some water bodies are elongated 
or of quite small areas, which occupy a very small portion of the image 
contents. The complete extraction of such water bodies is not easy since 
they lack of sufficient feature presences or lack of salient feature se-
mantics. Moreover, some water bodies exhibit ambiguous boundaries 
with the surrounding environments or covered with shadows at the 
border regions cast by high-rise land covers, which bring challenges to 
the accurate delineation of the water bodies. In addition, the water 
bodies differ greatly in water colors due to diverse water body types or 
caused by the changes in illumination conditions and the use of different 
imaging sensors. The texture diversities of the water bodies form 
another tough issue on the requirement of precise identification. 
Delightfully, benefitting from the HRNet extractor for high-quality 
feature semantic exploitation, the feature attention strategy for task- 
relevant feature semantic promotion, and the hierarchical segmenta-
tion principle for category-attentive feature semantic enhancement, the 
proposed WaterHRNet demonstrated advanced performance on the 
handling of these challenging water body scenarios. However, as 
observed in Fig. 4, some water bodies are partially shielded by overhead 
(see the green boxes marked with #1) or on-surface objects (see the 
green box marked with #2), which damage the integrities of these water 
bodies. As a result, such water body regions were incorrectly treated as 
the background and failed to be inferred. Moreover, some water bodies 

Table 2 
Water body extraction performances achieved by different models on the CN- 
Water dataset.  

Model Precision (%) Recall (%) IoU (%) F1-score (%) FPS 

WaterHRNet  98.97  98.86  97.85  98.91 18 
MSLWENet  94.38  93.87  88.90  94.12 17 
DLFC-Net  94.11  93.72  88.53  93.91 20 
MSR-Net  96.65  95.38  92.33  96.01 25 
MSCENet  94.26  93.84  88.77  94.05 19 
MECNet  97.41  96.53  94.11  96.97 20 
Improved U-Net  91.79  90.94  84.10  91.36 12 
W-Net  92.04  91.22  84.55  91.63 10 
SA-CapsFPN  98.76  97.79  96.60  98.27 7  

Table 3 
Water body extraction performances achieved by different models on the Lan 
dCover.ai dataset.  

Model Precision (%) Recall (%) IoU (%) F1-score (%) FPS 

WaterHRNet  98.62  97.73  96.41  98.17 18 
MSLWENet  94.57  93.64  88.86  94.10 17 
DLFC-Net  94.23  93.42  88.37  93.82 20 
MSR-Net  95.33  94.45  90.27  94.89 25 
MSCENet  94.75  93.66  89.04  94.20 19 
MECNet  96.14  95.30  91.79  95.72 20 
Improved U-Net  91.66  91.32  84.31  91.49 12 
W-Net  91.79  91.45  84.54  91.62 10 
SA-CapsFPN  97.13  96.21  93.55  96.67 7  
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occupy extremely small areas and show extremely small sizes in the 
images (see the green boxes marked with #3). The feature semantics of 
these water bodies were extremely insufficient even in the highest- 
resolution feature map. Therefore, they were not successfully recog-
nized. In addition, some water bodies exhibit extremely low contrasts 
with the surrounding environments (see the green box marked with #4). 
These water bodies had quite similar texture properties to the sur-
rounding scenarios and showed extremely low feature saliencies in the 
feature maps. As a result, they were also incorrectly identified as the 
background. 

Aiming at further visually comparing the water body extraction 

performances between the proposed WaterHRNet and the other models, 
Fig. 5 also presents a set of water body extraction results in some chal-
lenging scenarios. As observed by the green boxes in Fig. 5, some small- 
size, lathy, blur-boundary, low-contrast, or shadow-contaminated water 
bodies were not correctly recognized and extracted by some of the 
compared models, resulting in some omission errors. Moreover, some 
background contents showing similar spectral properties to the water 
bodies were falsely extracted by some models, leading to some com-
mission errors. In contrast, the proposed WaterHRNet performed 
competitively with quite low omission and commission errors in 
handling these challenging water body scenarios. 

Fig. 4. Examples of water body extraction results from the three test datasets. (a) Test images and (b) extracted water bodies. The regions marked by the green boxes 
denote the water bodies that are failed to be correctly extracted due to extremely challenging conditions. Specifically, #1 marks the water bodies shielded by 
overhead objects, #2 marks the water bodies shielded by on-surface objects, #3 marks the water bodies having extremely small sizes, and #4 marks the water bodies 
exhibiting extremely low contrasts with the surrounding environments. 
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Fig. 5. Visual comparisons of water body extraction results obtained by different models. (a) Test images, (b) ground truths, (c) WaterHRNet, (d) MSLWENet, (e) 
DLFC-Net, (f) MSR-Net, (g) MSCENet, (h) MECNet, (i) Improved U-Net, (j) W-Net, and (k) SA-CapsFPN. The regions marked by the green boxes show the water body 
extraction results of different models in some challenging scenarios, including small-size, lathy, blur-boundary, low-contrast, and shadow-contaminated water bodies. 
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To further evaluate the processing efficiencies of the WaterHRNet 
and the eight compared models, the frames per second (FPS) indicator 
was employed for conducting computational performance comparisons. 
The FPS indicator was defined as the number of image frames being 
successfully processed each second. At the test stage, the execution time 
on each dataset was recorded for each of the models to compute the FPS 
indicator. As reported in Tables 1, 2, and 3, given the input images with 
800 × 800 pixels in size on each of the three datasets, the WaterHRNet 
achieved a processing efficiency of about 18 FPS, which behaved almost 
equally-matched with the MSCENet model. Comparatively, the MSR-Net 
achieved the fastest processing efficiency of about 25 FPS due to the 
lightweight network architecture, whereas the SA-CapsFPN processed 
less efficiently with an FPS of about 7 caused by the dynamic routing 
process. Through computational performance evaluations, we 
concluded that the WaterHRNet behaved promisingly with acceptable 
processing efficiency in view of the superior water body extraction 
accuracies. 

