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ABSTRACT 

This study recognizes the significance and considerable 

commercial applications in creating Level of Detail (LoD) 

building models for 3D city models generation. 

Accordingly, this paper proposes a novel method to 

identify and extract window frames on building facades 

from Mobile Laser Scanning (MLS) point clouds. The 

proposed method can typically be regarded as a stepwise 

procedure. Firstly, a voxel-based upward-growing method 

is applied to distinguish non-ground points from ground 

points. Next, outliers are filtered out from non-ground 

points by statistical analysis. Then, all the remaining non-

ground points are clustered based on the conditional 

Euclidean clustering algorithm to segment out building 

facades. A volumetric box is afterward created to store 

façade points so that neighbors of each point can be 

operated. Finally, a manipulator is applied according to the 

structural characteristics of window frames to extract the 

potential window points. Quantitative evaluations based on 

2D validation and 3D validation were both conducted. In 

the 2D validation, the lowest F1-measure of the test 

datasets is 0.740, and the highest can be 0.977. While in the 

3D validation, the lowest precision of the test dataset is 

79.58%, and the highest can be 97.96%. The results 

demonstrate the proposed method can successfully extract 

the rectangular or curved windows in the test datasets with 

promising accuracies to support the generation of LoD3 

building models. 

 

Index Terms - Building window, feature extraction, mobile 

laser scanning (MLS), point cloud, LoD3 building model. 

 

I. INTRODUCTION 

Nowadays, mobile LiDAR or mobile laser scanning (MLS) 

point clouds are applicable in cosmopolitan building model 

reconstruction due to its high flexibility and acquisition rate 

in large-scaled complex scenes [1][2]. However, the most 

challenging work of the LoD3 building modeling from the 

noisy point clouds is to extract detailed features on facades, 

such as windows, doors, and remove holes caused by 

systematic errors [4]. Windows are indispensable frames on 

building facades, nevertheless, there are no laser points for 

window glasses due to its very low reflectivity. In addition, 

because of aesthetic requirements and cultural diversities, 

windows are designed in multitudinous shapes [5].  

The primary step of window extraction is conducting 

façade extraction from MLS point clouds. Existing methods 

in building facades extraction are mainly based on the 

generated geo-referenced images, coordinate information, 

shape features, and prior knowledge [1], [6]-[9]. 

Nevertheless, there still no sophisticated algorithms that 

can effectively classify 3D MLS point clouds collected in 

large-scale complex environments into semantic objects. 

The window extraction is usually the subsequent procedure 

of the building façade extraction. Many studies were 

conducted in recent years [5], [10]-[12]. However, prior 

semantic knowledge, including sizes of windows and 

intervals between windows, is essentially needed.  

Accordingly, developing a reliable method to extract 

windows while retaining their geometry, semantic, and 

coordinate information precisely from the noisy MLS point 

clouds has become a colossal challenge in recent years. 
This paper will focus on establishing a supporting rationale 

and developing a semi-automated algorithm for 3D window 

extractions from MLS point clouds. This algorithm can 

typically be regarded as a stepwise procedure to interpret 

MLS point clouds as semantic features: 1) A voxel-based 

upward-growing method is first applied to distinguish non-

ground points from ground points. 2) Noise is then filtered 

out from non-ground points by statistical analysis. 3) In 

order to segment the building facades, all the remaining 

non-ground points are clustered based on the conditional 

Euclidean clustering algorithm. 4) Clusters whose density 

and width are over a predefined threshold will be 

designated as points for building facades. 5) After a 

building façade is successfully extracted, a volumetric box 

is created to store façade points so that neighbors of each 

point can be operated. 6) A manipulator is finally applied to 

extract the potential window points based on the structural 

characteristics of window frames. 

 

II. METHOD 

In this section, a voxel-based upward-growing algorithm is 

conducted to filter out ground points from the raw MLS 

point clouds. After that, noise still inevitably exists in the 

MLS point clouds, which are primarily presented as 

isolated points, outliers, and point mutations in local areas. 
In order to remove noise from the non-ground features, a 

statistical analysis filter is applied to differentiate noise 

from non-ground features [13]. However, there are no clear 

topological relationships between points in a discrete and 

sparse 3D non-ground point clouds. In order to distinguish 

specific 3D objects from these discrete and unorganized 

non-ground points, the conditional Euclidean clustering 
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method is utilized to conduct fast segmentation of the 3D 

unorganized non-ground points [2].  

