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A B S T R A C T   

Semantic segmentation of large-scale mobile laser scanning (MLS) point clouds is essential for urban scene 
understanding. However, most of the existing semantic segmentation methods require a large quantity of labeled 
data, which are labor-intensive and time-consuming. To this end, we propose a multi-branch weakly supervised 
learning network (WSPointNet) to solve this challenge. Our method includes a basic weakly supervised frame
work and a multi-branch weakly supervised module. With input point clouds and few labels, the basic weakly 
supervised framework outputs the prediction values of the input point clouds and the underlying supervised 
signals of the whole network. Next, the multi-branch weakly supervised module explores the potential infor
mation of the unlabeled and labeled points while preventing model over-fitting. Concretely, the module includes 
an ensemble prediction constraint branch, a contrast-guided entropy regularization branch, and an adaptive 
pseudo-label learning branch. The ensemble prediction constraint branch aims to enhance the prediction stability 
of the point cloud. The contrast-guided entropy regularization branch is proposed to prevent model over-fitting 
by comparing the ensemble prediction labels with the current prediction labels. The adaptive pseudo-label 
learning branch provides efficient and adaptive supervised signals for model training by the consistency cost 
and ensemble prediction. Extensive experiments conducted on two MLS benchmarks showed that our 
WSPointNet achieved a promising semantic segmentation performance with sparse annotated points. For the 
public Toronto3D dataset, with only 0.1% labeled points, our WSPointNet obtained an overall accuracy of 
96.76% and a mIoU of 78.96%, which outperformed most of comparative fully supervised methods.   

1. Introduction 

Mobile laser scanning (MLS) point clouds, due to the characteristics 
of large scale, high density, accurate geo-reference, and fine-grained 
three-dimensional (3D) view of objects and surroundings, have been 
employed in a wide range of urban applications, such as high-definition 
(HD) mapping, transportation infrastructure management and in
ventory, 3D model reconstruction, and autonomous driving (Han et al., 
2021; Tao et al., 2020; Luo et al., 2020). Although many efforts have 
been made to efficiently and effectively process discrete, irregularly 
distributed, and severely occluded MLS point clouds, it is still a 

challenge to accurately identify typical objects in complex road envi
ronments and assign a semantic label to each point (Han et al., 2021; 
Liang et al., 2021). 

In recent years, deep learning, which has received much attention in 
photogrammetry and remote sensing, has shown great potential for 3D 
point cloud data processing (Guo et al., 2021; Luo et al., 2022). For 
example, PointNet, initially proposed by Qi et al. (2017a), directly 
performed semantic segmentation on point clouds. Subsequently, 
inspired by the PointNet model, more relevant frameworks were 
developed for point cloud semantic segmentation (Qi et al., 2017b; 
Thomas et al., 2019; Wang et al., 2019a; Hu et al., 2020). Although the 
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aforementioned approaches obtained state-of-the-art performances on 
different public benchmark datasets, they all relied on a large quantity of 
qualified annotated data for training. Notably, labeling voluminous MLS 
point clouds in complicated scenarios is very time-consuming and labor- 
intensive (Luo et al., 2018). 

Weakly supervised learning (WSL) methods have been increasingly 
developed to effectively classify MLS point clouds into different classes 
of interest with fewer labeled samples (Zhang et al., 2021b). Xu and Lee 
(2020) proposed a multi-branch WSL method, which, by using 10 % 
labeled points for training, achieved a comparable point cloud semantic 
segmentation performance to most fully supervised methods. However, 
labeling 10 % points of a point cloud is still a heavy workload for MLS 
point clouds. To implicitly increase the amount of available supervised 
signals, Hu et al. (2021) proposed a semantic query network (SQN), 
which investigated sparse labels and semantic similarities between 
neighboring points. Although the SQN method achieved competitive 
point cloud semantic segmentation accuracies with only 0.1 % points 
labeled from the entire point cloud, it still inadequately explored the 
informative features of all unlabeled points. Wang and Yao (2022) 
investigated the features of unlabeled points by exploiting ensemble 
prediction constraint, entropy regularization, and online soft pseudo- 
labeling. Although this method achieved desirable semantic segmenta
tion performance on airborne laser scanning (ALS) datasets with 0.1 % 
labeled points, it suffered from the following issues: 1) the overlaps of 
predicted classes were penalized by minimizing the entropy values of all 
unlabeled points, which led to overconfidence predictions, i.e. model 
over-fitting, and poor point cloud semantic segmentation performance; 
2) the weight of a pseudo-label was quantified by an entropy value, 
which only indicated the degree of uncertainty in the current pre
dictions, and was unable to solve the model over-fitting issue. 

To fully utilize the potential information of unlabeled points while 
avoiding the aforementioned problems, we propose a multi-branch 
weakly supervised module, consisting of an ensemble prediction 
constraint (EPC) branch, a contrast-guided entropy regularization (CG- 
ER) branch, and an adaptive pseudo-label learning (A-PL) branch. The 
EPC (Wang and Yao, 2022) branch aims to improve the prediction sta
bility of point clouds by generating ensemble predictions (i.e., com
parison samples) and minimizing consistency costs (i.e. the variances 
between the ensemble prediction distributions and the current predic
tion distributions). The CG-ER branch divides unlabeled points into 
confidence and non-confidence prediction point sets by contrasting the 
ensemble prediction labels with the current prediction labels. Corre
spondingly, entropy maximization is performed on the non-confidence 
prediction point sets to prevent from model over-fitting. Finally, the 
A-PL branch calculates the pseudo-label weights of the unlabeled points 
via the consistency cost, ensuring that the network focuses more on the 
confidence prediction points with high pseudo-label weights and ulti
mately augments more supervised signals for model training while 
preventing from model over-fitting. In addition, the RandLA-Net is taken 
as the basic weakly supervised framework, on which feature extraction 
and point cloud prediction are performed to provide underlying super
vised signals for model training. Therefore, we integrate the basic 
weakly supervised framework with the multi-branch weakly supervised 
module for MLS point cloud semantic segmentation, terming the 
network as WSPointNet in this study. 

Our major contributions can be summarized below:  

• The WSPointNet, a network that integrates a RandLA-Net framework 
and a multi-branch weakly supervised module, is proposed for large- 
scale MLS point cloud semantic segmentation tasks with sparse and 
randomly-sampled labeled points, achieving a competitive point 
cloud semantic segmentation accuracy over supervised methods.  

