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A B S T R A C T

This paper presents a novel approach to tracking ships in Synthetic Aperture Radar (SAR) images based on an 
improved lightweight YOLOv8 Nano (YOLOv8n), specially devised to improve efficiency without compromising 
accuracy. In our method, we replaced the heavy backbone and neck of YOLOv8 with HGNetv2 and slim-neck, 
respectively. We also implemented a lightweight decoupling head using EMSConvP. Additionally, we inte
grated a knowledge distillation module to further enhance detection capabilities. Furthermore, we conducted 
extensive experiments on the short-time sequence SAR dataset to demonstrate superior accuracy metrics 
compared to the original YOLOv8n model. Regarding tracking ships in SAR images, we developed a multi-object 
tracking (MOT) technique called Cascaded-Buffered IoU (C-BIoU). This method enlarges the detection and tra
jectory matching space by increasing the buffer zone, effectively combining detection and trajectory information 
from short-time sequence SAR images. The findings reveal that our method significantly reduces the computa
tional complexity, parameters, and model size by up to 54.7 %, 68.4 %, and 68.3 %, respectively, with respect to 
the original model metrics. As a direct consequence of these reductions, our proposed model demonstrates a 
remarkable 133.1 % improvement in image processing speed expressed as frames per second (FPS). Moreover, 
Our C-BIoU method shows outstanding performance in tracking accuracy and efficiency, with superior Higher 
Order Tracking Accuracy (HOTA), Multiple Object Tracking Precision (MOTP), and Identification F1 score (IDF1) 
scores of 72.8 %, 87.9 %, and 80.7 %, respectively, compared to existing tracking algorithms. The results from 
testing on multiple datasets highlight our method’s excellent performance in ship detection and tracking, offering 
high-speed processing capabilities with an average image processing speed of 81 FPS. In this sense, this method 
provides reliable real-time monitoring and management of maritime traffic, enhancing situational awareness for 
maritime operations.

1. Introduction

Ship tracking is central in maritime operations and covers various 
activities, from ship navigation and logistics to safety and environmental 
monitoring. Among the variety of technologies used for vessel tracking, 
Synthetic Aperture Radar (SAR) imaging has emerged as a cornerstone 
due to its unique all-weather, day, and night surveillance capabilities 
(Zhang et al., 2022a,b; Mao et al., 2023; Gao et al., 2023; Ma et al., 2024; 
Yasir et al., 2024c). Unlike optical imaging systems, SAR is not affected 
by atmospheric conditions or darkness, making it ideal for maritime 

surveillance where continuous monitoring is critical (Zhang et al., 
2020a; Zhang et al., 2021a; Mao et al., 2022; Zha et al., 2023; Yasir et al., 
2024a). In this sense, SAR imagery has revolutionized ship tracking by 
providing unparalleled coverage and resolution over vast ocean areas in 
recent years. Indeed, SAR imagery offers clear advantages, including 
detecting ships regardless of weather conditions, distinguishing between 
different types of ships based on their radar signature, and tracking ship 
movements with high precision (Yasir et al., 2024b).

In recent years, deep learning technology has rapidly developed and 
found wide application in various fields such as computer vision (CV), 
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natural language processing (NLP), speech and audio processing, med
icine, and biology (O’Shea and Hoydis, 2017; Aceto et al., 2019). Among 
deep learning architectures, convolutional neural networks (CNNs) 
stand out, particularly in image data processing, because they can 
automatically extract local features from images through convolutional 
layers. This feature extraction capability enables CNNs to effectively 
capture various visual patterns, from simple edges and textures to 
complex object shapes and scene structures (Alzubaidi et al., 2021). 
Some researchers have applied computer vision and image processing, 
particularly for general deep learning applications. For example, 
(O’Shea and Hoydis, 2017) discussed the broad application of deep 
learning in CV, NLP, speech and audio processing, medicine, and 
biology. Moreover, (Aceto et al., 2019) explored the extensive use of 
deep learning across various fields. In addition, (Kumar and Renuka, 
2023) highlighted the development and applications of deep learning 
technologies in multiple domains. Other researchers applied specific 
image processing techniques. For example, Alzubaidi et al. (2021)
focused on the capability of CNNs to capture visual patterns through 
convolutional layers, enhancing their performance in image data pro
cessing, while Chen et al. (2023) developed a rotational ship detector 
based on the widely known object detection deep learning algorithm 
YOLOv5 for extracting rotating ships from maritime surveillance videos.

Applications in ship detection using SAR imagery are among the 
recent researches. For example, Wei et al. (2020) introduced HR-SDNet 
for ship detection in high-resolution SAR images. In the same way, Li 
et al. (2019) combined features at different levels to improve ship 
detection at various sizes. Another example is Wang et al. (2020), who 
incorporated an attention module (SENet) to reduce scattered radiation 
and highlight targets. Later, Gao et al. (2020) proposed a dense attention 
feature aggregation network with deeply differentiable convolution to 
improve efficiency with fewer parameters. In the same context, Zhou 
et al. (2022) developed MSSDNet, a multi-scale hull detection network 
capable of balancing model size and detection accuracy. Further, Zhu 
et al. (2022) applied fully convolutional single-stage target detection, 
eliminating anchor points through pixel-by-pixel detection. Recently, 
Wen et al. (2024) fused deep learning with traditional hand-crafted 
features by integrating Constant False Alarm Rate (CFAR) features 
into the YOLOv5s model. In addition to this, integration with auxiliary 
data is one of the techniques that researchers have recently considered. 
For example, Dechesne et al. (2019) used deep learning for ship iden
tification and characterization, synergizing Sentinel-1 SAR images with 
Automatic Identification System (AIS) data to demonstrate the value of 
integrating multiple data sources to improve accuracy. In this same way, 
Chen et al. (2024) collected data from AIS in New York Harbor in order 
to analyze the spatiotemporal distribution of pollutant emissions from 
ships. This classification showcases the broad applications of deep 
learning technologies, particularly CNNs, in various fields, also 
emphasizing their specific use in enhancing ship detection and tracking 
using SAR imagery.

Recently, researchers have focused on developing lightweight 
models to make ship detection in SAR images more practical (i.e., real- 
time processing capability). These efforts have led to various innovative 
approaches to reduce model complexity while maintaining or enhancing 
detection capabilities. For example, making modifications to existing 
models such as RetinaNet and YOLOv4. In this sense, (Miao et al., 2022) 
modified RetinaNet by replacing shallow convolutional layers and 
reducing deep convolutional layers. This effectively reduced both 
floating-point operations and model parameter counts while maintain
ing good ship detection capability. In another study, Liu et al. (2022)
introduced YOLOv4-LITE, a lightweight ship detection model utilizing 
MobileNetv2 as the backbone network and incorporating RFB for 
enhanced feature extraction, achieving a model size of 49.34 M. More
over, some researchers enhanced YOLO models like YOLOv5. For 
example, Xu et al. (2022) devised a lightweight and accuracy-enhancing 
module integrated into the YOLOv5 model, applying network pruning to 
shrink the model to only 14.18 % of its original size. Another example is 

the one developed by Xiong et al. (2022), who revamped the pyramid 
pooling structure and integrated attention mechanisms into the 
YOLOv5n model. As for YOLOv7, Tang et al. (2024) enhanced the 
YOLOv7 model by integrating AMMRF, a multi-scale feeling field 
convolution block, to capture the relationship between vessels and their 
background. Accordingly, (Yu et al., 2022) simplified YOLOX-s’s com
plex pyramid structure and introduced the Residual Asymmetric Dilated 
Convolution (RADC) block to enhance semantic information extraction 
from SAR images. Furthermore, regarding new lightweight models, (Ren 
et al., 2023) introduced a lightweight feature-enhanced backbone called 
LFEBNet to reduce computational costs. Later, optimized ship detectors 
were proposed through a hybrid approach centered on data and model 
improvements (Humayun et al., 2024). These classified investigations 
underscore the progress made in developing lightweight detection and 
tracking models for identifying ships in SAR images, highlighting the 
various strategies researchers have employed to reduce complexity and 
improve efficiency.

