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ABSTRACT 

 

In forest monitoring and management, any rational decision 

needs to be based on forest parameters. The diameter at 

breast height (DBH) of a tree is considered to be the most 

significant parameter among them. This paper presents a 

novel method for extracting tree stems and estimating DBH 

of trees in a forest environment from 3D point clouds data 

acquired by a terrestrial laser scanning (TLS) system. In the 

proposed method, a downward-growing algorithm is used to 

extract individual tree stems and DBH of trees are estimated 

by the circle fitting algorithm. This proposed method can 

avoid errors caused from tilted trees by estimating a plane 

perpendicular to the tree stem. With this method, 17 trees 

were extracted from single-scan point cloud data consisting 

of 21 trees. The estimated DBH had a bias of 0.38 cm and a 

root mean squared error of 1.76 cm. These experiment 

results show the feasibility of the proposed method. 

 

Index Terms—Terrestrial laser scanning, 3D point 

clouds, stem detection, DBH, forestry 

 

1. INTRODUCTION 

 

The volume of wood is an important key variable in forest 

inventory. This key variable is usually derived from several 

forest structural parameters such as diameter at breast height 

(DBH), height and crown of trees. At all of these forest 

parameters measurements, accurate measurement of DBH is 

a critical step. Small changes in DBH will lead to a 

significant difference in volume due to the volume of wood 

is in direct proportion to the square of the radius of trunks. 

The traditional way of acquiring DBH is derived from the 

circumference of trunks, while the circumference is 

manually measured with a tape measure. Only a small part of 

all trees in the forest can be measured because it is time-

consuming and labor-intensive for acquiring DBH of trees 

by traditional measure ways. Therefore, the research and 

application value of acquiring DBH of trees automatically is 

obvious.  

Terrestrial laser scanning (TLS) has been established as 

a non-destructive surveying technology that allows capturing 

3D point clouds with a high precision and spatial resolution 

[1]. These millions of 3D points record most of the forest 

information we need in millimeter-level detail [2]. An 

automatic data processing method is needed to get DBH of 

trees from 3D point clouds.  

There are not only tree stems in original point cloud of 

the forest scenes, but also stones, low vegetation and leaves. 

Before acquiring DBH of trees, detection of trees or stems in 

point clouds is an indispensable procedure. In [3], the cluster 

algorithm and statistical component features of each object 

were used to detect trees. In [4], the individual tree was 

extracted based on the density of the points projected onto 

the X-Y plane. In [5], the Hough transformation was used on 

projected point clouds to detect tree stems and a modified 

RANSAC method is used to compute diameters of the tree. 

Researchers in [6] and [7] proposed a two-layer projection 

approach to determine the location of each tree and cylinder 

fitting and growing to extract stem of the tree. Before 

cylinder fitting, the RANSAC was simply applied to reduce 

noise. The following two steps were presented in [8] to 

acquire DBH of trees: (1) developing a 3D template which 

has a leaning angle to detect tree stem that extant upwards 

from the ground surface, and (2) using a circle fitting 

algorithm to seek the circle center and radius from projected 

points. A clustering algorithm based on the horizontal scan 

angle and the range as well as an adaptive circle-ellipse 

fitting method based on the point clouds transects were 

presented in [9] to extract the DBH of trees from single-scan 

point clouds. The Fourier series curve approximation 

combined with the circle fitting was proposed in [10] for 

modeling stem cross-section shapes, while tree stems were 

manually identified from the multiple-scan point clouds. 

The main idea of this paper is to propose a new method 

for automated detection of trees and measurement of DBHs 

from 3D point clouds. The method was evaluated on single-
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scan point cloud data acquired by a RIEGL VZ-1000 TLS 

system.  

