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ABSTRACT 

 

Accurate assessment of Fraction of Absorbed 

Photosynthetically Active Radiation (FAPAR) in large scale 

is significant for crop productivity estimation and climate 

change analysis. The object of study is to simulate FAPAR 

in the rice growth period for exploring photosynthetic 

capacity of rice in large-scale. The daily FAPAR is 

calculated based on a coupled model consisting of the 

leaf-canopy radiative transfer model (PROSAIL) and the 

World Food Study Model (WOFOST). Due to the limitation 

of the PROSAIL and WOFOST model, we introduced the 

remote sensing data assimilation method, which assimilated 

the Normalized Difference Vegetation Index (NDVI) into 

the coupled model, to improve the prediction accuracy and 

carry out the large-scale application. The results show high 

correlation between the simulated FAPAR and the measured 

data, with the determinate coefficient (𝑅2) of 0.75 in the 

study area. The spatial distribution of FAPAR is uniform in 

flat area, which indicates that the rice in the whole study 

area has well growth condition and photosynthetic capacity. 

This study suggest that the coupled model (PROSAIL + 

WOFOST) assimilated with remote sensing data could 

accurately simulate daily FAPAR during the crop growth 

period. 

 

Index Terms— FAPAR, crop model, PROSAIL, 

coupled model, assimilation 

 

1. INTRODUCTION 

 

The crop productivity is largely determined by the amount 

of intercepted solar radiation and the efficiency of 

photosynthesis process (which means the conversion 

efficiency of intercepted energy to carbohydrates)[1]. The 

Fraction of Absorbed Photosynthetically Active Radiation 

(FAPAR), defined as the fraction of Photosynthetically 

Active Radiation (PAR) absorbed by a green canopy in the 

0.4–0.7 μm spectral range, provides the key information for 

quantitative estimation of canopy photosynthetic capacity as 

it constrains the photosynthesis rate through the energy 

absorbed by the vegetation[2]. In addition, FAPAR has been 

proven to be a crucial biophysical variable in characterizing 

energy conversion of crop physiological process and an 

important indicator for monitoring the health status of crop 

growth[3]. However, crop growth is a dynamic process and 

the instantaneous FAPAR could not reflect the crop growth 

condition during the whole growth period. Therefore, it is 

necessary to simulate FAPAR seasonally by the agricultural 

sector to properly assess the health status and productivity. 

Studies indicate that the estimation of FAPAR from 

optical remote sensing data can be divided into empirical 

and physical methods [4-6]. The empirical methods are 

widely used , which mainly focus on empirical relationship 

between field-measured FAPAR and satellite-derived 

vegetation indices by regression analysis[7]. This method 

needs no knowledge of physical mechanism in the radiative 

transfer process, which makes it easy to apply in large 

areas.[8]. However, the empirical model are limited by 

conditions because the canopy reflectance changes with 

observation and spatial resolution[8]. Some studies 

demonstrate that the relationship between FAPAR and 

vegetation indices, such as NDVI, is seriously affected by 

vegetation growth period and the reflectance of 

background[9]. In contrast, the physical model which 

consider the interaction between solar radiation and 

vegetation canopies can be applied under most conditions, 

including different land covers and growth periods[6]. 

However, the physical models require many input 

parameters for initialization. Some studies conducted 

sensitivity analysis in the physical model to assess the 

contribution of the input parameters in FAPAR retrieval[10]. 

The results show leaf area index (LAI) play a greater role 

than other vegetation biochemical variables in FAPAR 

estimation. This study also reveals that the accuracy of LAI 

estimation directly influences the retrieval performance of 

physical model. Therefore, LAI could be the significant 

connection between physical and other models. In addition, 

both empirical and physical models are discontinuous in 

temporal scale because of the visit circle of  remote sensing 

data[6]. This limitation result in the missing of time-series 

of FAPAR. Previous studies found that assimilating LAI 

into the WOFOST model can simulate seasonal LAI 

accurately during rice growth period[11]. The variation of 

rice biochemical parameters have been considered in this 

method. Hence, the combination of the physical and 
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WOFOST models with data assimilation is considered as the 

effective approach to simulate seasonal and large-scale 

FAPAR for  rice photosynthesis assessment. 

In this study, the coupled model, consisting of 

PROSAIL and WOFOST model, is employed to simulate 

daily FAPAR during rice growth period. Then, NDVI 

derived from remote sensing data are assimilated into this 

coupled model to improve the accuracy of FAPAR 

simulation and obtain FAPAR in large scale.   This study 

aims to simulate FAPAR during the rice growth period to 

explore photosynthetic capacity in large-scale. 