Deep neural network-based algorithms for multiple object tracking 
(MOT) (Chu et al., 2017) are commonly employed to detect and track 
multiple targets using optical image features, resulting in efficient 
tracking capabilities. The Simple Online and Real-Time Tracking (SORT) 
algorithm (Bewley et al., 2016) stands out as a prominent MOT algo
rithm capable of swiftly tracking multiple targets using optical images. 
This algorithm leverages the widely known Faster R-CNN object detec
tion model to detect targets, followed by applying Kalman filtering and 
the Hungarian algorithm to track them effectively. Building upon the 
foundation laid by SORT, other MOT algorithms have emerged. For 
instance, the Deep-SORT algorithm (Wojke et al., 2017) integrates visual 
characteristics into the association module of the SORT algorithm to 
improve tracking accuracy. Conversely, the MOTDT method (Chen 
et al., 2018) constructs a scoring mechanism using the region-based fully 
convolutional network (R-FCN) to assess potential targets, utilizing a 
cascade association approach to enhance tracking resilience. Neverthe
less, conventional MOT techniques that rely on optical imaging of ship 
targets may experience notable impacts due to complex maritime en
vironments, such as adverse weather conditions encountered at sea. On 
the contrary, SAR imaging provides continuous surveillance regardless 
of weather conditions and operates effectively over long distances due to 
the exceptional penetration capabilities of the radar beam (Zhang et al., 
2022a,b; Chen and Yu, 2023; B. Zhang et al., 2023). SAR images not only 
capture target features but also furnish vital positional data, making 
them especially well-suited for detecting and tracking targets in intricate 
maritime environments. However, utilizing MOT techniques on SAR 
images to detect multiple targets poses various challenges. Unlike their 
optical counterparts, SAR images lack color information due to grayscale 
representations, potentially leading to information loss. Moreover, the 
presence of cluttered backgrounds like sea clutter and land regions in 
SAR images can trigger false alarms during detection. Additionally, 
fluctuations in ship movements may cause defocusing in certain image 
areas, resulting in tracking box deviations that compromise tracking 
accuracy. Furthermore, variations in target resolution, height, and angle 
during SAR imaging hinder the acquisition of adequate prior samples for 
training, negatively affecting the network’s overall performance (Zhang 
et al., 2023).

While deep-learning-based ship identification boasts impressive 
detection capabilities, applying these methods directly to SAR images 
poses several challenges, as highlighted by several authors (Zhang et al., 
2020b; Zhang et al., 2021b; Zhao et al., 2023; Zhang et al., 2024). SAR 
imaging introduces unique characteristics such as reduced contrast, 
increased scattering noise, and interference from sea debris, adding 
complexity to ship identification. The varying sizes and shapes of ships, 
particularly smaller vessels vulnerable to speckle noise, further 
complicate the identification process. In addition, ships may be inade
quately represented by only a few pixels in large SAR scenes due to 
resampling, potentially compromising identification accuracy. More
over, heavy parameterization and computational intensity hinder the 
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deployment of deep learning target detection models in SAR image 
analysis, making them problematic for real-time detection tasks. It is 
worth noting that previous studies in SAR image ship recognition have 
prioritized accuracy over detection speed, exacerbating the computa
tional challenges.

Therefore, we introduce YOLOShipTracker to tackle these prevailing 
issues. In this way, YOLOShipTracker addresses the challenge of ship 
detection and tracking in SAR short-time sequence images by developing 
a lightweight object detection model based on YOLOv8n that has been 
optimized for real-time performance. YOLOv8n was chosen for its 
compact size, anchor-free detection, and optimized backbone, which are 
crucial for achieving high-speed and real-time performance in resource- 
constrained environments. YOLOv8n builds upon the foundation of 
YOLOv5, introducing a revamped backbone network, an Anchor-Free 
detection head, and an improved loss function. These improvements 
provide superior object detection accuracy and reduced model size, 
making YOLOv8n an ideal choice for the challenges faced in ship 
identification using SAR imagery. Nevertheless, our model introduces 
four main changes to the original structure of the YOLOv8n model to 

improve its efficiency and accuracy in detecting ships from SAR images:

i. We propose the HGNetv2 backbone, designed to improve feature 
extraction for SAR imagery while minimizing complexity.

ii. We incorporate a lightweight neck architecture utilizing sepa
rable convolutions to optimize feature extraction and compress 
the model structure.

iii. A lightweight decoupled head is implemented to maintain 
detection accuracy while significantly reducing model 
parameters.

iv. We integrate a knowledge distillation module, which mitigates 
accuracy loss from the lightweight design without altering the 
model structure.

After detection, we develop a multi-object tracking approach based 
on the method Cascaded-Buffered Intersection over Union (C-BIoU) 
proposed by Yang et al. (2023). This approach increases the detection 
and trajectory tracking area by adding a buffer area, effectively merging 
detection data with trajectory information. As a result, the C-BIoU 

Fig. 1. The overall architecture of the proposed YOLOShipTracker model. CShuffle in red box refers to the module ’ChannelShuffle’ in PyTorch, which is used to 
divide and rearrange channels in a tensor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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method guarantees precise tracking of multiple ships, providing strong 
performance and real-time capability, which are crucial for monitoring 
maritime traffic and improving situational awareness.

The subsequent sections of the paper are organized as follows: Sec
tion 2 delves into an intricate examination of the proposed method and 
its architecture. In Section 3, we provide an overview of the SAR dataset 
utilized in this study, elucidate the experimental setup, detail the 
assessment metrics employed, analyze detection results, compare the 
findings with state-of-the-art (SOTA) models, discuss the conducted 
ablation study, and evaluate multi-object tracking metrics. Section 4
furnishes a comprehensive analysis of the obtained results and compares 
them with several SOTA models. Finally, Section 5 concludes the paper, 
summarizing key findings and presenting recommendations for future 
research.

2. Method

2.1. Proposed model architecture

The architecture of the proposed lightweight tracking model is pre
sented in Fig. 1. It is composed of four key components: i) a lightweight 
backbone, ii) a streamlined neck, iii) a distillation module, and iv) a 
decoupled head designed for single-category ship detection. We began 
by introducing a lightweight backbone to bolster the network’s feature 
extraction capabilities and enable multi-level feature fusion. This not 
only lowers the parameter count but also enhances the perception, 
generalization, and computational efficiency of the network. Subse
quently, incorporating depth-wise separable convolution technology 
into the neck architecture markedly raises computational efficiency 
while retaining comparable feature extraction quality to standard 
convolution. As a result, this expedites ship target recognition in SAR 
images. By preserving the favorable aspects of the original YOLOv8n 
decoupled head, our design facilitates independent tuning and precise 
learning of task-specific features, thereby enhancing the effectiveness 
and performance of the model in single-target identification tasks. By 
integrating shared parameters and decoupling head structures, our 
detection head minimizes computational complexity while maintaining 
its inherent advantages. The subsequent sub-sections delve into the 
specifics of our proposed approach.