4.4. Ablation studies 

In the proposed WaterHRNet, the dual-path feature attention module 
and the hierarchical segmentation scheme contributed positively and 
significantly to the enhancement of the feature encoding quality and the 
quality of the extracted water bodies. The dual-path feature attention 
module served to emphasize the saliencies of the task-oriented and 
semantic-important features in both the channel and spatial domains to 
enhance the feature representation quality. The hierarchical segmenta-
tion scheme functioned to exploit category-attentive feature semantics 
to augment the feature difference between the foreground and back-
ground contents and to employ region localization cues to improve the 
segmentation accuracy and detail. As ablation studies, we further 
examined the advanced superiorities of these two components to the 
performance promotions of the water body extraction task. 

First, we evaluated the contribution of the dual-path feature atten-
tion module to the performance gain of the WaterHRNet. To this end, we 
removed all the feature attention modules from the HRNet feature 
extractor to cancel the feature semantic recalibration mechanism. The 
modified architecture was termed as WaterHRNet-N. Tables 4, 5, and 6 
record the water body extraction performances obtained by the modi-
fied architecture on the three test datasets. Likewise, the precision, 
recall, IoU, and F1-score metrics were also adopted for quantitative an-
alyses and comparisons. As reflected in these tables, by embedding no 
feature attention modules for feature semantic enhancement, the 
WaterHRNet-N performed less promisingly with significant accuracy 
declines on all the three datasets compared with the WaterHRNet. This is 
because, without the feature attention module to focus on the infor-
mative channel features and the task-relevant spatial features, the rep-
resentation quality of the extracted feature maps from the HRNet feature 
extractor were weakened and lowered, thereby resulting in the perfor-
mance degradation on the cases of challenging conditions, such as low- 
contrast and spectral-heterogeneous water bodies. On average, the 
extraction accuracies of the WaterHRNet-N with regard to the IoU and 
F1-score metrics were declined by about 6.29 % and 3.37 %, respec-
tively, compared with those of the WaterHRNet. In conclusion, we 
confirmed that the dual-path feature attention module contributed 

significantly to the performance gain of the WaterHRNet. 
Second, we evaluated the contribution of the hierarchical segmen-

tation scheme to the performance gain of the WaterHRNet. To be spe-
cific, first, we removed the SLEM along with the hierarchical 
segmentation structure and directly applied the feature map generated 
in the highest-resolution branch (Branch 1) of the HRNet feature 
extractor to conduct water body extraction. The modified architecture 
was termed as WaterHRNet-H. Second, as a simplified version of the 
hierarchical segmentation scheme, we removed only the SLEM and 
directly concatenated the upsampled prediction map in the lower- 
resolution branch to the feature map in the upper higher-resolution 
branch to conduct category-attentive feature augmentation. The modi-
fied architecture was termed as WaterHRNet-P. The water body 
extraction performances obtained by these modified architectures on the 
three test datasets are reported in Tables 4, 5, and 6. As reflected in these 
tables, without the hierarchical segmentation scheme, the WaterHRNet- 
H showed significantly lower extraction accuracies than the Water-
HRNet on all the three test datasets. The reason is that, by exploiting no 
category-attentive feature semantics to promote the contrasts between 
the foreground and background feature representations, the quality of 
the output feature map used for water body prediction was not further 
augmented, thereby leading to the performance decline in some chal-
lenging scenarios, such as blur-boundary and texture-inconsistent water 
bodies. On average, the extraction accuracies of the WaterHRNet-H in 
terms of the IoU and F1-score metrics were degraded by about 2.13 % 
and 1.12 %, respectively, compared with those of the WaterHRNet. Note 
that, the WaterHRNet-P showed better extraction performances than the 
WaterHRNet-H. It proved that the inclusion of the segmentation cues 
from lower-resolution branches to supervise the segmentation in the 
higher-resolution branches was very beneficial to provide valuable 
localization evidences to upgrade the segmentation accuracy and detail. 
In conclusion, we confirmed that the hierarchical segmentation scheme 
contributed positively to the performance gain of the WaterHRNet. 