• A multi-branch weakly supervised module, which consists of an 
ensemble prediction constraint approach, a contrast-guided entropy 
regularization approach, and an adaptive pseudo-label learning 
approach, is proposed for fully exploring the potential information of 

unlabeled points while preventing from model over-fitting, and can 
be designed as a plug-in for flexible integration into other main
stream frameworks. 

The remainder of the paper is organized as follows. In Section 2, we 
systematically review fully supervised and weakly supervised deep 
learning methods for point cloud semantic segmentation. The proposed 
method is completely explained in Section 3. Section 4 presents two MLS 
datasets, related experiments, and experimental analyses to validate the 
effectiveness of the proposed method. In Section 5, the concluding re
marks are summarized and the suggested future works are presented. 

2. Related work 

2.1. Semantic segmentation of point clouds 

In contrast of traditional point cloud semantic segmentation methods 
that relied mainly on manually designed features, deep learning-based 
semantic segmentation methods have made an increasing number of 
advancements (Guo et al., 2021). Early deep learning networks required 
a regular input data format, such as images (Feng et al., 2018; Boulch 
et al., 2018) or voxels (Wang et al., 2018; Meng et al., 2019). Therefore, 
data conversion was an essential prerequisite for processing irregular, 
discrete, and unstructured raw point clouds, resulting in a loss of 3D 
features and an increase of memory redundancy. 

PointNet, a pioneering network, was designed to directly process 
point clouds (Qi et al., 2017a). The PointNet used multi-layer perceptron 
(MLP) and max-pooling operations to extract point-wise and global 
features for point cloud semantic segmentation. Although the PointNet 
achieved high computational efficiency, it was incapable of capturing 
local features of a point cloud, leading to ineffective semantic segmen
tation in complex scenarios. PointNet++ (Qi et al., 2017b), which was 
then developed as an improved PointNet framework, encoded multi- 
scale features by a hierarchical network structure and extracted local 
features from neighboring points. Inspired by the PointNet and 
PointNet++, different local feature extraction strategies were adopted 
to improve point cloud semantic segmentation accuracies, including 
neighborhood feature pooling in SoNet (Li et al., 2018) and PointWeb 
(Zhao et al., 2019), graph convolutions in DGCNN (Wang et al., 2019b) 
and GAN (Wang et al., 2019a), kernel function in KPConv (Thomas 
et al., 2019), PointConv(Wu et al., 2019), and A-CNN (Komarichev et al., 
2019). 

Although the abovementioned approaches have achieved great suc
cesses in point cloud semantic segmentation and object recognition, 
most of them were capable of dealing with only small-scale point clouds. 
However, large-scale point clouds were often segmented into a set of 
small-scale point blocks via blocking operations, leading to an increase 
of point cloud pre-processing time and damages in geometrical 
completeness (Du et al., 2021). RandLA-Net, proposed by Hu et al. 
(2020), employed a computation and memory efficient random sam
pling strategy for point cloud down-sampling and a point cloud local 
feature aggregation (LFA) module for increasing the point receptive 
field, which contributed to the interpretation of large-scale point clouds. 
Although these methods achieved desirable semantic segmentation 
performances on different publicly-available benchmarks, they all relied 
heavily on a large quantity of high-quality labels for training. However, 
a point cloud semantic annotation task is very laborious and time- 
consuming, especially for a large data volume of MLS point clouds in 
complex scenarios. Therefore, to overcome the deficiency of labeling 
point clouds, weakly supervised semantic learning methods that rely on 
only a small quantity of annotated points have gained much attention. 

2.2. Weakly-supervised semantic segmentation 

In terms of annotation type, weakly supervised learning approaches 
are generally grouped into two categories: limited indirect labeling and 
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limited point-level labeling. The former converts a point cloud into 
images (Wang et al., 2020), sub-clouds (Wei et al., 2020), or segments 
(Tao et al., 2020) before performing labeling operations. Specifically, 
Wang et al. (2020) transformed a point cloud into 2D images at different 
viewpoints, and then labeled and input the images into a deep graph 
convolutional network for point cloud semantic segmentation. Wei et al. 
(2020) first annotated subcloud-level labels, and then input them into a 
multi-path region mining module (MPRM) to yield pseudo-labels for 
point cloud semantic segmentation. Tao et al. (2020) generated pseudo- 
labels by using a Segmented Grouping (SegGroup) network and a limited 
segment-level point cloud labeling method. All of these methods 
required a pre-processing procedure for data annotation. Although these 
data annotation methods reduce the labeling workload without notice
ably deteriorating point cloud semantic segmentation accuracies, they 
are still time-consuming and costly for large-scale MLS data. 

The limited point-level labeling approaches train the models with 
only a limited number of semantically labeled points. Zhang et al. 
(2021a) generated pseudo-labels by pre-training the model in Lab color 
space and then fine-tuned the pre-trained model by sparsely labeled 
points. Xie et al. (2020) utilized sparsely labeled points to fine-tune the 
pre-trained model generated by a PointInfoNCE loss, which encouraged 
consistently distributed positive point-pairs and penalized negative 
point-pairs for self-supervised pre-training. Additionally, Hou et al. 
(2021) first employed contrastive scene context to obtain multiple re
gions of contrast loss for model training, and actively fine-tuned the 
model with sparsely labeled points. Although the aforementioned 
methods performed point cloud semantic segmentation tasks without 
data conversion, they all required point clouds for pre-training. How
ever, the point cloud pre-training requires sufficient data sources and 
extra training time, which negatively affects the applicability of these 
semantic segmentation methods. 