2.2. Lightweight backbone

Drawing inspiration from RT-DETR (Zhao et al., 2023), we inte
grated a lightweight network module called HGNetV2 as the backbone 
extraction network. The network structure of HGNetV2 is depicted in 

Fig. 2. Our model adheres to the single-stage object detection framework 
of the YOLO series, proficiently extracting features and downsampling at 
the model’s forefront with the incorporation of HGStem blocks. 
HGNetV2 was selected for several reasons, specifically tailored to 
address the unique challenges posed by SAR imagery. Firstly, HGStem 
enhances computational efficiency by reducing the dimensionality of 
the initial feature map and removing redundant parameters. This 
reduction in complexity is crucial for SAR applications, where real-time 
processing is often required. Secondly, the HGBlock module (Fig. 3), 
essential to the HGNetV2 backbone, plays a crucial role in multi-scale 
feature extraction. Stacked HGBlocks ensure that features extracted 
from the network integrate information from multiple scales and depths, 
which is critical for managing the high variance in ship sizes and shapes 
found in SAR imagery. This design optimization enhances the network’s 
multi-scale processing capability, enabling it to effectively manage scale 
variations in images. Such capabilities are invaluable for accurately 
identifying ships of various sizes in SAR imagery.

Furthermore, incorporating Depthwise Convolution (DWConv) in 
the backbone architecture over traditional convolutional operations 
significantly reduces the model parameter count, simplifying the model 
while maintaining efficiency. DWConv conducts convolutions indepen
dently across each channel of the input feature maps, ensuring the 
preservation of fine-grained details within individual channels, which is 
crucial for maintaining the fidelity of feature information across the 
network. It is important to highlight that SAR images are characterized 
by their high resolution and the presence of speckle noise, which can 
obscure fine details. The multi-scale and depth-aware feature extraction 
capabilities of HGNetV2 help mitigate these challenges by ensuring 
robust feature representation. Moreover, the lightweight nature of 
HGNetV2 allows for faster processing times, which is essential for real- 
time SAR applications.

In summary, the integration of HGNetV2 into YOLOShipTracker is 
not merely for its lightweight nature and multi-scale feature extraction 
capabilities but also for its ability to handle the specific challenges 
associated with SAR imagery, such as varying ship sizes, speckle noise, 
and the need for real-time processing. These tailored optimizations 
make HGNetV2 an excellent choice for improving the efficiency and 
accuracy of SAR ship tracking.

2.3. Streamlined neck

A lightweight neck component for YOLOv8, inspired by Slim-neck (Li 
et al., 2024), was devised. Considering the distinct challenges in ship 
detection within SAR imagery—like sea clutter, noise, and environ
mental variations—the YOLOv8n architecture was substantially 

Fig. 2. The backbone structure of the proposed tracking model.
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modified. These modifications are essential to enhance the model’s 
performance and efficiency in dealing with SAR imagery’s unique 
characteristics.

Firstly, we replaced the conventional C2F module within the 
YOLOv8n network’s neck with the Channel Shuffle module, as depicted 
in Fig. 4 (a, b). The central element of this module, that is GSBottleneck, 
harnesses the group separable convolution (GSConv) structure. This 
structure is particularly suited for SAR imagery as it efficiently extracts 
subtle ship features while reducing the computational burden. The 
GSConv technique combines the outputs of a 1 × 1 convolution with 
those from a series of 1 × 1 and 5 × 5 convolutions, followed by channel 
shuffling. This design significantly reduces computational complexity 
and parameter count while maintaining the model’s ability to identify 
ship features accurately.

Additionally, the Channel Shuffle module utilizes 1 × 1 convolutions 
to compress and integrate feature information, thus simplifying the 
feature representation and decreasing the model’s overall complexity. 
This is crucial for SAR imagery, where maintaining a balance between 
computational efficiency and feature extraction capability is vital due to 
the presence of sea clutter and noise.

The modifications to the neck network, specifically the use of 

GSConv, provide dual benefits:

• Computational Efficiency: GSConv reduces the computational load 
and the number of parameters, making the model more suitable for 
deployment on resource-constrained devices. This efficiency is crit
ical for real-time applications, such as maritime surveillance and 
operational responsiveness.

• Enhanced Feature Extraction: By incorporating GSConv and the 
Channel Shuffle technique, our model preserves the efficiency in 
feature extraction and enhances its adaptability to the diverse envi
ronmental variations present in SAR data. This ensures that subtle 
ship features are accurately detected even amidst noise and clutter.

2.4. Decoupled head

The decoupled head is a vital component of the YOLOv8n architec
ture, accounting for nearly half of the total network parameters. This 
significant allocation highlights its crucial role in the model’s overall 
functionality. Each of the three decoupled heads employs a dual-branch 
structure, enabling efficient feature extraction across different scales. 
Notably, this design separates bounding box prediction from class 

Fig. 3. The overall structure of HGBlock.

Fig. 4. The overall structure of Channel Shuffle. a) GSBottleneck technique, b) Channel Shuffle technique, and c) GSConv technique. CShuffle in red box refers to the 
module ’ChannelShuffle’ in PyTorch, which is used to divide and rearrange channels in a tensor. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
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classification tasks, resulting in more focused and effective object 
detection. This decoupling mechanism enhances feature extraction ac
curacy and improves YOLOv8n adaptability and robustness in various 
object detection challenges. To maintain the high feature extraction 
accuracy of the original decoupled head while reducing parameter count 
and computational load, we devised a novel decoupled head. Illustrated 
in Fig. 5, our design introduces EMSConvP (Efficient Multi-Scale
Convolution), which leverages convolutional filters of various sizes (1 ×
1, 3 × 3, 5 × 5, 7 × 7) to process input feature maps. Afterward, 1 × 1 
convolutions merge features from different groups, and the fused output 
is processed through a dual-branch structure for recognition and clas
sification. By replacing four standard convolutions with EMSConvP, we 
significantly reduce computational and parameter loads while main
taining the ability to handle high-resolution feature maps. Additionally, 
using convolutional kernels of different sizes improves the model’s ca
pacity to detect ships of varying sizes in SAR images.

2.5. Distillation module

Knowledge distillation involves transferring knowledge from one 
network to another using attention mechanisms (Hinton et al., 2015; 
Wang et al., 2021). A commonly used technique in this process is L2 
distillation (Smith et al., 2023; Popp et al., 2024), which is widely 
prevalent. The L2 distillation process is illustrated in Fig. 6.

In short, the knowledge distillation module transfers knowledge 
from a larger and well-trained teacher model to our lightweight model. 
This process is crucial for several reasons:

• Enhanced Feature Extraction: The distillation process helps 
improve the feature extraction capabilities of the lightweight model. 
By learning from the teacher model, the student model gains the 
ability to extract more nuanced features from SAR imagery, which is 
essential for accurate ship detection and tracking.

• Compensation for Simplified Architecture: Given the use of 
DWConv in our model, there might be potential loss in feature 
extraction capability due to the lack of direct interaction between 
channels. The distillation module helps mitigate this loss by trans
ferring the detailed feature representations learned by the teacher 
model to the student model, thus enhancing the overall accuracy and 
performance.

