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A B S T R A C T

Most existing 3D object recognition methods still suffer from low descriptiveness and weak robustness although
remarkable progress has made in 3D computer vision. The major challenge lies in effectively mining high-level
3D shape features. This paper presents a high-level feature learning framework for 3D object recognition through
fusing multiple 2D representations of point clouds. The framework has two key components: (1) three dis-
criminative low-level 3D shape descriptors for obtaining multi-view 2D representation of 3D point clouds. These
descriptors preserve both local and global spatial relationships of points from different perspectives and build a
bridge between 3D point clouds and 2D Convolutional Neural Networks (CNN). (2) A two-stage fusion network,
which consists of a deep feature learning module and two fusion modules, for extracting and fusing high-level
features. The proposed method was tested on three datasets, one of which is Sydney Urban Objects dataset and
the other two were acquired by a mobile laser scanning (MLS) system along urban roads. The results obtained
from comprehensive experiments demonstrated that our method is superior to the state-of-the-art methods in
descriptiveness, robustness and efficiency. Our method achieves high recognition rates of 94.6%, 93.1% and
74.9% on the above three datasets, respectively.

1. Introduction

The Mobile Laser Scanning (MLS) system is increasingly chosen for
autonomous vehicles (AVs) or intelligent transportation systems (ITS)
(Broggi et al., 2013; Schreiber et al., 2013; Seo et al., 2015), because it
collects dense and accurate 3D point clouds efficiently from large areas.
As a result, in recent years, 3D point clouds have been widely used in
various related applications, such as 3D object detection in roadways
(Guan et al., 2014; Yang et al., 2015; Yu et al., 2016; Wen et al., 2016;
Yang et al., 2017; Yu et al., 2017), object modeling and 3D re-
construction (Shah et al., 2017; Hu et al., 2018), semantic segmentation
(Engelmann et al., 2017; Dong et al., 2018), and registration (Yu et al.,
2015a; Zai et al., 2017). As a vital part of preprocessing steps, 3D object
recognition plays the core role in the above applications. Therefore, this
paper focuses on the foundational problem of 3D object recognition
using MLS point clouds of road environments.

Traditionally, 3D object recognition was basically accomplished by

designing hand-crafted descriptors. Some representative works include
the Spin image (SI) (Johnson and Hebert, 1999), 3D shape context
(3DSC) (Frome et al., 2004) and its variants (Tombari et al., 2010;
Sukno et al., 2013; Dong et al., 2017), Fast Point Feature Histograms
descriptor (FPFH) (Rusu et al., 2009), Signature of Histograms of Or-
ienTations (SHOT) (Tombari et al., 2010), and Rotational Projection
Statistics (RoPS) (Guo et al., 2013a). However, each of these methods
catches only a part of the geometric characteristics of the 3D object.
Therefore, the descriptiveness of existing 3D descriptors is still far from
satisfactory.

To further enhance the discriminability of these traditional
methods, it is natural to consider how to learn higher-level features to
provide complementary information. One feasible way is to apply Deep
Learning (DL) (Lecun et al., 2015), such as convolution neural networks
(CNNs), to obtain deep features. Some research, using methods such as
voxel-based (Wu et al., 2014; Maturana and Scherer, 2015), octree-
based (Riegler et al., 2017; Wang et al., 2017), multi-view-based (Su
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et al., 2015) and point-set-based (Qi et al., 2016, 2017), has been un-
dertaken to apply CNNs to 3D data analysis. Although the above
methods have progressive improvement in the descriptiveness on some
synthetic datasets (e.g. ModelNet40 (Wu et al., 2014)), the challenge
remains to robustly process the MLS point clouds with outliers, noise
and occlusion, which are all common and unavoidable in a real road
environment.

In order to solve these problems, we explore the possibility of
combining low-level features and the CNNs. However, applying CNNs
that were designed for 2D images to analyze 3D point clouds is a non-
trivial task. An image is organized with pixels that are represented as a
fixed sequence and can be directly input to a CNN. However, 3D point
clouds are unstructured and irregularly distributed. Therefore, they are
unsuitable for CNN to process directly. To overcome this problem, we
propose a 3D object recognition model, which builds a bridge between
the 3D point clouds and CNNs. The key idea of our method is to re-
present the irregular 3D MLS point clouds as a series of regularly
sampled 2D feature images and apply a designed fusion network to
learn high-level features. To this end, we propose the following three
feature descriptors generated for 3D data: Horizontal Single Spin Image
(HSSI), Vertical Quantity Accumulation Image (VQAI), and Vertical
Angle Accumulation Image (VAAI). These feature images can robustly
preserve the local and global spatial relations of points. Moreover, these
three descriptors all have the 2D form, so they can be directly fed into
CNNs (e.g., AlexNet (Krizhevsky et al., 2012)). Then, a two-stage fusion
network, which consists of a deep convolutional module and two fusion
modules, is designed to fuse these multi-view features.