Hu et al. (2021) proposed an SQN network to increase the amount of 
available supervised signals for point cloud semantic segmentation with 
only sparsely labeled points. However, this method under-utilized the 
features of all unlabeled points, resulting in a less accurate character
ization of all the class features. To fully exploit the features of all un
labeled points, multi-branch weakly supervised methods were 
developed (Jiang et al. 2021; Wang and Yao, 2022; Xu and Lee, 2020; 
Zhang et al., 2021b). Xu and Lee (2020) first employed incomplete su
pervision with sparsely labeled points to provide the underlying super
vised signals for model training, and fully leveraged the features of 
unlabeled points through inaccurate supervised, self-supervised, and 
smoothing constrained branches. Jiang et al. (2021) proposed a contrast 
loss guided by unlabeled point information to improve model general
ization and feature representation in a weakly supervised manner. 
Among them, the self-supervised branch was built on the augmented 
samples generated by a rigid random transformation of training points. 
To generate more effectively augmented samples, Zhang et al. (2021b) 
used a perturbation branch, including rigid transformation and feature 
attention, to enforce the consistency constraint. In addition, an incom
plete supervision module and a context-aware module were developed 
to train the model with the features of labeled and unlabeled points. 
However, the consistency constraint by augmenting raw training points 
reduced network training efficiency and increased memory burden. 
Subsequently, Wang and Yao (2022) proposed an ensemble prediction 
constraint to improve the prediction stability of point clouds by con
straining the variances between the ensemble prediction values and the 
current prediction values. The process of generating ensemble pre
dictions was not involved in network training, and the two predictions, i. 
e., the ensemble prediction and the current prediction, were generated 
in one forward propagation, which resulted in higher training efficiency, 
compared with the augmented sample approaches. In addition, entropy 
minimization was used to punish the predicted class overlaps for 
improving the confidence of point predictions. To address pseudo-label 
noise and low training efficiency in the traditional pseudo-label learning 
methods (Tao et al., 2020; Wei et al., 2020; Zhang et al., 2021a), Wang 

and Yao (2022) proposed an online soft pseudo-label strategy, which 
extended supervised sources in an efficient and non-parametric manner. 
Although the method achieved the desired semantic segmentation per
formance on ALS datasets, it still suffered from model over-fitting caused 
by minimizing the entropy values of all unlabeled points and using only 
the current predicted entropy values as pseudo-label weights. 

3. Method 

The WSPointNet is proposed to fully exploit the informative features 
of both sparsely labeled points and unlabeled points for semantic seg
mentation of large-scale MLS point clouds. Fig. 1 shows the pipeline of 
our WSPointNet, which consists of two main components: a basic weakly 
supervised framework, consisting of the backbone network and an 
incomplete supervision branch, and a multi-branch weakly supervised 
module, consisting of an ensemble prediction constraint branch, a 
contrast-guided entropy regularization branch, and an adaptive pseudo- 
label learning branch. 

As shown in Fig. 1, the input data is first fed into the backbone 
network to extract the features of points and obtain their predicted 
probability distributions, referred to as the prediction distributions in 
this study. Then, ensemble predictions, i.e., the comparison samples 
obtained by recording the point cloud prediction distributions during 
training, are then input into different branches along with the current 
predictions to calculate the total loss. Specifically, the current prediction 
distributions of labeled points are fed into the incomplete supervision 
branch to calculate cross-entropy loss, which provides our network with 
underlying supervised signals. From unlabeled points, the EPC branch is 
used to improve the prediction stability of point clouds. The CG-ER 
branch guides the entropy regularization by contrasting the ensemble 
prediction labels with the current prediction labels. Points with incon
sistent results are entropy-maximized to increase their uncertainties and 
prevent from model over-fitting. The A-PL branch provides additional 
and adaptive supervised signals for model training by calculating the 
pseudo-label weights of unlabeled points regarding the consistency cost. 
Finally, the losses of the aforementioned four branches are combined to 
obtain a total loss function for network training. The proposed 
WSPointNet will be detailed in the following sub-sections. 

3.1. Basic weakly supervised framework 

The basic weakly supervised framework, including the backbone 
network and an incomplete supervised branch, aims to provide salient 
features and underlying supervised signals. To obtain the salient and 
abstractive features, we use the RandLA-Net as our backbone network. 
Fig. 2 shows the RandLA-Net, which is a typical encoder-decoder ar
chitecture (Hu et al., 2020). The encoder contains random sampling (RS) 
and local feature aggregation (LFA) modules. The decoder is composed 
of up-sampling and MLP layers. Finally, the fully connected layers are 
used for point cloud classification. The RandLA-Net network obtains the 
effective features and the predicted distributions of input points. To 
provide the underlying supervised signals as well as reducing the effect 
of category imbalance, we apply a smoother square-root weighted cross- 
entropy loss function to calculate the loss of the labeled points, i.e., the 
incomplete supervised loss Lse, which is calculated as follows: 

Wsqrt =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Nc
∑K

i = 1
1
Ni

√ (1)  

Lse = −
1
|Pl|

∑|Pl |

i
Wsqrt,i

∑K

c
yiclogpic (2)  

where Wsqrt is the class weight. Nc is the number of points labeled as class 
c. Pl is the set of labeled points. |⋅| is the set cardinality. K is the number 
of classes. pic and yic are the prediction label and ground-truth label of 
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Fig. 1. The pipeline of the WSPointNet.  

Fig. 2. Illustration of the RandLA-Net.  

Fig. 3. Illustration of the EPC branch. (pcurrent is the current prediction distributions. pensemble is the ensemble prediction distributions. N1, N2, N3, and Nc are the 1st, 
2nd, 3rd, and current input data. Pi is an overlap point of the four input data.). 
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point Pi, respectively. Wsqrt,i is the class weight of point Pi. 

3.2. Multi-branch weakly supervised module 

The proposed multi-branch weakly supervised module aims to fully 
utilize the informative features of unlabeled points while preventing the 
model from over-fitting. This module includes three branches, i.e., an 
ensemble prediction constraint branch, a contrast-guided entropy reg
ularization branch, and an adaptive pseudo-label learning branch, each 
of which will be explained in detail. 

3.2.1. Ensemble prediction constraint branch 
To improve the prediction stability, the ensemble prediction 

constraint (EPC) branch is employed to obtain comparison predictions 
and minimize the variances between the current prediction distributions 
and the comparison prediction distributions. Since the inputs of the 
RandLA-Net are random and largely overlapped, an exponential moving 
average (EMA) method (Laine and Aila, 2017) is adopted to record each 
prediction of the overlapped points and obtain comparison samples, 
which is called ensemble prediction. As shown in Fig. 3, assuming that 
there are four input data, (N1, N2, N3, and Nc, where Nc represents the 
current input data). An overlap point Pi of the four inputs (rendered by 
the red color in Fig. 3) generates four prediction distributions with 
different global features. After assigning the first prediction distribution 
pN1 of point Pi as the ensemble prediction distribution p N1, an EMA 
method is used to record the prediction distributions of the subsequent 
inputs, i.e., pN2, pN3, and pNc, as p N. The ensemble prediction distribution 
p N for the N-th update is calculated as follows: 

pN =

{ pN ,N = 1

αpN− 1 + pN ,N > 1
(3)  

where α is the updating weight, which is set to 0.9 in this study with 
reference to Wang and Yao (2022). pN is the current prediction distri
butions. p N-1 is the (N-1)-th updated ensemble prediction distributions. 