 

2. STUDY AREA AND DATA 

 

The study area is located in Zhuzhou (112⁰17’-114⁰07’ E, 

26⁰03’-28⁰01’ N), a city in Hunan Province of China, which 

is an old industrial base and important grain production 

region. The climate here is mostly humid, and there is 

sufficient sunshine for growing paddy rice from May to 

September. Rice is the major crops in this area. Six 

sampling point are selected in this study area to obtain 

measured data for validation.  

The experimental datasets include remote-sensing, 

meteorological and field-measured data. Four 16m 

multispectral GaoFen-1 images (The first series of Chinese 

High Resolution Earth Observation System, GaoFen-1) are 

selected to calculate NDVI for assimilation in the rice 

growth period. The rice area is extracted by supervised 

classification. In order to obtain validation data, three 

fieldworks were carried out to obtain FAPAR of rice in 

2015 during the entire rice growing season. In the 

fieldworks, the FAPAR are calculated from PAR above and 

below the canopies. The SPAD-502 portable chlorophyll 

meter (Minolta Corporation, Ramsey, NJ, USA) are 

employed for PAR measurements. The meteorological data, 

including daily maximum temperature, minimum 

temperature, early morning vapor pressure, mean daily wind 

speed at 10 m and hours of sunshine, are obtained from the 

China Meteorological Data Sharing Service System to drive 

the crop model. 

 

3. METHOD 

 

In this study, the PROSAIL and WOFOST model are 

combined through the crucial variable LAI to obtain 

FAPAR during the rice growth period. Then we assimilated 

remote sensing images into this coupled model to simulate 

FAPAR in large scale.  

 

3.1 Improved PROSAIL Model for FAPAR calculation 

 

We improve the PROSAIL model by the law of 

conservation of energy for calculating FAPAR. Based on 

the Four-Stream Radiative Transfer theory developed by 

Verhoef and Bach, the direct and diffuse directional 

transmittance and reflectance calculated by PROSAIL are 

considered in order to assess the absorption efficiency of 

light by the canopy[12]. Meanwhile, multiple scattering 

effects caused by the interaction between the canopy and 

background soil need to be considered in the calculation. 

The equations for calculating the FAPAR is as follows [12]: 

αs
∗ = αs +

τssγsd+τsdγdd

1−γddρdd
b αd             (1) 

αd
∗ = αd +

τddγdd

1−γddρdd
b αd                (2) 

αs = 1 − ρsd − τsd − τss              (3) 

αd = 1 − ρdd − τdd                  (4) 

FAPAR =
∑ (αs

∗Edir
t +αd

∗ Edif
t )λ=700

λ−400

∑ (Edir
t +Edif

t )λ=700
λ−400

            (5) 

where 𝛼𝑠
∗ and 𝛼𝑑

∗
 are canopy absorptance for direct solar 

incident flux (𝐸𝑑𝑖𝑟
𝑡

) and hemispherical diffuse incident 

flux( 𝐸𝑑𝑖𝑓
𝑡

), respectively;  𝛼𝑠  and 𝛼𝑑  represent 

absorbance of the isolated canopy layer for solar and 

hemispherical diffuse incident flux, respectively; 𝛾𝑑𝑑 and 

𝛾𝑠𝑑  are bi-hemispherical factor and directional–

hemispherical factor over the surroundings, respectively; 

𝜏𝑠𝑠  and 𝜏𝑠𝑑  are direct transmittance and 

directional-hemispherical transmittance for solar flux, 

respectively; 𝜌𝑑𝑑  and 𝜌𝑠𝑑  represent bi-hemispherical 

reflectance at top-of-canopy and directional–hemispherical 

reflectance for solar flux, respectively; 𝜌𝑑𝑑
𝑏

 is the 

bi-hemispherical reflectance at the bottom of canopy. This 

improvement makes the PROSAIL simulate the reflectance 

and FAPAR of canopy simultaneously. 