Our method was tested on a public urban road object dataset and
two datasets acquired by a Mobile Laser Scanning (MLS) system.
Experimental results fully exhibit that our method achieves superior
performance in descriptiveness, robustness and efficiency. The main
contributions of our work are as follows:

• Different from the traditional methods that catch only a piece of the
geometric characteristics, we propose three feature descriptors
(HSSI, VQAI and VAAI) to preserve the point distribution pattern of
3D shape from three different perspectives. These descriptors en-
code rich geometric information, such as the spatial relationship of
neighboring points, which is still far from well employed in the
existing point based methods.
• Using deep learning for 3D shape analysis is not straightforward.
Therefore, by taking advantage of the 2D forms of three designed
feature descriptors, which build a bridge between the 3D point
clouds and deep learning, we propose a feature fusion framework to
combine these feature descriptors with CNNs. In this way, high-level
features can be learned to describe complex 3D shape.

The rest of this paper is organized as follows: Section 2 provides a
literature review of 3D object recognition. Section 3 details the pro-
posed method, including the computation of the three feature de-
scriptors and the design of the two-stage fusion network. Section 4
presents the experimental results. Section 5 discusses both the experi-
mental and comparative results. Section 6 concludes the paper.

2. Related work

In the last several decades, a number of solutions have been pro-
posed for 3D object recognition. This section reviews some re-
presentative works. More complete overviews are presented in eva-
luation papers (Guo et al., 2014; Ioannidou et al., 2017). In general,
existing 3D object recognition methods can be broadly categorized into
two classes: Handcrafted-feature-based methods and Deep-learning-
based methods.

Handcrafted-feature-based methods. Handcrafted-feature-based
methods follow a traditional pipeline. Hand-crafted descriptors are
designed to extract features from 3D objects, then those features are fed

into off-the-shelf classifiers, such as SVMs. As one of the most popular
local feature descriptors, Spin image (SI) (Johnson and Hebert, 1999)
has been proved useful for object recognition, matching and modeling.
However, the descriptiveness of SI is relatively limited. To improve the
descriptiveness, Frome et al. (2004) proposed a 3D shape context
(3DSC) descriptor by extending the 2D shape context method to 3D
data. Several variants of 3DSC were also proposed, such as Unique
Shape Context (USC) (Tombari et al., 2010), Asymmetry Patterns Shape
Context (APSC) (Sukno et al., 2013) and 3D Binary Shape Context (BSC)
(Dong et al., 2017). Besides, by accumulating the angle differences
between a key point and its neighboring points, Rusu et al. (2009)
proposed the Fast Point Feature Histograms descriptor (FPFH). In ad-
dition, Salti et al. (2014) generated the Signature of Histograms of
OrienTations (SHOT) to encode local surface information. Guo et al.
(2013a) and Guo et al. (2013b) introduced two local feature de-
scriptors, Rotational Projection Statistics (RoPS) and Tri-Spin-Image
(TriSI), respectively, both of which are descriptive and robust for many
tasks. However, for these methods, the necessary step of triangulating
the unstructured point clouds seriously impacts the time consumption
and accuracy.

Deep-learning-based methods. Different from handcrafted-fea-
ture-based methods, deep-learning-based methods are end-to-end ap-
proaches, where the features and the classifiers are jointly learned from
the data. However, because 3D unstructured point clouds are different
from regular images, it is difficult to apply directly the CNNs to analyze
3D data. Therefore, the key problem of deep-learning-based methods is
the design of representation of 3D data. Several works have been un-
dertaken to handle this problem. They can be divided into three classes:
volumetric methods, view-based methods and point-set-based methods.

Volumetric methods. It is straightforward to convert unstructured 3D
point clouds to a regular grid data over which standard CNNs can be
applied. Wu et al. (2014) proposed the ShapeNets by using the binary
voxel grids as the representation of 3D data, while Maturana and
Scherer (2015) generated the VoxNet by integrating the 3D volumetric
occupancy grid. However, the above methods require high memory and
computational cost as the voxel resolution increases. Recently, space
partition methods, such as methods based on octree (Tatarchenko et al.,
2017; Riegler et al., 2017; Wang et al.,2017) and k-d tree (Klokov and
Lempitsky, 2017) were proposed to remedy the resolution issue. But
these methods still rely on subdivision of a bounding volume rather
than local geometric structure.