Compared with the current prediction value, the ensemble predic
tion value of point Pi aggregates the predictions from the global features 
of several different input data, and thus it is more representative. In 
addition, the ensemble prediction value estimated by the EMA method is 
not involved in network training, and both the current and ensemble 
prediction values are obtained in one forward propagation. Therefore, 
the ensemble prediction provides an efficient and accurate comparison 
data for the proposed weakly supervised module. 

As shown in Fig. 3, a Kullback-leibler (KL) divergence DKL is used for 
describing the variance between the ensemble prediction distribution p i 
and the current prediction distribution pi. Then the EPC branch mini
mizes the variance to improve the prediction stability. The KL diver
gence of point Pi is referred to as the consistency cost, denoted as V(Pi). 
The consistency cost V(Pi) and the consistency loss Lepc are given by 

V(Pi) = DKL(pi‖pi) =
∑K

c
piclog(

pic

pic
) (4)  

Lepc =
1
Pu

∑|Pu |

i
V(Pi) (5)  

where p ic is the ensemble prediction posterior probability of point Pi 
being predicted as category c. pic is the current posterior probability of 
point Pi predicted as category c. Pu is the set of unlabeled points. 

3.2.2. Contrast-guided entropy regularization branch 
To overcome the issue of model over-fitting caused by the lack of 

sufficient labeling information, the contrast-guided entropy regulariza
tion (CG-ER) branch aims to guide the entropy regularization based on 
the comparison results between the current and ensemble prediction 
labels. Generally, the ensemble prediction result is considered to be a 

more accurate and robust value, and is used to estimate the current 
prediction results of unlabeled points. As shown in Fig. 1, for the points 
with inconsistent comparison results, their prediction results are 
considered to be inaccurate. Hence, the entropy maximization is used to 
prevent the model from over-fitting by encouraging high uncertainty in 
the predictions. We adopt a maximum entropy proxy approach, which 
encourages the prediction distributions to be closely uniform distribu
tions (i.e., the maximum entropy state) (Larrazabal et al. 2021). The 
contrast-guided entropy regularization loss Ler is calculated as follows: 

Ler =
1

|Pn|

∑|Pn |

i

∑K

c
piclog(

pic

pk
) (6)  

where p ic is the current prediction posterior probability of point Pi being 
predicted as category c. K is the number of labeled categories. Pn is a 
point set with the inconsistent comparison results. pk is the uniform 
distribution calculated from the reciprocal of the class number. |⋅| is the 
set cardinality. 

3.2.3. Adaptive pseudo-label learning branch 
To further exploit the informative features of unlabeled points, we 

propose the adaptive pseudo-label learning (A-PL) branch, which em
ploys the ensemble prediction labels of unlabeled points as pseudo- 
labels and calculates pseudo-label weights by the consistency cost V 
(Pi). For the unlabeled points, the consistency cost describes the variance 
between the current and ensemble prediction distributions. It is 
commonly considered that the greater the variance, the higher the 
probability of the incorrect prediction value (Zheng and Yang, 2021). 
Therefore, we employ the weight calculation method (i.e., exp(-V(Pi) as 
the pseudo-label weight of Pi), proposed by Kendall and Gal (2017), to 
calculate the pseudo-label weights of unlabeled points. This method 
allows the network to focus more on the pseudo-label points with low 
consistency costs and ignore the points with high consistency costs. The 
adaptive pseudo-label learning loss Lap is defined as follows: 

Lap = −
1

|Pu|

∑|Pu |

i
exp(− V(Pi))

∑K

c
yiclogpic (7)  

where Pu is the set of unlabeled points. |⋅| is the set cardinality. pic is the 
current prediction posterior probability of point Pi being predicted as 
category c. y ic is the pseudo-label obtained by the argmax function on 
the ensemble prediction distribution. 

3.3. Training 

The network training included two stages. In the first training stage, 
the three proposed branches, i.e., the incomplete supervised branch, the 
EPC branch, and the CG-ER branch, are used for unlabeled points to 
obtain more accurate ensemble prediction values as the pseudo-labels. 
In the second training stage, all branches are used for model training 
to obtain the final model. The total loss Lall can be expressed by 

Lall = Lse + λerLer + λepcLepc + λapLap (8)  

where λer, λepc, and λap are the weighting factors of Ler, Lepc, and Lap, 
respectively. Specifically, λepc = λer = 1 are used during the whole 
training process. λap = 0 is configured in the first stage. In the second 
stage, λap is set to 1. Both training stages last for 50 epochs, respectively. 

4. Experiments and analyses 

4.1. Datasets 

To examine the effectiveness of the WSPointNet, we evaluated it on 
two large-scale MLS datasets, i.e., the Toronto3D dataset (Tan et al., 
2020) and the WHU-MLS dataset (Yang et al., 2021). 
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Toronto3D dataset, a large-scale public MLS benchmark dataset, 
was collected in the urban areas of Toronto, Canada. The dataset con
tained approximately 78.3 million points and covered a 1 km2 urban 
scene, which was further split into four sections (named as L001, L002, 
L003, and L004). As shown in Fig. 4, the Toronto3D dataset contains 
most of the MLS measurement ranges and rich attribute information (e. 

g., RGB information). The Toronto3D dataset was labeled as eight se
mantic classes, including road, natural, road marking (rd. m.), building 
(build.), utility line (util. l.), pole, car, and fence. Every point contained 
3D coordinates (i.e., X, Y, and Z coordinates), RGB information, in
tensity, scan angle rank, and global navigation satellite system (GNSS) 
time. In this paper, only 3D coordinates and RGB information were used 

(a) (b) (c) (d)

Fig. 4. Toronto3D dataset. (a) Section L001, (b) section L002, (c) section L003, (d) section L004 (from the top to the bottom, the point clouds rendered by RGB 
information and class labels, respectively). 

