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ABSTRACT 

 

It is challenging to direct extract the feature descriptors of the 

object in the point cloud, although deep learning has been 

widely used with the classification and detection in the point 

cloud, those methods hidden feature presentation in the 

network. Since the point cloud scanned by the Laser Scanner 

usually have different point density, unordered and even the 

different occlusion, which go beyond the reach of hand-

crafted descriptors, e.g. FPH, FPFH, VFH, ROPS.  In this 

paper, we aim to direct extract the feature descriptors of the 

point cloud object through the raw point cloud. Inspired by 

the recent success of the Siamese networks[6], PointNet[7] 

and PointNet++[8], we propose a novel network to direct 

extract the feature descriptors of the whole point cloud object. 

We train our network with the Euclidean distance as the loss 

function which reflects feature descriptors similarity. The 

experiment object datasets were acquired by Mobile Laser 

Scanning (MLS) system which contains 6 categories. 

Experiment result shows that our network has a robust 

generalization, which can well direct extract the feature 

descriptors of the whole point cloud object. 

 

Index Terms— Point cloud, feature description, mobile 

laser scanning, siamese network 

 

1. INTRODUCTION 

 

Mobile Laser Scanning (MLS) systems have been commonly 

used in many applications such as smart cities and intelligent 

transportation, because of a MLS system is flexible and can 

rapidly acquire high dense and accurate 3D point clouds with 

geometry, color and intensity information from object 

surfaces. In practical applications, such as intelligent 

transportation, the classification of point cloud objects is very 

important[1], so the feature descriptors of the objects are very 

necessary. 

For the feature description in the point cloud, almost of the 

traditional algorithms are based on hand-crafted local feature 

description, like PFH[2], FPFH[3], VFH[4], ROPS[5], and 

their variants, cannot extract the feature description with the  

 
Figure 1. These objects in the same row are the same category but 

have different shapes. The top row is traffic sign, the middle row is 

street light, and the bottom is the traffic light. 

 

whole point cloud object. For the MLS point cloud data, the 

point density of the same type object may be different, 

usually, there will be different occlusions, even their shapes 

are different, as shown in Figure 1. So, these are the big 

challenge for the traditional algorithms, where they are 

unable to extract the feature descriptors of the entire point 

cloud object.  

In this paper, with the deep learning make dramatic 

progress in point cloud processing, and inspired by the 

Siamese networks[6], PointNet[7] and PointNet++[8], we 

propose a new framework based on the Siamese Network to 

direct extract the feature description from the raw point cloud 

with the entire objects. The Siamese network is a neural 

network with two branches network, the inputs of which are 

pairs of data. And the architecture in the two branches can be 

the same or different. The weights in the two branches could 

be shared or not shared, in this paper, we share the weight in 

the Siamese network. PointNet was proposed by Qi et al[7].  
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Figure 2. The network framework. Feature Encode Network feeds 

in the unordered point cloud and outputs feature vector. 

Discriminator network feeds in two feature vector and outputs a 

probability that two point clouds are in the same class. In the Feature 

Encode Network, the SA stands for the set abstraction layer whose 

detail structure is shown in Figure 3. 

 

which could input unordered point cloud and output a feature 

vector for this point cloud. It uses the max-pooling operator 

eliminate the inference of the order of point clouds. In the 

improved version PointNet++[8], it proposed a hierarchical 

neural network.  It applies PointNet recursively on a nested 

partitioning of the input point set, which enables it to learn 

local features with increasing contextual scales. 

Furthermore, we use the Euclidean distance as the loss 

function of our network, for which it is more intuitive to 

measure the feature descriptors extracted with the whole 

point cloud object in a unified metric space. In addition, we 

collected 2,000 MLS point cloud object which contains bus 

station, fire hydrant, street light, traffic light, traffic sign, and 

trashcan. By the different occlusion and point density, the 

shape of the point cloud objects are different. So, we 

constructed 50,000 pairs of point cloud objects as the training 

data and testing data. 

    In summary, the main contribution of this paper is that we 

construct a novel network to discriminate learning the feature 

descriptors from the raw point cloud, and directly extract the 

feature descriptors with the whole point cloud object, rather 

than local features. We use a deeper network to extract 

features and experiment result show that our network has a 

robust generalization, which can well direct extract the 

feature descriptors of the whole point cloud object. 