• Efficiency without Complexity: The distillation process allows the 
lightweight model to achieve high performance without increasing 
its complexity. This is particularly important for real-time applica
tions where computational resources are limited.

• Empirical Validation: Our empirical results (see section 3.5 about 
the ablation study) demonstrate that the inclusion of the knowledge 
distillation module significantly enhances the model’s performance 

in SAR ship detection and tracking tasks. The specific weights used in 
the loss function were determined through rigorous experimentation 
to ensure optimal results.

The implementation applied in this work utilized a Mean Squared 
Error (MSE) loss function based on the L2 norm. This loss function is 
divided into two parts. The first part, denoted as Lbox, corresponds to the 
loss associated with bounding boxes, being its Eq. (1) as follows: 

Lbox =
1
N
∑N

i=1

∑M

j=1

(
sbox
ij − tbox

ij

)2×ωi
(1) 

N represents the number of samples in a batch, while M denotes the 
number of bounding box parameters for each sample or the dimen
sionality of other structured outputs. sbox

ij signifies the predicted value of 
the i − th bounding box parameter for the i − th sample by the student 
model, while tbox

ij denotes the predicted value of the same bounding box 
parameter for the same sample by the teacher model. Additionally, ωi 

represents the weight for the i − th sample, which is calculated based on 
the maximum sigmoid value of the teacher model’s classification scores 
and being applied to each bounding box parameter. Another part of the 
loss function pertains to the classification loss function, which is given 
by Eq. (2): 

Lcls =
1
N
∑N

i=1

∑C

k=1

(
sbox
ik − tbox

ik
)2×ωi (2) 

where C represents the total number of categories and sbox
ik denotes the 

predicted score by the student model for the i − th sample belonging to 
the k − th category. tbox

ik signifies the predicted score by the teacher model 
for the same sample belonging to the k − th category, while ωi represents 
the same sample weight as in the bounding box loss. The final distilla
tion loss is obtained through a weighted summation of the two-loss 
values. Empirical validation has shown that setting the weight for the 
bounding box loss to 1.5 and the weight for the classification score loss 
to 0.5 yields superior results. Therefore, the final distillation loss func
tion is given by Eq. (3) as follows: 

Ldistill = 1.5×Lbox +0.5×Lcls (3) 

2.6. Ship tracking model

The study proposes a MOT algorithm for maritime real-world envi
ronments, as illustrated in Fig. 7. First, the proposed lightweight version 
of YOLOv8n network is trained on short-time sequence SAR images to 
recognize patterns. This network swiftly and precisely identifies every 
ship in the images, providing vital data such as bounding boxes and 
confidence scores. These detection results are then fed into a multi- 
object tracking algorithm, which uses the bounding box data and 

Fig. 5. Differences between the two structures. a) The original decoupled head implemented in YOLOv8n. b) Our improved decoupled head.
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confidence scores to simultaneously track multiple ships and determine 
their motion trajectories. The proposed approach enhances the previous 
tracking algorithm by integrating ship data with target tracking 
trajectories.

In multi-object tracking studies, appearance consistency and geo
metric coherence are fundamental assumptions for linking detections 
between successive frames. Generally, an object should appear consis
tent in earlier frames if its current appearance closely matches its past 
appearance. Similarly, its former position and shape should match its 
current position and shape when taking into account its projected 
movement. In this way, many multi-object tracking algorithms are now 
incorporating re-identification modules to utilize appearance features, 
thereby improving tracking performance. Nevertheless, depending only 

on appearance can be unreliable for ships with erratic movement pat
terns and substantial changes in appearance. Additionally, integrating a 
re-identification module elevates the computational demands, slowing 
down the model’s inference time and making deployment complicated. 
To tackle these obstacles, this research is based on the MOT method 
called Cascaded Buffered IoU (C-BIoU) (Yang et al., 2023), which widens 
the buffer area to increase the matching space between detections and 
trajectories.

This research introduces an innovative multi-ship tracking approach 
that expands the buffer area by enhancing trajectory detection and 
tracking. This expansion increases the search space and consequently 
enhances the effectiveness of multi-object tracking. Fig. 8 shows how the 
tracking procedure works. Initially, the BIoU phase uses the primary 

Fig. 6. The process of L2 distillation.

Fig. 7. The ship tracking process.

Fig. 8. Visualization of the tracking process in the C-BIoU Tracker, demonstrating the multi-stage matching strategy employing varying buffer sizes for improved 
trajectory association.
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metric to associate active tracks and detections using a reduced buffer 
(b1). In the subsequent stage, a broader buffer (b2) is employed to 
reconcile all unmatched tracks and detections, employing the BIoU 
metric again. In this second stage, there is increased flexibility during 
the matching process, enabling consideration of objects with slight 
spatial variations caused by movement or other factors. The tracking 
method with C-BIoU enhances the robustness and precision of associ
ating tracks with detections by utilizing two matching stages with 
different buffer dimensions, resulting in more reliable object tracking.

A buffer zone is integrated into the C-BIoU Tracker to improve 
alignment between trajectory and detection. Building upon the initial 
Intersection over Union (IoU) metric, Fig. 9 demonstrates the multipli
cation of the Buffered IoU (BIoU) by a factor. BIoU enlarges the fitting 
space while preserving the original detection and the center position, 
scale, and shape of the trajectory. This enlargement increases the 
chances of successful trajectory mapping, thereby enhancing overall 
tracking accuracy. Eq. (4) establishes the calculation of the buffered 
target detection zone. By encompassing a buffer region around the target 
bounding box in BIoU, we can assess identical but non-overlapping 
detection boxes and trajectories across consecutive frames. This 
approach strengthens the ability to maintain consistent tracking even 
despite small discrepancies between frames.

It is important to highlight that the buffer zone preserves the 
contextual details of the target, allowing the algorithm to adjust to 
variations in ship position and shape. To avoid excessive expansion of 
the matching area, a cascaded matching approach is implemented. 
Initially, a smaller buffer zone is employed for matching detections and 
trajectories, succeeded by a larger buffer zone for further matching. 
According to Eq. (4).), the expansion factor for the small buffer zone in 
this study was set to b1 = 0.3, while the expansion factor for the large 
buffer zone was set to b2 = 0.5. 

ShipBox = [x − bw, y − bh,w+2bw, h+2bh] (4) 

where x and y represent the coordinates of the top-left corner of the 
original ship detection box, w and h represent the width and height of 
the original ship detection box, respectively, bw and bh represent the 
buffer width and buffer height, respectively, and b is the expansion 

factor.
The C-BIoU tracker predicts motion by averaging motion data over 

recent frames, a deviation from conventional multi-object tracking 
techniques that depend on Kalman filters for state estimation. This en
ables it to respond swiftly to unforeseen changes in motion. If a track has 
matching detections at a frame t for more than n frames, its state S is 
updated after Δ non-matching frames. Note that TrackBox = (x, y,w, h)
represents the result of detection, S represents the estimated state, Δ 
represents the number of unmatched frames and n represents the 
hyperparameter used to compute the average velocity in a given time 
interval.