Fig. 5. Four scenes of the WHU-MLS dataset (from top to bottom: point clouds rendered by intensity information and class labels, respectively).  
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as the input data. Specifically, the L002 section was used for testing, and 
the others were used for training. 

WHU-MLS dataset contains a total of 40 urban scenes with over 300 
million points. Fig. 5 illustrates four scenes of the WHU-MLS dataset. As 
shown in Fig. 5, the WHU-MLS dataset covers typical and complex urban 
scenes with multiple-type objects. Specifically, the dataset was labeled 
as 17 classes, including roadway, non-drive way (nd. way), road mark 
(rd. mark.), building, fence, tree, low vegetation (low veg.), pedestrian, 
vehicle, light, telegraph pole (tel. pole), traffic light (trff. light), 
municipal pole (mun. pole), detector, box, board, and wire. Each point 
contained 3D coordinates, intensity, and the number of returns. In this 
paper, the 3D coordinates and intensity information were used as the 
input data. Among the 40 scenes, 10 scenes were used for testing and the 
others were used for training. 

4.2. Implementation details 

The Adam optimizer was used with an initial learning rate of 0.01 
and a momentum of 0.95 to train 100 epochs. The input number of 
points was set to 65,536 and the batch size was 4 according to the 
memory limit of the graphics card. At each epoch, Toronto3D dataset 
and WHU-MLS dataset were trained for 500 steps and 800 steps, 
respectively, depending on the number of point clouds. As indicated in 
Table 1, according to the point cloud density of the dataset, we set the 
subsampling grid size to 0.04 and 0.08 m for the Toronto3D dataset and 
WUH-MLS dataset, respectively. For labeled point selection strategy, we 
applied the sample selection method of SQN: 0.1 % labeled points were 
randomly selected after sub-sampling pre-processing, and unannotated 
points were assigned to unclassified class. The detailed values are shown 
in Table 1. The annotation strategy was more suitable than the other 
weakly supervised annotation methods (Wang and Yao, 2022; Zhang 
et al., 2021b) for practical application scenarios. Compared to fully 
annotated datasets, randomly annotating 0.1 % points greatly reduced 
annotation cost and effort (Hu et al., 2021). 

All experiments were carried out on a Personal Computer with an 
Intel CoreTM i9-9820X processor, an NVIDIA RTX 2080Ti GPU with 11- 
GB of memory, and a 64G RAM. We evaluated performance using three 
metrics: overall accuracy (OA), intersection over union (IoU), and mean 
intersection over union (mIoU). 

4.3. Overall performance 

4.3.1. Toronto3D dataset 
Fig. 6 shows the results obtained by the WSPointNet on the Tor

onto3D dataset. As shown in Fig. 6, compared with the true labels, visual 
inspection indicated that our WSPointNet was capable of correctly 
classifying the majority of points despite using only 0.1 % labeled points. 
To further demonstrate the semantic segmentation results, the mis
classified results were rendered by the red color, as shown in Fig. 6(c). 
Most red points were presented in the areas of trees and utility lines, as 
well as in areas far away from roads. Fig. 7 shows the three close-view 
examples of the Toronto3D dataset. The first example in the top row 
mainly illustrated several utility poles and a tree with a large and leafy 
canopy. The second example in the second row was a typical street 
scene, containing a building, poles (including an advertising board and 
utility poles), and utility lines. The third example in the bottom row 
mainly illustrated buildings, cars, the ground, and trees. First, the 

WSPointNet misclassified some utility line points and partial points of 
the utility pole close to the trees (see the red box on the top row). Sec
ond, the WSPointNet misclassified some pole line points, particularly the 
points of the billboard close to the building facades (see the red box in 
the bottom row). Third, the WSPointNet misclassified some road points 
close to cars, and the building points close to trees. The reasons for the 
above phenomena might be caused by: (1) their geometric and spectral 
similarities, (2) our method relying on sparsely labeled points that 
incompletely describe the geometrical shapes of the objects, thereby 
leading to the presentence of the semantic segmentation errors, (3) some 
misclassified objects were far away from the roads and received object 
occlusion. Such points were too sparse to describe the geometrical 
shapes of the objects, which also led to the incorrect semantic segmen
tation results. 

Several recently published semantic segmentation methods were 
selected for performance comparison. Our comparative experiments 
were divided into two groups: supervised and weakly supervised, as 
shown in Tables 2 and 3, respectively. 

In the first group of the comparative experiments, the input data only 
contained three coordinates of the MLS point clouds (w/o RGB). The 
eight supervised methods, i.e., PointNet++ (Qi et al., 2017b), 
PointNet++ (MSG) (Qi et al., 2017b), DGCNN (Wang et al., 2019b), MS- 
PCNN (Ma et al., 2019), RandLA-Net (Hu et al., 2020), MS-TGNet (Tan 
et al., 2020), TGNet (Li et al., 2019), and KPFCNN (Thomas et al., 2019), 
were selected for the comparison. Among these supervised methods, the 
KPFCNN, RandLA-Net, and MS-TGNet achieved over 95 % overall ac
curacy (OA). In this study, our WSPointNet achieved an OA of 95.26 % 
and a mIoU of 70.42 %, respectively, when only 0.1 % labeled points 
were used for training. Despite being a weakly-supervised method, our 
results were comparable to those of the top three supervised methods, i. 
e., KPFCNN, RandLA-Net, and MS-TGNet. Due to the large errors in the 
semantic segmentation of road markings, the WSPointNet obtained a 
relatively lower mIoU value than that of the MS-TGNet and the RandLA- 
Net. This might be the fully supervised methods can learn the geomet
rical relations of the dense road marking points in a certain neighbor
hood, thus obtaining their discriminative features. In contrast, the road 
marking points after 0.1 % down-sampling are too sparse to describe the 
geometrical completeness of the road markings, leading to the 
WSPointNet failed to provide their salient feature representation. To test 
the impact of the RGB information on the point cloud semantic seg
mentation, we combined the coordinates and the RGB information as the 
input data for model training and testing (w/RGB). As shown in Table 2, 
compared with the RandLA-Net using the same input data, the 
WSPointNet obtained similar accuracy and the best IoU scores in the 
road and road marking categories. Compared with the method using 
coordinates, the WSPointNet with the RGB information achieved the 
best OA and mIoU. The OA and mIoU values of the WSPointNet sur
passed those of the best supervised method, RandLA-Net, by 1.13 % and 
1.24 %, respectively. From the comparative results, we concluded that 
our WSPointNet with only sparsely labeled points outperformed most 
supervised semantic segmentation methods when dealing with large- 
scale MLS point clouds. Moreover, the performance of our WSPointNet 
can be further improved by using both 3D coordinates and RGB 
information. 