As the last set of ablation experiments, we removed all the feature 
attention modules from the HRNet feature extractor to cancel the feature 
semantic recalibration mechanism and removed the hierarchical seg-
mentation structure along with the SLEM from the segmentation head to 
cancel the category-attentive feature semantic augmentation mecha-
nism. The modified architecture was termed as WaterHRNet-S. As 
shown by the water body extraction performances in Tables 4, 5, and 6, 
without the feature attention module and the hierarchical segmentation 
scheme for feature semantic promotions, the water body extraction ac-
curacies of the WaterHRNet-S declined significantly on all the three test 
datasets compared with those of the WaterHRNet. To be specific, the 

Table 4 
Water body extraction performances achieved by different modified architec-
tures on the GE-Water dataset.  

Model Precision (%) Recall (%) IoU (%) F1-score (%) FPS 

WaterHRNet  97.72  96.94  94.80  97.33 18 
WaterHRNet-N  94.27  93.31  88.30  93.79 21 
WaterHRNet-H  96.55  95.76  92.59  96.15 19 
WaterHRNet-P  96.84  96.03  93.11  96.43 18 
WaterHRNet-S  92.83  92.12  86.00  92.47 22  

Table 5 
Water body extraction performances achieved by different modified architec-
tures on the CN-Water dataset.  

Model Precision (%) Recall (%) IoU (%) F1-score (%) FPS 

WaterHRNet  98.97  98.86  97.85  98.91 18 
WaterHRNet-N  96.14  95.22  91.71  95.68 21 
WaterHRNet-H  98.62  97.66  96.34  98.14 19 
WaterHRNet-P  98.79  97.87  96.71  98.33 18 
WaterHRNet-S  94.29  93.94  88.88  94.11 22  

Table 6 
Water body extraction performances achieved by different modified architec-
tures on the LandCover.ai dataset.  

Model Precision (%) Recall (%) IoU (%) F1-score (%) FPS 

WaterHRNet  98.62  97.73  96.41  98.17 18 
WaterHRNet-N  95.32  94.36  90.18  94.84 21 
WaterHRNet-H  97.21  96.33  93.74  96.77 19 
WaterHRNet-P  97.76  96.82  94.72  97.29 18 
WaterHRNet-S  94.08  93.41  88.22  93.74 22  
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average extraction accuracies of the WaterHRNet-S with respect to the 
IoU and F1-score metrics were declined by about 8.65 % and 4.70 %, 
respectively, compared with those of the WaterHRNet. In conclusion, we 
confirmed that the combination of the feature attention module and the 
hierarchical segmentation scheme contributed significantly and posi-
tively to the performance gain of the WaterHRNet. 

At the test stage, the execution time of each of the modified archi-
tectures was also recorded to evaluate their computational perfor-
mances. Likewise, the FPS indicator was also employed for reflecting the 
processing efficiency of each of the modified architectures. As shown by 
the values of the FPS indicator in Tables 4, 5, and 6, most of the modified 
architectures behaved relatively more efficiently than the WaterHRNet 
due to the simplifications of some architecture components. Notewor-
thily, the WaterHRNet-S achieved a higher FPS indicator than the 
WaterHRNet-N. Similarly, the WaterHRNet-H achieved a higher FPS 
indicator than the WaterHRNet-P. 

5. Conclusion 

This paper has designed a high-performance fully convolutional hi-
erarchical architecture, abbreviated as WaterHRNet, for water body 
extraction issues. The WaterHRNet involved three functional units: a 
feature extractor, a feature attention module, and a segmentation head. 
Specially, assembled with an HRNet formulation assisted by cross- 
subspace feature semantic augmentation, the WaterHRNet can provide 
high-quality, strong-semantic feature abstractions, which support 
significantly to handle water bodies under diverse scenarios. Moreover, 
integrated with a powerful feature attention module by investigating 
spatial and channel feature importance, the WaterHRNet can attend to 
the contributions of the semantic-relevant, task-oriented feature 
encodings, which favor positively to separate water bodies from the 
complex environments. In addition, designed with a hierarchical seg-
mentation scheme by considering category-attentive feature semantics 
in different subspaces, the WaterHRNet can finalize a semantic-salient, 
target-sensitive feature representation, which performs effectively to 
attain accurate water body segmentations. The proposed WaterHRNet 
has been elaborately verified and quantitatively analyzed on three 
datasets. Experimental analyses demonstrated that the WaterHRNet 
behaved excellently and competitively with an average precision of 
98.44 %, average recall of 97.84 %, average IoU of 96.35 %, and average 
F1-score of 98.14 %. Comparative tests also proved the practical feasi-
bility and advanced superiority of the WaterHRNet in water body 
extraction tasks. Since there are still some limitations in the proposed 
WaterHRNet, which impede the accurate localization and segmentation 
of the water bodies in different-scenario remote sensing images, in our 
future works, we will explore new advanced techniques to further 
improve the water body extraction accuracy. To be specific, first, we will 
investigate super-resolution techniques to enhance the extraction qual-
ity of the extremely small-size and lathy water bodies. Second, we will 
investigate effective spatial context characterization strategies to pro-
mote the extraction integrity of the occluded water body regions. 
Finally, we will investigate weakly-supervised or few-shot learning ar-
chitectures to alleviate the requirement of large-amount annotated 
samples for model training. 
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