3. Results

3.1. SSTD dataset

This study utilized SAR Ship Tracking Dataset (SSTD), which in
cludes two collections of satellite-derived SAR images covering the 
Zhejiang Chinese area (bordering the East China Sea) and the Strait of 
Malacca (southern part of the Malay Peninsula). These images were 
captured by Radarsat-2 and TerraSAR-X. The Radarsat-2 data was 
initially captured across the Strait of Malacca on January 7, 2012, at 
22:51:06, employing the VV polarization mode. Simultaneously, 
TerraSAR-X images using VV polarization were also generated at the 
same time and area but with a slightly enhanced resolution of 2.00 ×
2.00 m. In addition, TerraSAR-X data was collected in the Zhejiang re
gion on December 12, 2018, at 09:19:24 in the HH polarization mode, 
while Radarsat-2 imagery (HH polarization) was collected in the same 
area and day at 10:01:00 (Yasir et al., 2024b). The main features of the 
employed datasets are listed in Table 1.

3.2. Experimental setup

The experimental setup for our study consisted of an Intel(R) Core 
(TM) i9-13980HX CPU paired with an NVIDIA GeForce RTX 4080 GPU, 
which had 12 GB of RAM. Python 3.10 served as the programming 
language of choice. We used PyTorch version 2.1.0 together with CUDA 
11.8 for GPU acceleration. The initial learning rate was 0.01. We used 
the SGD optimizer with a momentum of 0.937 and a weight drop of 
0.0005 for the optimization. To improve the model’s performance and 
avoid overfitting, we iterated over 300 epochs. These initial hyper
parameters were refined through iterative experimentation.

3.3. Evaluation metrics

Several evaluation metrics to assess our model’s performance were 
employed in this study (Everingham et al., 2010). These metrics 
encompass Precision (P), Recall (R), F1-score (F1), Mean Average Pre
cision at a 50 % IoU threshold (mAP50), Floating Point Operations per 
Second (FLOPs) in Gigaflops (G), Parameters (Params), Model Size, and 
Frames Per Second (FPS). This comprehensive set of metrics was 
selected to comprehensively evaluate the model’s accuracy, efficiency, 
and real-time detection capabilities from various perspectives. The ac
curacy metrics used in this work are defined in Eq. (5): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P =
NTP

NTP + NFP

R =
NTP

NTP+NFN

F1 = 2 ×
P × R
P + R

mAP50 =

∫ 1

0
P(R)dR

(5) 

where NTP represents the number of true positives or correctly detected 
Fig. 9. Illustration of BIoU, which enlarges the matching space around detec
tion boxes to improve trajectory association in the C-BIoU tracking method.
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ships, NFP is the number of false positives or objects incorrectly classified 
as ships (commission error), and NFN corresponds to the number of false 
negatives or not detected ships (omission error). Note that while R 
measures the under-detection error (related to omission error), P is 
focused on the over-detection error (commission error). Finally, the F1- 
score considers the overall performance by considering both under- and 
over-detection errors.

The mAP50 threshold evaluates the detection accuracy of the model 
by computing the mean average precision at an IoU threshold of 50 % 
across all object categories. Using metrics such as FLOPs, Parameters, 
Model size, and FPS aims to assess our model’s portability concerning 
computational demand, parameter count, model size, and processing 
speed.

3.4. Results of ship detection

Table 2 depicts the results of the quantitative performance compar
ison between the proposed model (YOLOShipTracker) and the baseline 
model (YOLOv8n). It is notable that the proposed model exhibited en
hancements across various metrics. Specifically, the precision metric 
witnessed a marginal increase of 3.7 %, rising from 89.2 % to 92.9 %. 
Additionally, there was a notable improvement of 5.1 % in the recall 
metric, ascending from 85.6 % to 90.7 %, while the F1 metric experi
enced a significant boost of 4.4 %, elevating from 87.4 % to 91.8 %. 
Finally, the mAP50 metric registered a slight uptick of 5.3 %, climbing 
from 90.1 % to 95.4 %. Table 2 also compares specifications between the 
proposed model and the base model, indicating that the proposed model 
features a considerably lighter design, resulting in a reduction of 
approximately 45.7 % in the number of FLOPs or computational costs. 
Similarly, the enhanced model also has a lower number of parameters 
(2.05 million versus 3.02 million) and a smaller model size (3.92 MB 
versus 5.63 MB), but has a capacity of processing up to 339.7 FPS, that 
is, approximately 25.2 % higher than the base model. In summary, the 
results show that the proposed model significantly reduces the number 
of parameters, calculations, and model size without reducing the accu
racy. On the contrary, it even increases all metrics used to evaluate ac
curacy. Therefore, the proposed model can be considered 
comprehensively better than the baseline model.

Fig. 10 shows the F1 confidence curves of the baseline model and the 
proposed model. It can be seen that the F1-score of our model is higher 
than that of the baseline model when the confidence value is greater 
than 0.4. Because the F1-score is a comprehensive evaluation indicator 
of Precision and Recall, this not only indicates that the proposed model 
has better detection performance at high confidence thresholds but also 
shows a more balanced performance with respect to commission and 
omission errors. It is important to note that high confidence is generally 
required to ensure the model’s reliability in ship detection from SAR 
images. In this case, our model is clearly more reliable than the baseline 
model. To illustrate the difference between our model and the original 
YOLOv8n in terms of ship detection from SAR images, we deliberately 

selected two images from the dataset that are known for their compli
cated backgrounds. Fig. 11 depicts that the baseline model has problems 
with false detections, especially when facing multiple offshore vessels 
that cannot detect all vessels near the coast. In contrast, the enhanced 
model identifies every vessel in these images, albeit with slightly less 
emphasis on the vessel in the lower right corner of the image. For better 
understanding and comparison, we highlight the miss detection with the 
yellow circle and false detection with a light blue color within the 
figures.

We thoroughly compared the YOLOShipTracker model with several 
state-of-the-art algorithms (SOTA). The models to be compared were 
carefully selected based on their relevance, popularity, and applicability 
to the task at hand. Extensive experimentation on our datasets and 
rigorous evaluation using performance metrics such as accuracy, pre
cision, and computational efficiency were carried out to analyze the 
potential of the model proposed in this work compared to several SOTA 
models (see Table 3). This analysis not only highlights the strengths of 
our approach but also provides valuable insights into its comparative 
performance and potential advantages over existing solutions. As shown 
in Table 3, the proposed model not only yields clearly better accuracy 
metrics in terms of P, R, F1 and mAP50, but also outperforms other 
evaluation indicators, namely FLOPs, number of parameters to estimate, 
model size, and FPS. Remarkably, its computational complexity is only 
4.5 GFLOPs, which means a reduction of 81 % compared to the second- 
ranked YOLOv5 model. The number of parameters to be estimated in the 
proposed model is 2.05 million, which is only 22.5 % of the second- 
ranked YOLOv5 model. Similarly, the new model presents a size of 
3.92 MB, which is only 22.5 % of the second-placed YOLOv5 model. 
Finally, our model achieves a frame rate of 339.6 FPS, that is, 87.2 FPS 
higher than that of the second-placed YOLOv7 model. These results 
show that our model strikes a balance between accuracy and efficiency. 
Compared to other models, the proposed model is more suitable for use 
on edge devices as it ensures accuracy while enabling real-time 
detection.