Given the fact that fewer weakly supervised methods were available 
for a fair comparison, we compared the WSPointNet with the SQN (Hu 
et al., 2021) and the baseline method on the Toronto3D dataset. Note 
that the baseline was the RandLA-Net using only 0.1 % labeled points for 
model training. The SQN method obtained the multi-level encoded 
features by fully leveraging the features of the labeled points via a query 
network. 

As shown in Table 3, the WSPointNet obtained the best OA and mIoU 
scores. Specifically, as only the coordinates were used as input, our 
method improved OA and mIoU by 2.42 % and 1.07 %, respectively, 
when compared to the SQN. Also, the WSPointNet outperformed the 
baseline by an OA improvement of 8.74 % and a mIoU increase of 4.99 

Table 1 
Pre-processing results of two datasets.  

Dataset Grid 
size 

Raw 
pts 

Grid sampling 
pts 

Training 
pts 

Anno. pts 
(0.1 %) 

Toronto3D 0.04 m 78.3 M 24.3 M 18.4 M 18,387 
WHU-MLS 0.08 m 324.9 

M 
70.8 M 56.4 M 56,409  
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%, respectively. For specific classes, the WSPointNet gained at least 2.5 
% IoU improvement of the poles and fences, while poorly performed on 
the road markings due to a lack of effective feature representation. We 
considered that the WSPointNet might be sensitive to spatial features. 
For the poles and fences that are distinct, structured geometries in 3D 
point clouds, our ensemble prediction module learns more spatial fea
tures of the unlabeled points at different stages, which helps describe the 
poles and fences in a comprehensive way. In addition, the proposed 
pseudo-labelling strategy provides a similar fully-supervised means to 
collect the salient contextual features of the poles and fences. Thus, with 
the 3D structural distinctiveness of the objects (e.g., poles and fences) 
and the use of the supervised learning, the WSPointNet obtained a better 
identification of these 3D objects. 

In contrast, road markings are normally attached to roads, and can be 
considered as a part of the roads. It is hard to correctly extract or classify 
the road markings from only LiDAR data. For the Toronto3D dataset 
without spectral information, the labelled road marking training sam
ples provide extremely limited geometrical and contextual features 
because the geometrical features of the road markings are similar to 
those of the roads in most cases. Thus, without the distinct character
istics of the road markings in 3D point clouds, our ensemble prediction is 
incapable of mining the useful road marking features from the unlabeled 
points. Particularly, the subsequent GC-ER and A-PL strategies based on 
the ensemble prediction might further worsen the geometrical repre
sentation of the road markings. However, we noted that the road 
markings were painted on the roads with high reflective materials, the 
RGB information was also investigated in the three models. As seen in 
Table 3 and Fig. 7, with the RGB information, all models outperformed 
their counterparts, improving the semantic segmentation accuracies of 
all classes, particularly the road marking. The IoU value of the road 
markings dramatically increased by up to 66.99 %. 

4.3.2. WHU-MLS dataset 
To further evaluate the robustness of our WSPointNet, we tested it on 

the WHU-MLS dataset. As we mentioned above, the WSPointNet ach
ieved better semantic segmentation performance when using 0.1 % 
labeled points for training. Thereby, we used 0.1 % labeled points for 
training on the WHU-MLS dataset. Fig. 8 shows the semantic segmen
tation results of various objects (17 classes) in three urban areas with 
complex environments. As seen in Fig. 8(c), visual inspection indicated 
that our WSPointNet correctly classified most of the categories, but it 
also misclassified the points with similar characteristics, such as non- 
driveways and roadways, road marking edges and roadways, and low 
vegetation and trees. 

Table 4 shows the quantitative results obtained by the WSPointNet 
and the other comparative methods. We used the experimental results 
presented in Han et al. (2021) as the benchmark for the WSPointNet. 
Note that, for this group of benchmarks on the WHU-MLS dataset, the 
overall accuracy was not presented in Table 3 because this metric was 
not used for performance assessment in Han et al. (2021). As shown in 
Table 4, we conclude that the quantitative results were consistent with 
the visual performance, and our WSPointNet achieved competitive re
sults in comparison with the other methods. The WSPointNet obtained 
an mIoU of 56.48 % using only 0.1 % labeled points, which remarkably 
outperformed the three supervised methods, i.e., PointNet++, Point
Conv (Wu et al., 2019), and Han’s method (Hu et al., 2021). The reasons 
behind this phenomenon include: 1) a block preprocessing method used 
in the three supervised methods might damage the geometric 
completeness of the objects; 2) the used baseline itself was able to pro
vide a relatively superior feature representation using only 0.1 % labeled 
points; 3) our weakly supervised strategy contributed to the augmen
tation of useful features explored from the unlabeled points. Moreover, 
we found that the baseline using only 0.1 % labeled points obtained a 
mIoU of only 50.00 %, almost a degradation of 10 % when comparing 
with the baseline. However, the WSPointNet still obtained the compet
itive performance with the baseline when using only 0.1 % samples. 
Specifically, the WSPointNet achieved the best IoU scores of the build
ings, low vegetation, roads, and road markings among all the 

Fig. 6. Qualitative results obtained by the proposed WSPointNet on the Toronto3D dataset: (a) true labels, (b) semantic segmentation results, (c) mis
classified results. 
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comparative methods. The reasons for these behaviors were that the 
information of unlabeled points was fully exploited by enforcing the 
multi-branch weakly supervised module, thereby improving the capa
bilities of the model for classifying objects with spectral and spatial 
similarities. 

4.4. Ablation study 

A series of ablation studies were conducted to assess the performance 

of the proposed methods, including the square-root weighted (SRW) loss 
function, the EPC branch, the CG-ER branch, and the A-PL branch. These 
modified models were tested on the WHU-MLS dataset and the Tor
onto3D dataset with only coordinates. 0.1 % labeled points were used 
for training the networks. The specific experimental results were shown 
in Table 5. 