A. Building Façade Extraction by Density/Width Analysis 

In this section, a density/width analysis method is put 

forward based on the density and geometric properties of 

building facades in point clouds. The building façade 

extraction method by density/width analysis proposed in 

this section is inspired by Melzer’s culling mechanism. In 

the culling mechanism, Melzer indicated that features in 3D 

point clouds had different density properties [14]; the 

algorithm implemented in this section is based on his 

assertion.  

The X-Y plane is firstly subdivided into a 2D grid by g 

m× g m, in which g is pre-defined by average point density 

of input clusters generated by the conditional Euclidean 

clustering algorithm. The input clusters are then projected 

into this gridded X-Y plane with the z value of each point is 

remaining as a label and the total number of this cluster 

will be recorded as Nc. For each cluster, the length Wid and 

the average density Den of the projected cluster can be 

calculated as follows: 

𝑊1 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 (1) 

𝑊2 = 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 (2) 

𝑊𝑖𝑑 = {
 𝑊1 ,            𝑊1 > 𝑊2

 𝑊2 ,            𝑊1 < 𝑊2
 (3) 

𝐴𝑟𝑒𝑎 = {
 𝑊1 ×𝑊2,              𝑊1 ≠ 0 𝑎𝑛𝑑 𝑊2 ≠ 0
 𝑊1,                                                 𝑊2 = 0
 𝑊2,                                                 𝑊1 = 0

 (4) 

𝐷𝑒𝑛 = 𝑁𝑐/𝐴𝑟𝑒𝑎 (5) 

where xmax is the maximum x value in the input cluster, ymax 

is the maximum y value in the input cluster, xmin is the 

minimum x value in the input cluster, and ymin is the 

minimum y value of the input cluster, Area is the pseudo 

rectangular acreage of the projected area. Especially, when 

the   𝑊1 = 0 and  𝑊2 = 0, the input cluster will be directly 

regarded as non-façade points. 

Under the prior knowledge that clusters belonging to 

building facades have a relatively high average density and 

width at the same time, clusters whose average density and 

width are inside a certain thresholding interval will be 

regarded as building facades. The remaining clusters will 

be processed in the next step, where the given thresholding 

interval is determined by densities of raw 3D point clouds. 

B. Window Extraction by Hole Detection 

         Extracting windows from laser point clouds can rely 

on window edge extractions on walls, then windows can be 

localized by using points of walls. The hole detection 

algorithm utilized in this section is inspired by [5], who 

developed an operator to extract windows based on a hole-

detection algorithm. The method developed in this section 

refines the algorithm proposed in [5], because such method 

[5] acquired prior knowledge of window sizes and intervals 

between windows. A pattern that classified window frames 

into four categories is firstly conducted: horizontal borders 

on the top and bottom of windows as well as vertical 

borders on the left and right side of windows according to 

the characteristics that potential windows always leave 

holes on building facades. In order to simulate 

neighborhood relationships among points, a volumetric 

manipulator at a grid size vg is created to contain all the 

points of the extracted building façade, where vg is 

determined by the density of the input point cloud. Then an 

operator is conducted according to the window pattern to 

localize windows excluding window crossbars. For each 

voxel (i, j, k), I bespeak f (i, j, k) =0 if there is no laser 

point in this voxel, and f (i, j, k) =1 if there are laser points 

in this voxel, the equation of the operator lists below:  
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ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤 𝑒𝑑𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠,    𝑖𝑓 { ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

𝑘′=𝑘+1

𝑘′=𝑘

} = 1 ＆＆{ ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

𝑘′=𝑘−1

𝑘′=𝑘

} = 0＆＆{∑∑𝑓(𝑖, 𝑗, 𝑘)

𝑗𝑖

} = 1  

  𝑂𝑅 𝑖𝑓 { ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

𝑘′=𝑘−1

𝑘′=𝑘

} = 1＆＆{ ∑ ∑∑𝑓(𝑖, 𝑗, 𝑘′)

𝑗𝑖

𝑘′=𝑘+1

𝑘′=𝑘

} = 0 ＆＆{∑∑𝑓(𝑖, 𝑗, 𝑘)

𝑗𝑖

} = 1

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑤𝑖𝑛𝑑𝑜𝑤 𝑒𝑑𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠,           𝑖𝑓 { ∑ ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