3.5. Ablation study

An ablation study is an important aspect of scientific research in 
which certain system components are systematically removed or “ab
lated” to evaluate their individual effects on overall performance. By 
isolating these components, researchers can understand their individual 
contributions, leading to more informed decisions about system design 
or optimization. In this case, the ablation experiment aimed at dissecting 
the impact of the YOLOShipTracker model’s different modules on ac
curacy metrics and computational cost (FLOPs, parameters, and model 
size). As illustrated in Table 4, each proposed module serves as a 
lightweight component, effectively reducing the model’s operational 
load, parameter count, and overall size to varying extents. Notably, 
including the knowledge distillation module does not alter the structural 
data of the model but directly influences its recognition performance. 

Table 1 
List of datasets used in this study.

Satellite Location Imaging time(local time) Time difference Spatial resolution (m) Polarization mode

RADARSAT-2 Malacca Strait January 7, 201222:51:06 152 s 2.50*2.50 VV
TerraSAR-X Malacca Strait January 7, 201222:53:38 2.00*2.00 VV
TerraSAR-X Zhejiang December 12, 201809:19:24 41 min 36 s 2.08*2.08 HH
RADARSAT-2 Zhejiang December 12, 201810:01:00 1.95*1.95 HH

Table 2 
Performance and specifications comparison between the proposed YOLOShipTracker model and the baseline model (YOLOv8n).

Model P (%) R(%) F1(%) mAP50 (%) FLOPs(G) Params(M) ModelSize (MB) FPS

Baseline model(YOLOv8n) 89.2 85.6 87.4 90.1 8.3 3.02 5.63 254.1
YOLOShipTracker 92.9 90.7 91.8 95.4 4.5 2.05 3.92 339.7
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Consequently, upon amalgamating these modules to construct our pro
posed model, the final model has witnessed a significant reduction in the 
model’s structural parameters. The experimental outcomes underscore 
the lightweight nature of our holistic model architecture design.

Adding various modules to the baseline model has led to alterations 
in the accuracy evaluation metrics, albeit without significant changes. 
Each lightweight module inclusion increased the mAP50 metric. Upon 
integrating HGNetv2, Slim-neck, and Efficient Head (plus distillation 
module), our proposed model demonstrated a 3.7 % enhancement in 
precision (rising from 89.2 % to 92.9 %) and a 5.1 % increase in recall 
(from 85.6 % to 90.7 %). Although the F1-score increased by 4.4 % 
(from 87.4 % to 91.8 %), the mAP50 experienced a more noticeable rise 
of 5.3 % (from 90.1 % to 95.4 %). These findings underline the effec
tiveness of our model structure in improving the detection accuracy for 
ship detections in SAR images.

3.6. Multi-object tracking evaluation metrics

The primary evaluation metrics for ship multi-object tracking used in 
this work were the following: Higher Order Tracking Accuracy (HOTA), 
Multi-Object Tracking Accuracy (MOTA), Multiple Object Tracking 
Precision (MOTP), and IDF1 (similar to F1-score in tracking perfor
mance). HOTA, MOTA, MOTP and IDF1 are calculated as expressed in 
Eq. (6). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HOTA =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
DetA.AssA

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
C∈TPA(c)

TP + FN + FP

√

A(C) =
TPA(c)

TPA(c) + FPA(c) + FNA(c)

MOTA = 1 −

∑
tFP + FN + IDS

∑
tgt

MOTP =

∑
t,idi,t

∑
tct

× 100%

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
× 100%

(6) 

In Eq. (6), HOTA is calculated as the square root of the product of 
DetA (detection accuracy score) and AssA (association accuracy score). 
Being C a point belonging to True Positives (TP), A(C) represents the 
association accuracy, that is, how well a tracker links detections over 
time into the same identities (IDs), given the ground-truth set of identity 
links in the ground-truth tracks. Next, the three metrics needed to 

calculate A(C) are described. TPA (true positive associations) is the 
number of true positive matches between the two tracks. Any remaining 
detections in the predicted track (which are either matched to other 
ground-truth tracks or none at all) are False Positive Associations (FPA), 
while any remaining detections in the ground-truth track would be False 
Negative Associations (FNA). Finally, TP refers to the number of 
correctly matched targets, FN represents actual targets mistakenly pre
dicted as negative, and FP is the number of samples erroneously pre
dicted as positive by the model.

Regarding MOTA calculation (Eq. (6)), FP denotes the cumulative 
false detections within a specific frame t, while FN indicates the total 
number of detections that were missed in the same frame. IDS is used to 
quantify the number of times that a tracked object identification number 
changes during the course of tracking within frame t, while gt represents 
the count of actual targets present in frame t.

For the MOTP calculation in Eq. (6), i identifies the currently 
considered detection target. The term ct refers to the number of suc
cessful matches between identified targets and their estimated positions 
in frame t, and di,t measures the distance between a particular detection 
and its estimated position at frame t.

IDF1 is calculated in Eq. (6) from IDTP, IDFP and IDFN metrics. IDTP 
is the complete count of targets accurately tracked without any change 
in their identification. IDFP represents the total count of targets 
mistakenly tracked without any change in their identification. IDFN is 
defined as the total count of targets lost during tracking without any 
change in their identification.

Furthermore, we also evaluate the model performance using two 
additional metrics: the number of Identity Switches (IDS) and Frames 
Per Second (FPS). Higher values of HOTA, MOTA, MOTP, IDF1, and FPS, 
along with lower values of IDS, indicate better model performance.

3.7. Results of ship tracking

To assess the effectiveness of the proposed buffer IoU (BIoU) method 
for multi-ship tracking, we conducted experiments using BIoU as a 
matching metric, comparing the obtained results to those obtained 
without including buffers (i.e., using IoU) for the ship tracking dataset. 
In both cases, the YOLOv8n enhanced lightweight model described and 
validated in the last sections was used to accomplish ship detection on 
each SAR image frame. Table 5 summarises the results of these experi
ments, demonstrating that employing BIoU as a criterion of matching 
provides notable benefits in terms of accuracy and consistency when 
monitoring multiple vessels. As shown in Fig. 12, visual comparisons 

Fig. 10. F1-score confidence curves of the baseline model and the proposed YOLOShipTracker model.
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further confirm the quantitative analysis in Table 5. In fact, Fig. 12(a) 
depicts some ID changes and track breaks when the buffer zone exten
sion was not applied during the tracking process. However, the tracking 
ID remains consistent when BIoU is employed, indicating higher 
tracking stability. Furthermore, Fig. 12(b) shows that the number of 
missed detections decreases when BIoU is used for tracking. It is 

important to highlight that BIoU significantly widens the area sur
rounding the object’s bounding box, enhancing the chances of trajec
tories and detection boxes in nearby frames intersecting or aligning. This 
allows for accurate matching even if the position or shape of the target 
changes.

To evaluate the effectiveness of our proposed approach in tracking 

Fig. 11. Comparison detection results of the different models: (a, d, g, j) ground truth (green boxes), (b, e, h, k) baseline model, and (c, f, I, m) display YOLOSh
ipTracker model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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multiple ships, a comparative analysis with existing multi-object 
tracking (MOT) algorithms using YOLOv8n for ship detection was con
ducted. The comparative results are detailed in Table 6, showcasing the 
performance of various MOT models. Among the evaluated algorithms, 
such as DeepSort (Veeramani et al., 2018) and StrongSort (Du et al., 
2023), those featuring re-identification components generally exhibit 
reduced processing speeds. Specifically, DeepSort employs a 

combination of cascaded matching and appearance feature associations. 
However, it faces challenges in accurately distinguishing between tar
gets that look similar, mainly due to the limited processing power 
available for extracting appearance features, which affects its tracking 
effectiveness. The OC-SORT algorithm, introduced by (Cao et al., 2023), 
enhances tracking accuracy through a motion-model strategy and by 
overcoming some of the deficiencies observed in SORT algorithms and 
in the Kalman filter. However, our approach outperforms OC-SORT in 
terms of overall tracking and accuracy performance. It notably achieves 
the highest scores in HOTA (73.6 %), MOTP (87.5 %), and IDF1 (82.1 %) 
metrics among the state-of-the-art methods we examined, demon
strating exceptional accuracy and stability in tracking targets.