Effect of square-root weighted loss function. We adopted the 
square-root weighted loss function to replace the loss function of the 
baseline method (i.e., Baseline), and the resultant network was named as 

Fig. 7. Close-views of the three examples of the Toronto3D dataset: (a) raw point cloud, (b) semantic segmentation results obtained by our method, (c) mis
classified results. 

Table 2 
Quantitative results obtained by comparing our WSPointNet with the eight fully supervised benchmark methods on the Toronto3D dataset. The scores of the eight 
comparison methods were obtained from Hu et al. (2021). The underlined represents the best scores in the methods without RGB information, and the bold represents 
the best scores in all the methods.  

Method OA(%) mIoU(%) IoU(%) 

road rd m. natural build. util.l. pole car fence 

PointNet++ 84.88  41.81  89.27  0.00  69.06  54.16  43.78  23.30  52.00  2.95 
PointNet++(MSG)  92.56  59.47  92.90  0.00  86.13  82.15  60.96  62.81  76.41  14.43 
DGCNN  94.24  61.79  93.88  0.00  91.25  80.39  62.40  62.32  88.26  15.81 
KPFCNN  95.39  69.11  94.62  0.06  96.07  91.51  87.68  81.56  85.66  15.72 
MS-PCNN  90.03  65.89  93.84  3.83  93.46  82.59  67.80  71.95  91.12  22.50 
TGNet  94.08  61.34  93.54  0.00  90.83  81.57  65.26  62.98  88.73  7.85 
MS-TGNet  95.71  70.50  94.41  17.19  95.72  88.83  76.01  73.97  94.24  23.64 
RandLA-Net(w/o RGB)  95.63  77.72  94.53  42.44  96.62  93.1  86.56  76.83  92.55  39.14 
RandLA-Net (w/ RGB)  97.15  81.88  96.69  64.10  96.85  94.14  88.03  77.48  93.21  44.53 
WSPointNet (w/o RGB, 0.1 %)  95.26  70.42  94.48  0.00  95.14  92.84  82.39  70.78  89.1  38.62 
WSPointNet (w/ RGB, 0.1 %)  96.76  78.96  96.70  66.99  94.89  90.79  83.68  75.71  88.37  34.54  
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Model A. As shown in Table 5, for the Toronto3D dataset, model A 
achieved an improvement of 8.26 % and 2.78 % for OA and mIoU, 
compared with the Baseline. For the WHU-MLS dataset, model A ach
ieved an increase of 0.41 % and 2.14 % for OA and mIoU. The experi
mental results showed that the SRW loss function enabled model to focus 
more effectively on small sample classes compared with baseline 
method, and improved the accuracy of semantic segmentation for MLS 
point clouds. 

Effect of ensemble prediction constraint. We embedded the EPC 
branch into the basic framework (i.e., Model A), and the resultant 
network was named as Model B. As shown in Table 5, model B improved 
the mIoU by 1.67 % and 3.45 % on the Toronto3D and WHU-MLS 

datasets, compared with Model A. The experimental results showed 
that the EPC branch enhanced the consistency of network predictions, 
and improved the accuracy of semantic segmentation for MLS point 
clouds. 

Effect of contrast-guided entropy regularization. In this experi
ment, the CG-ER branch was added to Model B, and the resultant 
network was named as Model C. The experimental results in Table 5 
showed that, compared with Model B, Model C achieved a OA 
improvement of about 0.69 % and 0.19 % on the Toronto3D and WHU- 
MLS datasets, respectively. We argued that the above results can mainly 
be attributed to the CG-ER branch, which prevented network from over- 
fitting by guiding unlabeled non-confidence prediction points for 

Table 3 
Quantitative results obtained by comparing our WSPointNet with Baseline and SQN methods on the Toronto3D dataset (0.1% labeled points). The scores of the SQN 
methods were obtained from Hu et al. (2021). The underlined represents the best scores in the methods without RGB information, and the bold represents the best 
scores in all the methods. Baseline scores were obtained for the RandLA-Net using only sparse labeling.  

Method OA (%) mIoU(%) IoU (%) 

road rd m. natural build. util.l. pole car fence 

Baseline(w/o RGB)  86.52  65.43  81.69  9.70  94.02  91.39  79.32  61.9  80.88  24.55 
SQN(w/o RGB)  92.84  69.35  93.74  16.83  92.55  89.04  82.50  63.98  88.17  28.01 
WSPointNet (w/o RGB)  95.26  70.42  94.48  0.00  95.14  92.84  82.39  70.78  89.1  38.62 
Baseline(w/ RGB)  95.47  74.46  95.33  57.43  93.57  87.29  77.09  72.97  86.65  25.32 
SQN(w/ RGB)  96.67  77.75  96.69  65.67  94.58  91.34  83.36  70.59  88.87  30.91 
WSPointNet (w/ RGB)  96.76  78.96  96.70  66.99  94.89  90.79  83.68  75.71  88.37  34.54  

Fig. 8. Qualitative results of three scenes in the WHU-MLS dataset: (a) ground-truth labels, (b) semantic segmentation results, (c) misclassified results.  
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entropy maximization. 
Effect of adaptive pseudo-label learning. As shown in Table 5, 

compared with Model C without the A-PL branch, our WSPointNet ob
tained a better performance, with a mIoU increase of 0.49 % and 0.82 % 
on the Toronto3D and WHU-MLS datasets. The reason was that the A-PL 
branch adaptively adjusts the pseudo-label weights according to the 
consistency cost, providing effective supervisory signals to improve the 
semantic segmentation accuracy. 

4.5. Analyses on various weakly-supervised strategies 

To further validate the effectiveness of the proposed weakly super
vised strategies, we also compared it with some recently-published 
weakly supervised strategies on our underlying framework, and the 
comparison results were shown in Table 6. 

Entropy minimization. In most weakly supervised strategies, the 
entropy minimization was commonly used to reduce prediction class 
overlap and obtain more discriminative features. We replaced the pro
posed GC-ER branch with the entropy minimization in this study. As 
shown in Table 6, the WSPointNet improved the mIoU value by 1.25 % 
and 1.05 % on the Toronto3D and WHU-MLS datasets, respectively, 
compared with the entropy minimization method. This is because the 
entropy minimization is prone to over-fitting the model, while the GC- 
ER method can alleviate this over-fitting problem and finally improve 
the model performance. 