 

2. OVERVIEW 

 

Our network has two branches, as shown in Figure 2, each 

one is Feature Encode Network (FEN) which to extract the 

feature of the point cloud object. The parameters are shared 

between 𝐹𝐸𝑁𝑎  and 𝐹𝐸𝑁𝑏 . FEN feeds in unordered point 

cloud and outputs correspond feature descriptor. In order to 

train our network to learn the meaningful descriptor, we add 

another network to restrict the previous network which called 

discriminator network. The input of the discriminator 

network is two feature descriptors from the previous network 

and its output is the probability p of inputs are same class.  

 

 
Figure 3. The Set Abstraction layer structure. After sampling and 

grouping, the point cloud gets a sparse point with a high-

dimensional feature representation. The first operation is Sampling, 

the second operation is Grouping and the third part operation is done 

in the PointNet. 

 

After our network trained, the FEN will be exactly the feature 

extractor we want. 

 

3. NETWORK STRUCTURE 

 

Feature Encode Network (FEN) consists of hierarchical Set 

Abstraction (SA) layer which designed in PointNet++[8], as 

shown in Figure 2.  

One Set Abstraction layer consists of sampling layer, 

grouping layer, and density adaptive PointNet layer.  

3.1 Sampling layer 

Sampling layer selects a set of points from a point cloud 

which defines the centroids of point cloud local regions. 

Given inputs points {𝑥1, 𝑥2, … , 𝑥𝑚} , use iterative farthest 

point sampling to choose a subset of points {𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑚
}, 

such that x𝑖𝑗
 is the most distant point from set 

{𝑥𝑖1
, 𝑥𝑖2

, … , 𝑥𝑖𝑗−1
} with regard to the rest points. This layer 

will sample 𝑁′ centroids from the input N points, as the first 

operation shown in Figure 3.  

3.2 Grouping layer 

Grouping layer feeds in a point set of size N × (d + C) and 

a set of centroids of size N′ × d. the output is groups of point 

sets of size N′ × K × (d + C), where each group corresponds 

to a local region with K  points in the neighborhood of 

centroid points, as the second operation shown in Figure 3.  

3.3 Density adaptive PointNet 

Density adaptive PointNet layer is inputted N′  a local 

region of points with size N′ × K × (d + C). It abstracts high 

dimension feature vector with a size of N′ × (d + C′) . In 

another word, these K points are extracted as a feature vector, 

as the third part shown in Figure 3.  

The origin PointNet is given an unordered point set 

{𝑥1, 𝑥2, … , 𝑥𝑛}  with 𝑥𝑖 ∈ ℝ𝑑 , define a set function f: Χ →
ℝ that maps a set of points to a vector: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝛾 ( max
𝑖=1,…,𝑛

{ℎ(𝑥𝑖)})             (1) 

Where 𝛾 and ℎ are implemented by multi-layer perceptron 

(MLP) network, as shown in Figure 4. 

4524



 
Figure 4. The PointNet structure. PointNet feeds in the unordered 

point cloud and outputs a feature vector for this point cloud. The 

max-pooling operator will eliminate the inference of the order of 

point clouds. 

 

The set function 𝑓  in Eq.1 is invariant to input point 

permutations and can arbitrarily approximate any continuous 

set function. 

In implement, the PointNet layer use a density adaptive 

strategy, it outputs feature of a region at some level L𝑖 is a 

concatenation of two features. One feature is summarizing 

the features from the lower level L𝑖−1  using the set 

abstraction layer. The other feature is the feature directly 

extract from the input N′ × K × (d + C) point cloud using a 

single PointNet. 

3.4 Discriminator network 

Discriminator network feeds in two features descriptor from 

two branches. We concatenate the two feature descriptor and 

put them into 3-layer Multi-Layer Perceptron (MLP) network 

with drop-out and batch-normalization, as shown in Figure 2. 

For the non-linear activate function in the MLP, different 

with most articles all use the Relu[9] or Tanh[10], we adopt 

Relu or the first 2 layers and Tanh for the last layer. The 

output of the discriminator network is a scalar which is the 

probability of inputs are the same class.  

 

4. LOSS FUNCTION 

 

The loss function consists of two parts. One part is hinge loss 

which optimizes the prediction accuracy. The other part is l2 

regularization term to avoid over-fitting. The whole loss 

function could be a formula as: 

min
𝜔

1

2
‖𝜔‖2 + ∑ max(0, 1 − 𝑦𝑖 ⋅ 𝑂𝑖)

𝑁

𝑖=1

               (2) 

Where ω is the weight of the network. 𝑂𝑖  is the output of 

the network for the i𝑡ℎ pair of point cloud, and y𝑖 ∈ {−1, 1} 

is the label of the training data. When two point clouds class 

are same,  y𝑖 = 1, otherwise  y𝑖 = −1. 