Furthermore, our technique attains a processing speed of up to 82 
FPS, marking a 50 % enhancement compared to the ByteTrack algorithm 
(Zhang et al., 2021). This is crucial for achieving real-time ship tracking 
in natural scenarios. The efficiency of the YOLOShipTracker algorithm 
proposed is further demonstrated through visualization findings in 
Fig. 13, where it can be made out that, despite challenges such as oc
clusion and lighting interference, it exhibits accurate tracking. In 
contrast to DeepSort, our approach exhibits enhanced performance by 
reducing missed tracking instances, demonstrating its improved ability 
to match detections with trajectories with the inclusion of a buffer. To 
better visualize missed detections and instances where ship IDs have 
been swapped, we have highlighted missed detections with yellow cir
cles and identified ships with swapped IDs by using dotted arrays. These 
visual cues provide a better understanding of tracking performance and 
potential vessel tracking issues. In summary, the tracking results pre
sented here qualify the proposed model as presenting exceptional ac
curacy and stability for tracking vessels in complex maritime 
environments.

Table 3 
Performance and specifications comparison between several baseline models and the proposed tracking model.

Model P(%) R(%) F1 (%) mAP50 (%) FLOPs (G) Params (M) Model Size (MB) FPS

RetinaNet (Lin et al., 2017) 89.1 56.8 69.4 63.7 170.0 139.1 524.6 64.8
EfficientDet-D1(Tan et al., 2019) 68.7 82.3 74.9 74.1 105.3 29.7 55.2 58.9
Faster R-CNN (Girshick, 2015) 69.2 76.6 72.8 64.8 369.0 136.7 522.3 38.7
SDD (Liu et al., 2015) 72.1 88.6 79.8 85.6 60.7 23.7 94.0 242.0
YOLOv5 (Zhao et al., 2023) 89.2 77.9 83.1 89.5 23.8 9.1 17.6 239.1
YOLOv7 (Wang et al., 2022) 87.0 79.3 82.9 88.2 44.2 16.2 32.1 252.5
Our Model 92.9 90.7 91.8 95.4 4.5 2.05 3.92 339.7

Table 4 
Results of the ablation study for the YOLOShipTracker model.

Baseline model HGNetv2 Slimneck Efficient 
head

Distillation P(%) R(%) F1 (%) mAP50 (%) FLOPs (G) Params (M) Model size (MB)

YOLOv8n ✕ ✕ ✕ ✕ 89.2 85.6 87.4 90.1 8.3 3.02 5.63
YOLOv8n ✓ ✕ ✕ ✕ 87.8 90.6 89.1 91.9 6.4 2.62 4.65
YOLOv8n ✓ ✓ ✕ ✕ 82.1 87.7 84.9 91.3 6.5 2.17 5.43
YOLOv8n ✓ ✓ ✓ ✕ 84.3 90.1 87.1 91.6 4.5 2.05 3.98
YOLOv8n ✓ ✓ ✓ ✓ 92.9 90.7 91.8 95.4 4.5 2.05 3.92

Table 5 
Comparison results between IoU and BIoU ship tracking approaches.

Model HOTA (%) MOTA (%) MOTP (%) IDF1 (%) FPS

IoU 70.8 78.1 86.6 79.3 79
BIoU 73.6 80.9 87.5 82.1 82

Fig. 12. Comparison of tracking results: a) IOU tracking results. b) BIoU 
tracking results.

Table 6 
Comparison of ship tracking results from various algorithms.

Model HOTA 
(%)

MOTA 
(%)

MOTP 
(%)

IDF1 
(%)

IDS FPS

DeepSort (Veeramani 
et al., 2018)

67.4 79.1 86.0 75.3 47 27

StrongSort (Du et al., 
2023)

71.9 79.2 85.4 79.1 91 19

OC Sort (Cao et al., 
2023)

69.4 79.3 85.1 75.2 103 50

ByteTrack (Zhang 
et al., 2021)

70.6 76.9 82.9 80.0 111 53

YOLOShipTracker 72.8 79.9 87.9 80.7 79 81
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We further evaluated our MOT algorithm to deepen our insight into 
its robustness, especially under challenging conditions that include non- 
ship elements. Fig. 14 highlights the capability of our YOLOShipTracker 
algorithm to consistently and accurately track ships across SAR short- 
time sequence images, ensuring no lapses in ship detection. Impor
tantly, our algorithm remains effective in complex environments, 

capable of handling diverse vessel sizes, and amidst non-vessel distrac
tions. This adaptability is critical, illustrating the effectiveness of our 
method in varied and cluttered maritime backgrounds, which are 
common in real-world scenarios. The results from these tests not only 
confirm the reliability of our algorithm, but also its relevance to 
enhancing maritime tracking technologies.

Fig. 13. Comparative illustration of tracking results for various tracking algorithms: a) DeepSort, b) StrongSort, c) OC Sort, d) ByteTrack, and e) YOLOShipTracker. 
Missed tracking targets are highlighted in the figure with a yellow circle, while dotted array represents the ID switch. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Tracking results of the proposed model in a complex environment.
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4. Discussion

This study leveraged two comprehensive datasets of SAR images 
from RADARSAT-2 and TerraSAR-X satellites, focusing on the Malacca 
Strait (Malay Peninsula) and the Zhejiang region (China). The model 
was trained over 300 epochs, with hyperparameters refined iteratively 
for optimal performance. The metrics comprehensively evaluate the 
model’s accuracy, efficiency, and real-time detection capabilities. Pre
cision and Recall are fundamental metrics in deep learning object 
detection, and the F1-Score combines these to provide a balanced 
measure. The mAP at a 50 % IoU threshold evaluated detection accuracy 
across all object categories, although in this study it directly relates to 
ship detection. In addition, metrics like FLOPs, Parameters, Model Size, 
and FPS assess the model’s computational demand, parameter count, 
and processing speed. Our results indicated a better detection perfor
mance and a more balanced precision-recall trade-off. This is crucial for 
reliable ship detection in SAR images, where high confidence is essen
tial. The proposed model effectively identifies all vessels, whereas the 
baseline model suffers from false detections and missing vessels near the 
coast. The superior performance of the proposed model in challenging 
conditions underscores its robustness and reliability, while a thorough 
comparison with several state-of-the-art models also demonstrates its 
superior effectiveness. In fact, our model outperformed other SOTA 
models in terms of key metrics like FLOPs, reduced number of param
eters, model size, and processing speed. Specifically, our model achieves 
4.5 GFLOPs, 2.05 million parameters, a model size of 3.9 MB, and up to 
339.7 FPS, significantly improving the performance of other models 
such as YOLOv5, YOLOv7 and YOLOv8n. These results highlight the 
proposed model’s balance between accuracy and efficiency, making it 
suitable for edge devices and real-time detection.