 

2. FRAMEWORK 

 

This paper aims at measuring DBH of trees automatically 

from the 3D point cloud. The workflow is demonstrated in 

Fig. 1 which includes four steps: data pre-processing, noise 

filtering, detecting stems and measuring DBH. The outputs 

of this workflow are DBH and location of every tree.  
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Fig. 1. Workflow of DBH estimation 

 

3. METHOD  

 

3.1. Data pre-processing  

 

The 3D point clouds acquired by the TLS system consist of 

a lot of ground points. These ground points will take a large 

amount of computation time and memory space. Therefore, 

the ground removal algorithm used in [11] is adopted to 

remove ground points from the raw point clouds. The 

purpose of this paper is to determine the location of the 

stems and measure the DBH (1.3 m high above the ground) 

of stems. Theoretically, a height threshold of 2.5 m is used 

to remove those off-ground points higher than 2.5 m above 

ground. Fig. 2(b) shows off-ground points after ground 

points removal, Fig. 2(c) shows the off-ground points lower 

than 2.5 m above ground.  

 
(a) 

 
(b) 

 
(c) 

Fig. 2 Data pre-processing: (a) raw point clouds, (b) off-

ground points, and (c) off-ground points lower than 2.5 m 

above ground  

 

3.2. Filtering  

 

In [12], one point is preliminarily identified as a stem point 

if it is of low variance in one direction in a local coordinate 

system and has a close-to-horizontal normal vector in the 

real-world coordinate system. The results of [12] show that 

this approach is valid. Inspired by this approach, non-stem 

points are removed from the sub-layer points based on the 

normal vector Z component value. Tree stems are almost 

upright in spatial, the normal vectors of points belonging to 

a stem have a Z component with a small absolute value such 

as 
2P  and 

2V  in Fig. 3. While the absolute values 

corresponding to the points on tree crowns, bushes, leaves 

etc. are higher than a threshold set by experience. These 

points will be filtered out such as 
1P  in Fig. 3. 

The normal vector of each point is estimated from the 

spatial position of k nearest points around a point. A plane is 

fitted to neighboring k points to estimate the normal vector. 

The solution for fitting plane is to analyze the eigenvector 

and eigenvalues of a covariance matrix C created from these 

k points. The eigenvector of C corresponding to the smallest 

eigenvalue will be approximate of a normal vector. The 

covariance matrix C is: 
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Fig. 3 Illustration of filtering  

 

3.3. Stems detection  

 

Almost all of the points contained in the sub-layer are 

belonged to tree stem after filtering. These retained points 

are divided into several voxels at a predefined resolution of 

l w h   as shown in Fig. 4. A voxel is a small block in the 

shape of a cuboid. The points number in a voxel is assigned 

to the corresponding voxel. The voxels and points numbers 

are denoted as
ijkv and

ijkn , respectively, [1, ]i L , [1, ]j W , 

[1, ]k K , where L, W and K are the voxels numbers along 

X-, Y-, and Z-axis, respectively. A downward-growing 

method is used to detect tree stems in the voxel structure 

point clouds.  
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Fig. 4 Cuboid and downward-growing  

 

We firstly search the voxel whose point number 
ijkn is 

more than a threshold 
thresN  in 

1layer  (the topmost). Once a 

satisfied voxel ijkv is sought, it is added into point 

cloud
ltree  (the lth tree stem). The satisfied neighbor voxels 

are also added into 
ltree  by a region growing algorithm. 

The downward-growing algorithm under the same condition 

is used to grow all voxels belonging to this stem from those 

voxels which have not been added into
ltree . After all 

voxels in 
1layer  have been searched or grown, these steps 

will be repeated in those voxels in next layer which have not 

been grown. This stem growing algorithm will stop in the 

bottom layer, when extracting all suspected tree stems. 

Stems whose heights are small than a threshold will be 

removed from the suspected stems, because they should be 

bushes or stones rather than tree stems.  