𝑖′=𝑖+1

𝑖′=𝑖

} = 1 ＆＆{ ∑ ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

𝑖′=𝑖−1

𝑖′=𝑖

} = 0 ＆＆{∑∑𝑓(𝑖, 𝑗, 𝑘)

𝑗𝑖

} = 1

𝑂𝑅 𝑖𝑓  { ∑ ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

𝑖′=𝑖−1

𝑖′=𝑖

} =１ ＆＆{ ∑ ∑∑𝑓(𝑖′, 𝑗, 𝑘)

𝑘𝑗

𝑖′=𝑖+1

𝑖′=𝑖

} = 0 ＆＆{∑∑𝑓(𝑖, 𝑗, 𝑘)

𝑗𝑖

} = 1

𝑛𝑜𝑛 − 𝑤𝑖𝑛𝑑𝑜𝑤 𝑒𝑑𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠,                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

(6) 

 

As shown in Eq. (6), the upper horizontal window 

border is recognized if the upper neighbor exists while the 

lower neighbor does not; the same rationale is manipulated 

to the lower border, left border, and right border of 

windows. When window frames are successfully localized 

by this mechanism, points belonging to these four window 

borders will be designated as a classifier and marked as 

window points.  

III. Validation 

A. Window Regions in 2D 
Digital images are used as the references for the result 

validation. Digital images and 3D point clouds are 

collected together while the vehicle is moving so that the   
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(a)                             (b)                             (c) 

Fig. 1. Window extraction results on five point cloud 

datasets used in this paper.  

two kinds of sensors (optical camera and laser scanner) 

share the same environmental variables.  However, digital 

images have distortions, therefore, in this study, 

orthophotos of building façades should be generated to 

validate the extracted 3D windows before the accuracy 

assessment. When orthophotos are successfully generated, 

the extracted windows will be overlapped on the 

orthophotos to generate the overlapped photos. The 

resolutions of the referenced orthophoto and the overlapped 

photo for each dataset are adjusted to be the same to avoid 

the influences caused by different resolutions.  
The accuracy assessment mechanism of window 

regions in 2D is conducted based on recall, precision, F1-

measure. As shown in Eqs. (7) to (9), the recall represents 

the completeness of the extracted windows, the precision 

shows how many valid and correct windows are extracted 

by using the proposed method, and F1-measure is a global 

score by integrating precision and recall. Where 𝐶𝑝 

represents the number of valid pixels belonging to the exact 

windows in the extracted points, Rp is the number of the 

window pixels interpreted manually from the generated 

orthophotos, and Rr is the number of pixels of the extracted 

points by the proposed method. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝐶𝑝 𝑅𝑟⁄                                                                          (7) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  𝐶𝑝 𝑅𝑝⁄                                                             (8) 

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                                              (9) 

B. Window Regions in 3D 

       The accuracy assessment of window regions in 3D is 

based on precision. Window points are manually extracted 

from the raw point clouds in this section. For each 3D point 

extracted by the proposed method, a corresponding point 

extracted by the manual interpretation should be found. The 

precision shows the portion of correct window points 

extracted by the proposed method. It is defined as 𝐶𝑛/𝑅𝑛, 

where 𝐶𝑛  is the number of valid 3D window points 

extracted by the proposed method those can be found in 

manually interpreted points, and 𝑅𝑛 is the total number of 

extracted 3D window points by the proposed method. 

VI. RESULTS AND DISCUSSION 

A. Point Cloud Data 

Fig. 1 (a) shows the five point-cloud datasets that were 

selected from the data acquired by the RIEGL VMX-250 

system. They are (from left-upper to left-bottom in Fig. 1) a 

single-detached house with 787,235 points in about 86.79 

m2, a single-detached house covered by 1,442,607 points in 

about 185.31 m2, a single-detached house covered by 

1,281,313 points in about 212.94 m2, a single-detached 

house with 725,579 points in about 324.86 m2, and a coffee 

shop with 3,336,229 points in about 1,577.45 m2, 

respectively. Those houses include typical window types 

(e.g., rectangular and arc-rounded windows). Dataset 3 was 

used to test whether the proposed method is influenced by 

occlusions of trees. Dataset 5 was used to validate the 

reliability of the proposed method in a complex scene. In 

addition, holes usually exist on building facades in 3D 

point clouds due to systematic errors in the mobile LiDAR 

system. Therefore, Dataset 1 was used to test the influences 

that big holes will have on the hole detection algorithm.  