 

3.2 Coupled WOFOST and PROSAIL model with 

remote data assimilation for large-scale FAPAR 

simulation  
 

The WOFOST model is a mechanistic model that simulates 

the annual growth of crop at a daily time-step under specific 

soil and climate conditions. LAI, as the input parameter of 

WOFOST and the output parameter of PROSAIL, is the 

essential variable for crop growth simulation. In this study, 

we employ LAI as the connection between the PROSAIL 

and WOFOST model for FAPAR simulation during the rice 

growth period. However, the WOFOST and PROSAIL 

model are point-model which only simulates parameters in 

small scale. And those two models are not well performed in 

realistic environment because the crop is effect by many 

factors in the growth period. In which, the transplant 

date(TD) is the important factor for the accuracy of LAI 

simulation in the WOFOST model. Therefore, the remote 

sensing date assimilation is employed for optimizing the 

coupled model (WOFOST+PROSAIL) in order to obtain 

FAPAR in large scale. The assimilation process adjusts the 

TD using particle swarm optimization algorithm (PSO), 

which calculate the cost function between retrieved NDVI 

from remote sending data and simulated NDVI from 

coupled model. The process can be simply divided into four
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Figure 1 Validation of simulated FAPAR against measured FAPAR at six sampling point 

 

Table 1 Comparison of determinate coefficient (R2) at six sampling point 

Sampling point a1 a2 a3 a4 a5 a6 

R2 with assimilation 0.790 0.780 0.813 0.814 0.779 0.800 

R2 without assimilation 0.650 0.689 0.700 0.712 0.667 0.702 

 
steps. Firstly, NDVI are retrieved from GaoFen-1 images 

corresponding to different rice growth period. Secondly, the 

coupled model is initialized to simulate the NDVI in the 

whole growth season. Then, the cost function is calculated 

based on retrieved and simulated NDVI values at the 

corresponding time. Finally, if the cost function does not 

meet the condition, the initial TD is continually adjusted 

until the difference between simulated and retrieved NDVI 

vale was minimal. The detail of PSO and cost function is 

described in our previous studies. 

 

4. RESULT 

 

In six sampling points, we obtain the measured FAPAR 

to verify the accuracy of coupled model. Based on the 

position of sampling points, the simulated values are 

selected to compare with the corresponding measured values. 

Then, the correlations between simulated and measured 

values are analyzed. In study area, the determinate 

coefficient (R2) at six sampling points were 0.790, 0.780, 

0.813, 0.814, 0.779 and 0.800 (Figure 1), respectively. All 

root mean square error (RMSE) values are less 0.04. Then 

we simulated FAPAR without assimilation to assess the 

performance of assimilation in FAPAR simulation. The 

correlation between measured and simulated FAPAR 

without assimilation are calculated and compared with that 

between measured and simulated FAPAR with assimilation 

process. The result shows that remote sensing data 

assimilation significantly improves the accuracy of the 

coupled model (Table 1). These results suggest that this 

coupled model combined PROSAIL and WOFOST is an 

effective tool for FAPAR estimation. And data assimilation 

can effectively improve the accuracy of coupled model. 

Based on the validation procedure, the coupled model 

optimized by remote sensing data assimilation can be used 

to simulate the FAPAR in large area. It could address the 

spatial discontinuity caused by the coupled model and 

temporal discontinuity caused by remote sensing data. 

FAPAR retrieved from remote sensing data are influenced 

by meteorological condition in the rice crucial period. But 

the coupled model and data assimilation could  

fix the problem and simulate FAPAR in the whole growing 

period. The spatial distribution of FAPAR in the heading 

stage, which is the most vigorous stage of rice growth, is 

shown in Figure 2. In general, the spatial distribution of 

FAPAR is stable in Zhuzhou city. In the southern part, 

mixing pixels are occurred as a result of the complexity of 

terrain. As a result, FAPAR are higher than those in other 

areas. In order to eliminate the effect of mixing pixel, it is 

necessary to employ an accurate classification method for 

farmland extraction. Besides, we assumed that the input 

parameter of the crop model and radiative transfer model are 
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invariable, however, these parameters could change and lead 

to some errors in reality. Therefore, more fieldworks are 

needed to normalize the parameters to improve the accuracy 

of coupled model in the future. 

 
Figure 2 The spatial distribution of FAPAR of rice in 

heading period 

 

5. CONCLUSION 

 

In this study, the WOFOST and PROSAIL model are 

coupled for FAPAR simulation during the rice growth 

period. Then the coupled model is optimized by remote 

sensing data assimilation which also introduces the coupled 

model to larger scale. The simulation accuracy of coupled 

model is assessed by calculating the determinate coefficient 

(𝑅2) between simulated values and validation data. The high 

correlation between simulated and measured FAPAR 

indicate that the coupled model with data assimilation has 

high stability and availability. The spatial distribution of 

FAPAR is uniform in most flat area. But in the mountain 

area, FAPAR are abnormal higher because of the mixing 

pixels. Consequently, this coupled model (the PROSAIL 

and WOFOST model) could be  an effective approach to 

simulate FAPAR accurately in large scale. 
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