Online soft pseudo-labeling. The online soft pseudo-labeling 

strategy (OS-PL) used entropy values to calculate pseudo-label 
weights. We replaced the OS-PL method with our A-PL method. The 
comparative results were shown in Table 6. Compared with the OS-PL 
method, the A-PL method improved the mIoU value by 1.09 % and 
2.08 % on the Toronto3D and WHU-MLS datasets, respectively. Above 
quantitative results showed that our A-PL method constructed more 
effective adaptive pseudo-label weights by using the variance between 
ensemble predictions and current predictions. 

The weakly supervised strategies of the Wang’s (Wang and Yao, 
2022). Wang and Yao (2022) used the mean-square error (MSE) loss, the 
entropy minimization, and the OS-PL method to calculate the consis
tency constraint, entropy regularization, and pseudo-labeling losses, 
respectively. As seen from Table 6, the WSPointNet outperformed the 
mIoU of Wang’s (2022) method by 2.95 % and 2.32 % on the Toronto3D 
and WHU-MLS datasets, respectively, which demonstrated that our 
proposed weakly supervised strategy was considered to obtain a more 
effective supervised signal than the Wang’s, and finally improved the 
model performance. 

The weakly supervised strategies of the PSD method. The PSD 
approach generated perturbation samples through a new framework, 
and thus enlarged supervised signals through consistency constraints as 
well as contextual modules. Because the PSD method requires a large 
amount of GPU memory for generating perturbation samples, we hardly 
used the default parameters for our PSD experiments. Therefore, ac
cording to the limits of the graphics card, we performed this group of 
experiments by adjusting the parameter settings (i.e., the number of 

Table 4 
Quantitative results obtained by comparing different methods on the WHU-MLS dataset. The scores of the fully supervised comparison methods were obtained from 
Han et al. (2021). The bold represents the best scores in all methods. Baseline scores were obtained for the RandLA-Net using the training parameters of this paper.  

Methods mIoU (%) IoU (%) 

tree nd.way building box light tel.pole mun.pole low veg. board 
roadway rd.mark. vehicle pedestrian trff.light detector fence wire  

PointNet++ 41.10  83.30  42.00  72.70  6.60  59.10  30.80  7.80  33.10  13.90  
80.00  29.50  76.70  38.90  25.00  11.00  56.30  32.70  

PointConv 46.40  85.60  48.90  73.50  28.20  59.70  35.70  20.00  32.40  16.00  
82.00  30.60  76.20  53.80  28.70  27.60  52.60  36.50  

Han’s method 52.80  84.50  58.40  77.10  45.40  71.80  49.90  26.50  34.10  20.20  
83.60  38.10  79.10  60.80  31.00  31.30  57.90  47.20  

Baseline 60.54  90.45  51.33  87.29  55.8  68.42  46.38  16.4  33.89  33.6  
91.26  55.25  95.21  83.99  50.25  41.4  68.77  59.46  

Baseline (0.1 %) 50.00  89.10  52.51  82.62  31.35  49.95  20.58  6.82  33.73  22.76  
91.41  53.83  93.53  72.92  38.78  9.49  64.71  36.01  

WSPointNet (0.1 %) 56.48  90.23  56.43  88.39  41.14  56.28  28.65  24.88  36.32  26.94  
92.52  58.24  94.65  69.97  44.68  29.93  65.7  55.28   

Table 5 
A comparison of the point cloud semantic segmentation results with different models. The bold represents the best scores in all models.  

Model SRW EPC CG-ER A-PL Toronto3D WHU-MLS 

OA(%) mIoU (%) OA(%) mIoU (%) 

Baseline      86.52  65.43  89.50  50.00 
A √     94.78  68.21  89.91  52.14 
B √ √    94.55  69.88  90.26  55.59 
C √ √ √   95.24  69.93  90.45  55.66 
WSPointNet √ √ √ √  95.26  70.42  90.83  56.48  

Table 6 
A Comparison result of weakly methods with different weakly supervised strategies. “*” represents that our method used the same parameters of the PSD method for 
the comparative experiments. The bold represents the best scores in all methods.  

Datasets Metrics WSPointNet Entropy Minimization Online soft 
pseudo-labeling 

Wang and Yao (2022) PSD WSPointNet* 

Toronto3D OA(%)  95.26  95.10  95.12  94.83  90.20  94.09 
mIoU(%)  70.42  69.17  69.33  67.47  55.74  61.72 

WHU-MLS OA(%)  90.83  90.41  90.42  90.43  89.06  89.24 
mIoU(%)  56.48  55.43  54.40  54.16  43.42  44.63  

X. Lei et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 115 (2022) 103129

12

input points was 53,248 and the batch size was 2). As shown in Table 6, 
the WSPointNet improved the OA and mIoU by 3.89 % and 5.98 % on 
the Toronto3D dataset, respectively, compared with the PSD method 
with the same parameters. These results showed that our weakly su
pervised strategy can reduce the memory consumption while effectively 
using the unlabeled point features to increase the classification accuracy 
of the model. 

5. Conclusion 

This paper presented a multi-branch weakly supervised learning 
network (i.e., WSPointNet) for semantic segmentation of large-scale 
MLS point clouds. The network first employed the RandLA-Net to 
extract informative features of point clouds, and used incomplete su
pervision with the randomly selected sparsely labeled points to provide 
underlying supervised signals for model training. Then, a multi-branch 
weakly supervised module, including the ensemble prediction 
constraint, contrast-guided entropy regularization, and adaptive 
pseudo-label learning branches, was performed by employing ensemble 
prediction to fully exploit the informative features of unlabeled points. 
Comparison results with the fully supervised methods showed that the 
WSPointNet using sparse labels achieved competitive semantic seg
mentation accuracies. On the Toronto3D using 0.1 % labeled data, the 
WSPointNet achieved an OA of 96.76 % and a mIoU of 78.96 %, sur
passing the baseline method by 1.29 % and 4.50 %, respectively. Thus, 
the WSPointNet can effectively reduce the workload of data annotation, 
contributing to the applications of MLS point clouds in urban scenarios. 
In the future, more advanced techniques will be explored to obtain more 
effectively supervised sources and more contextual information. 
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