An ablation study is crucial for understanding the contributions of 
individual components within a complex system. By systematically 
removing or adding specific modules, we can isolate their effects on the 
overall performance, leading to more informed design and optimization 
decisions. In our study, the ablation experiments focused on evaluating 
the impact of various lightweight modules on key metrics such as FLOPs, 
number of parameters, and model size. The results highlighted the 
performance differences when individual modules—HGNetv2, Slim- 
neck, Efficient Head, and Knowledge Distillation—are included or 
excluded from the baseline YOLOv8 model. In this sense, the HGNetv2 
module enhanced the model’s efficiency without significantly altering 
its structural parameters. Moreover, adding the Slimneck module pri
marily improved the Recall and F1 score, indicating its effectiveness in 
capturing more true positives while maintaining a lightweight footprint. 
While the individual impact of the Efficient Head module was less 
pronounced, it contributed to the overall performance gains when 
combined with other modules, particularly regarding mAP50 and Pre
cision. Notably, the Knowledge Distillation module did not affect the 
structural aspects of the model but significantly enhanced recognition 
performance, underscoring its role in refining the model’s predictive 
capabilities. When all modules were integrated, the proposed model 
achieved a remarkable 2.3 % increase in Precision, a 7 % rise in Recall, a 
3.3 % boost in F1 score, and a 4.5 % improvement in mAP50. These 
findings confirm the goodness of our model’s architecture to improve 
ship detection accuracy in SAR images, underscoring the advantages 
offered by each constituent element. Moreover, metrics including 
MOTA, HOTA, IDF1, and MOTP thoroughly evaluated tracking precision 
and consistency. Additionally, we considered the number of Identity 
Switches (IDS) and Frames Per Second (FPS) to gauge the model’s real- 
time tracking capabilities.

The experiments above validate our model’s effectiveness, demon
strating its capability to accurately identify ships in various scenarios 
depicted in SAR images. We have optimized the model’s architecture by 
integrating multiple lightweight modules, achieving enhanced accuracy. 
This outcome aligns with our expectations, as we selected modules that 
are experts in extracting intricate details from SAR images. Our 

proposed model outperforms the original YOLOv8n model across all 
evaluation metrics, showcasing superior performance in both accuracy 
and structural assessments. Visualizations indicate that our model 
effectively focuses on target vessels in diverse situations, thereby mini
mizing false positives and negatives. Its simplified and efficient structure 
contributes to superior detection results, even with limited training data.

It is worth noting that Depthwise Convolution (DWConv) is priori
tized over traditional convolutional operations in the backbone archi
tecture of the proposed tracking model in order to reduce the model 
parameter count significantly. As it is widely known, DWConv conducts 
convolutions independently across each channel of the input feature 
maps, ensuring the preservation of fine-grained details within individual 
channels, which is crucial for maintaining the fidelity of feature infor
mation across the network. However, we recognize that DWConv lacks 
direct interaction between channels, which could impact the model’s 
feature extraction capability. To address this issue, one potential solu
tion is to incorporate pointwise convolutions (PWConv) following 
DWConv operations (Zhang et al., 2020). PWConv performs 1x1 con
volutions across all channels, effectively reintroducing inter-channel 
communication and ensuring that the features extracted by DWConv 
are combined in a meaningful way. While we have not implemented this 
approach in the current model, it remains a viable option for future 
optimizations to further enhance feature extraction capabilities.

On the other hand, our experiments demonstrated the superiority of 
using BIoU over traditional IoU for matching metrics in ship tracking. 
BIoU vs. IoU showed significantly enhanced tracking performance, with 
higher HOTA, MOTA, MOTP, and IDF1 scores. BIoU expanded the space 
around bounding boxes, facilitating more accurate matching even when 
the target’s position or shape changed, leading to fewer ID changes and 
track breaks. Visual comparisons (Fig. 12) reinforced these findings, 
showing more stable and accurate tracking with BIoU, particularly in 
complex maritime environments. Finally, when comparing our proposed 
YOLOShipTracker model with other SOTA algorithms, several key ad
vantages are observed, such as higher accuracy, stability, and real-time 
capability. Thus, with a processing speed of up to 82 FPS, our model 
significantly outperformed other SOTA algorithms in terms of real-time 
processing capability, making it well-suited for practical applications. In 
this way, our model consistently outperformed DeepSort, StrongSort, 
OC-SORT, and ByteTrack regarding accuracy and processing speed. Vi
sualizations in Fig. 13 further highlighted our model’s robustness in 
tracking ships amidst occlusion and varying lighting conditions, with 
fewer missed detections and ID swaps. Our additional assessments in 
challenging environments (Fig. 14) also demonstrated the robustness 
and adaptability of YOLOShipTracker, being able to provide consistent 
tracking accuracy even amidst the presence of non-ship objects, 
affirming its efficacy in real-world settings characterized by cluttered 
and varied backgrounds.

5. Conclusion and future work

The proposed YOLOShipTracker model, through strategic modifica
tions of the original YOLOv8n model, achieves significant reductions in 
computational complexity and model size while enhancing ship detec
tion accuracy and real-time processing capabilities. The comprehensive 
evaluation and comparison with SOTA object detection models 
concluded its robustness and efficiency, making it an excellent choice for 
practical applications in ship detection using SAR imagery.

This study also underscored the significant advancements made by 
integrating lightweight modules and employing innovative tracking 
metrics like BIoU. Our proposed YOLOShipTracker model not only en
hances detection accuracy and tracking stability, but also excels in real- 
time processing, making it a robust solution for maritime surveillance 
and SAR image analysis. By systematically evaluating and comparing 
our approach with existing SOTA object tracking algorithms, we have 
demonstrated its superior performance, paving the way for its applica
tion in complex and dynamic maritime environments. In this sense, the 
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YOLOShipTracker model can be considered for real-time deployment on 
edge devices, suggesting its suitability for practical applications. Future 
efforts will involve testing our model on multiple platforms to further 
validate it.

Regarding further works, we propose to investigate other potential 
lightweight modules that could be integrated into the model to further 
reduce the computational burden while maintaining or improving 
detection accuracy. We also recommend extending the model to handle 
various SAR imaging conditions, such as different resolutions, noise 
levels, and environmental factors (e.g., weather conditions). This would 
involve training and testing the model on a more diverse dataset to 
ensure robustness across different scenarios. Researchers may imple
ment advanced data augmentation techniques tailored to SAR images, 
such as SAR simulation and data synthesis, to improve the model’s 
generalization capability and performance on unseen data. We also 
suggest exploring the integration of data from other sensors (e.g., optical 
images, AIS data) to complement SAR imagery. This multimodal 
approach could enhance detection and tracking performance by 
providing additional context and information. Perhaps researchers can 
develop collaborative tracking systems that combine multiple models or 
systems to improve overall tracking accuracy and reliability. This could 
include ensemble methods or fusion algorithms that aggregate pre
dictions from different models. Finally, this study recommends estab
lishing frameworks for monitoring and maintaining the long-term 
performance of the implemented model. This would include periodic 
retraining, updating, and validation to ensure the model remains 
effective as conditions and data evolve over time. By pursuing these 
future research directions, we can further improve the robustness, ac
curacy, and applicability of the YOLOShipTracker model, making it an 
even more powerful tool for maritime surveillance and SAR image 
analysis.
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