 

3.4. DBH estimation  

 

All tree stems have been extracted and separated from 

single-scan point clouds completely. For each tree stem, a 

slice with a thickness d is cut out of the stem at a height of 

1.3 meters above the ground as shown in Fig. 5 (a). The 

normal vector of each point is used to estimate a plane 

perpendicular to the stem. The cross product of normal 

vectors of two different points on the stem is close to the 

normal vector (
sv ) of the estimated plane. So the normal 

vector
sv can be computed by 
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where M is the number of points in the point clouds, 
iv  is 

the normal vector of point i. ()sgn is the sign function, 
ijZ  is 

the Z component of 
i jv v  and Nor(v) represents the  

normalizing vector v. It is easily to get a plane perpendicular 

to the stem with normal vector 
sv .  
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Fig. 5 (a) A point cloud (red), (b) perpendicular plane 

estimation, and (c) projected points (red) 

 

All points are projected onto the estimated plane. 

Comparing to [9], this is an easier method to avoid the errors 

result from the tilted trees. The elevation view and vertical 

view of projected points are shown in Fig. 5(c). There may 

be some noise points reflected by adventitious roots or 

tender shoots among projected points. These noise points 

can be filtered out through the RANSAC algorithm with 

circle model. After filtering, a circle fitting method is used 

on projected points to acquire the location and DBH of tree 

stems.  

 

4. RESULTS AND DISCUSSION 

 

In the experiments, the raw TLS points clouds used in this 

study showed in Fig. 2(a) were acquired in the Siming 

district of Xiamen by a RIEGL VZ–1000 TLS system. The 

acquired point clouds contain 21 trees. Fig. 6 shows 17 tree 

stems that were automatically extracted by the proposed 

method. According to the observations, two missed trees 

were obscured, and the others had a very low point density 

because they were too far from the scanning position of the 

TLS system.  
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Fig. 6 Extracted stems 

 

TABLE 1. Estimated DBHs and field-measured DBHs  (cm) 

Estimated Field  Error  Estimated Field Error  

15.72 13.69 2.03 14.84 15.61 -0.77 

15.54 15.92 -0.38 13.11 14.01 -0.90 

10.26 8.47 1.79 15.53 14.80 0.73 

12.04 13.50 -1.46 13.75 13.80 -0.05 

15.51 15.11 0.40 17.40 15.31 2.09 

20.06 15.76 4.30 11.39 11.49 -0.10 

10.95 13.40 -2.45 18.50 15.60 2.90 

13.33 14.01 -0.68 15.55 14.90 0.65 

11.47 13.05 -1.58    

 

Table 1 lists those estimated DBHs and the field-

measured DBHs.  The bias, root mean square error (RMSE) 

and RMSE (%) are calculated to evaluate the estimation 

accuracy. 
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where 
id  is the estimated value and ˆ

id  is the reference 

value; d  denotes the mean of the reference value and k 

represents the number of extracted trees. 

The DBHs were estimated with a bias of 0.38 cm and an 

RMSE of 1.76 cm (12.18%). While the RMSE of DBHs 

estimation was 1.98 cm for only using circle fitting on points 

projected onto the horizontal plane. The improvement of 

these results is mainly coming from the more accurate DBHs 

estimating for some tilted trees (e. g. the red ones in Fig. 6). 

It is shown that the proposed method achieved a better result. 

 

5. CONCLUSION 

 

In this paper, we present an automated method for extracting 

tree stems and measuring DBH. As the cross product of 

normal vectors, to estimate the plane which is perpendicular 

to tree stem, can avoid errors caused by tilted trees. In test 

data, 17 trees were detected correctly, and 4 trees were 

missed. The reasons for missing trees demonstrated that the 

density of point cloud and complexity of forest affect the 

accuracy of trees detection. The bias of 0.38 cm could be 

caused by the noise points reflected from knots on tree stem. 

The results of tree stems extraction and evaluation imply that 

the proposed method is able to acquire DBH of trees in the 

forest. Processing the point clouds data with voxel structure 

takes the most time, so faster trees extraction method in the 

complex forest will be father studied in the future work. 
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