B. Window Extraction Result 

      The building façade extraction results obtained by the 

density/width analysis are influenced by the two 

parameters: Denb (a predefined average density threshold of 

building facades) and Widb (a predefined width threshold 

of building facades). This experiment set Denb=4000 

pts/m2, and Widb=8 m for all the test datasets. 

      To guarantee the time complexity as well as the 

precision of this algorithm, there should be no more than 10 

points in the same voxel, so the size of a voxel was set as vg 

= 0.05 m in this section to ensure there cannot be more than 

2 points in a voxel. The promising results indicate that the 

proposed window extraction algorithm can successfully 

extract all windows on the test datasets, including 

rectangular, irregular, and arc-rounded windows (see Fig. 1 

(b)). In addition, as shown in the results of Dataset 3, the 

proposed method is not influenced by occlusions of trees. 

However, some big holes caused by systematic errors of the 

MLS system are also extracted from the raw point clouds. 

Furthermore, as shown in Fig. 1 (c), only window frames 

on the front façade in Dataset 4 can be extracted. 
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Table I. 2D and 3D performance evaluation 

Methods     

 

 

Datasets 

2D performance evaluation 3D performance 

evaluation 

Precision Recall F1-

measure 
𝑪𝒏 𝑹𝒏 Precision 

1 79.67% 95.40% 0.868 3035 3814 79.58% 

2 97.60% 85.17% 0.910 8638 9061 95.34% 

3 95.42% 72.74% 0.826 7000 7274 96.23% 

4 88.54% 63.51% 0.740 4495 5226 86.12% 

5 97.79% 97.63% 0.977 7445 7600 97.96% 

C. Window Regions in 2D 

       As shown in Table I, the precision, recall, and F1-

measure of Dataset 1 are relatively low since big holes in 

the raw point clouds are also extracted by the hole-

detection algorithm. In Datasets 2, 3 and 4, the precision is 

adequately high but the recall is relatively low.  

       As shown in Fig. 1(c), curtains are dropped down when 

the data was collecting. In addition, the windows are 

recessed on the building façade and they are not on the 

same vertical plane as the building façade. Therefore, only 

points of outer frames of the windows are put into the same 

cluster as the building façade. As a result, the outer frames 

of the windows in the three datasets can be extracted, while 

the inner crossbars of the windows are removed. The 

precision, recall, and F1-measure of Dataset 5 are all very 

high since there are no impacts of curtains, holes, or 

occlusions on the raw point clouds. 

D. Window Regions in 3D 

       The results of 3D performance evaluation are also 

listed in Table I. Compared with the performance 

evaluation results in Table I, it can be concluded that the 

values of the precision in the test datasets in 2D and 3D are 

basically aligned with each other. The precision values of 

Datasets 2, 3 and 5 are 95.34%, 96.23%, and 97.96%, 

respectively. Such results prove that the proposed method 

can extract accurate 3D window frames when there are no 

defects in the raw point clouds. However, the precision 

values of Datasets 1 and 4 are 79.58%, and 86.12%, 

respectively, which are lower among the test datasets. It 

reveals that the big holes caused by system errors have 

considerably negative effects on the proposed method. 

V. CONCLUDING REMARKS 

In this paper, we have presented a method that can semi-

automatically extract 3D window points from MLS point 

clouds to support the LoD3 building modeling. Five 

datasets were tested in this study to prove the feasibility of 

the proposed method. The F1-measure of the five test 

datasets in the 2D validation are 0.737, 0.910, 0.826, 0.740, 

and 0.977, respectively.  The precision of the five test 

datasets in 3D validation are 79.58%, 95.34%, 96.23%, 

86.12% and 97.96%, respectively. After a detailed analysis 

of the experimental results, we could conclude that the 

proposed method can successfully extract all types of 3D 

windows and glass doors (including rectangular, irregular, 

and arc-rounded ones) from the test datasets with promising 

accuracies. However, for those windows with curtains 

drawn, concave in walls or with holes in raw point clouds, 

the accuracy of the proposed method was considerably 

affected. In addition, the experimental results suggest that 

the proposed method is not affected by tree occlusions.  
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