At the beginning, we tried using the ℒ2 Euclidean Distance 

as the loss function after the features is extracted from the two 

branches without discriminator network. The ℒ2  Euclidean 

Distance is more intuitive for the metric of the two descriptors, 

which minimize ℒ2 Euclidean Distance of same class point 

cloud and increase the ℒ2 Euclidean Distance of the different 

class point cloud. However, this loss function leads the 

network to degradation, as the network will not learn any 

meaningful features with the train data, the feature 

description is all zero. So, we think we need another network  

 
Figure 5. The 6 categories point cloud data in our dataset, from left 

to right are bus station, fire hydrant, street light, traffic light, traffic 

sign, and trashcan respectively. 

 

Test Train 
Real-valued 

descriptors 
Binary descriptors 

Own 

Dataset 

Own 

Dataset 
87.18% 89.23% 

ModelNet40 83.70% 85.75% 

Table 1. The accuracy of the real-valued descriptors searched and 

binary descriptors on the testing dataset. 

 

to constrain the features extracted in previous. The auto-

encoder network is the best choice, but reconstruct unordered  

point cloud from a simple feature vector is too difficult. So, 

we chose a discriminator network instead of doing it. 

 

5. EXPERIMENT 

 

For all experiments, we use the Adaptive Moment Estimation 

(Adam) Optimizer with a learning rate of 0.001 for training. 

We use TensorFlow and one Titan X for training. The 

training process stops when the loss function converges. All 

the layers are implemented in CUDA to run in GPU. 

Our proposed network to direct extract the point cloud 

object feature descriptor was tested on the objects with both 

sides of city road. The experiment testing datasets were 

acquired by a RIGEL VMX-450 system. The testing dataset 

contains 6 categories that are bus station, fire hydrant, street 

light, traffic light, traffic sign, and trashcan respectively, as 

shown in Figure 5.  

There are two training datasets for this network. One 

training dataset is same as testing data from VMX-450, but 

they do not intersect. Another training dataset is 

ModelNet40[11] benchmark. There are 12,311 CAD models 

from 40 man-made object categories. But these 40 categories 

do not contain these 6 categories in our testing data. Even so, 

with the training dataset is ModelNet40, we can see that our 

network has a good performance on the testing datasets that 

it has not seen, as shown in Table 1. 

In detail, we conducted two kinds of the test program. One 

is the real-valued descriptors search test. We randomly grab 

10 target data and then grab 1 source data to be searched, 

which has the same class to one of the 10 target data but not 

the same object. Letting the network directly extract the 

features of these 11 data examples and then search for the 

Euclidean distance, if the closest target data and source data 

are the same category, it is regarded as correct, otherwise is 

wrong, and we call this search accuracy. Another is just 

inputted a pair point cloud objects data from testing dataset 

into the network which the output with the binary descriptors. 

The accuracy of the testing data is shown in Table 1. 
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Figure 6. The feature descriptors histogram of the traffic 

sign. 

 

As shown in Table 1, our network trained in the 

ModelNet40 and tested in the point cloud objects from VMX-

450 get a good performance, this proved that our network has 

a robust generalization. In addition, the accuracy of the binary 

descriptors outperform the real-valued descriptors, there are 

two reasons for this. First, binary descriptors are more 

representative. Second, the discriminator network combines 

the two feature descriptor to consider jointly, then they have 

a better chance to be complementary to each other. 

Finally, in order to prove that the feature descriptors of the 

same type of point cloud objects directly extracted by our 

trained network are consistent, we visualize the feature 

descriptors of the same category point cloud objects. We use 

the traffic signs as an example to visualize, the histogram of 

the feature descriptors was shown in Figure 6. It can be seen 

that the histogram distribution trends of the traffic signs 

feature descriptors are broadly consistent, and the changes in 

the salient features are also consistent. These prove that our 

network learns the common attributes of the same kind of 

point cloud objects. 

 

6. CONCLUSION 

 

We use Siamese network to train deep network for the 

extraction of point cloud feature description. Training such 

models involve unordered point cloud which constraints the 

network structure and discriminative power. 

In this paper, we introduce a novel training scheme, based 

on discriminator network, and mining of both positive and 

negative correspondences enables the network to extract 

meaningful feature descriptions. Our network generalizes 

well across different datasets, even in the training sets and 

testing sets have different data types also get a good 

performance. They could be used in many fields such as point 

cloud classification, registration, and matching. In the 

following work, we will further study how to better match 

and build a contextual relationship with the same kind of 

point cloud objects feature descriptors. 
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