View-based methods. Multi-view method (Su et al., 2015) is the
pioneering work that represents the 3D data with a set of images ren-
dered from different views. These images are then fed as the input of
CNNs to learn deep features. Several applications based on multi-view
idea were also proposed. Chen et al. (2016) proposed a multi-view-
based sensory-fusion framework to detect 3D objects for autonomous
driving. Bai et al. (2016) developed a 3D shape retrieval system based
on the projective images. Qin et al. (2018) fused the multi-view and
multimodal representation of ALS point cloud for 3D terrain scene re-
cognition. And Boulch et al. (2018) proposed the SnapNet by using the
partial snapshots of 3D point clouds for the semantic segmentation.
These multi-view methods encode the spatial relationship of points into
2D images and so can directly exploit the image-based CNNs for 3D
shape analysis. However, it is unclear how to determine the number of
views and how to distribute these views to cover the 3D shape while
avoiding self-occlusions. Our method follows an idea similar to the
multi-view CNNs. However, different from the way of generating 2D
image in Su et al. (2015), we designed three feature descriptors, HSSI,
VQAI, and VAAI, to obtain 2D representations of 3D point clouds,
avoiding the view selection issue. More specifically, compared with
multi-view method, the number of 2D feature images in our method is
clear and small (3 global and 12 local images in our method). Ad-
ditionally, because these feature images are obtained in different per-
spectives, the distribution of them would help to characterize the 3D
shape.
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Point-based methods. PointNet (Qi et al., 2016) is the pioneer in di-
rectly processing the point clouds. The advantages of PointNet lie in the
following two factors. (1) It takes the point as the representation of 3D
data, and (2) it uses the channel-wise max pooling, which is permuta-
tion invariant, to aggregate per-point features into a global descriptor.
Therefore, PointNet not only avoids the issues arising from the gen-
eration of other representations of 3D data, such as time consumption,
memory cost, and information loss, but also remains invariant to order
permutation of input points. It has achieved impressive performance on
3D point cloud analysis. However, PointNet treats each point in-
dividually. In other words, it learns a mapping from 3D point clouds to
the latent features without leveraging local geometric structure. This
would not only make PointNet sensitive to noise, but also lose local
geometric information among neighboring points. An improved archi-
tecture, PointNet++ (Qi et al., 2017), exploits geometric features in
local point sets and hierarchically aggregates these features for in-
ference. However, PointNet++ still treats individual points in local
point sets independently and does not consider the relationship among
point pairs.

In summary, existing handcrafted feature-based methods, while
focusing on basic statistical information, give less consideration to the
distribution patterns of points, which would lead to a deterioration in
descriptiveness. DL-based methods learn deep features from 3D data to
improve descriptiveness. However, most DL-based methods are ap-
plicable to synthetic datasets (e.g. ModelNet 40 (Wu20143D)), which
are different from real-word scanning datasets. It is still a challenge for
DL-based methods to robustly process 3D MLS point clouds with dif-
ferent noise. Compared to these methods (handcrafted feature-based
and DL-based), this paper proposes three feature descriptors to robustly
encode rich global and local shallow structure information, and de-
velops a two-stage fusion network to learn high-level features to de-
scriptively and robustly recognize 3D objects in real road environments.

3. The proposed method: JointNet

This section describes a generic recognition model and three feature
descriptors. After that, these descriptors were combined with CNNs to
design a two-stage fusion network, which consists of a deep convolu-
tional module and two fusion modules. In other words, our framework,
named JointNet, can connect the 3D feature descriptors and CNNs.

3.1. Generic recognition model

The recognition task can be formulated as a prediction problem that
predicts the label given to one object. Therefore, the generic recogni-
tion model can be defined as a mapping F , which takes a set of 3D
points = =P p i n{ | 1, , }i as input and outputs k scores for all the k
candidate categories. The mapping, F , is expressed as follows:

= ×F V F P v: 2 , ( ) ,R
k 1

3
(1)

where R3 denotes three-dimensional Euclidean space; = x x R2 { | }R 33

is the power set of R3; V stands for the vector space; P is a set of 3D
points, P 2R3; ×v Vk 1 represents ×k 1 column vector; k is the
number of classes; F P( ) measures the probability for all classes.

3.2. JointNet architecture

As the above analysis, the distribution pattern between points
contains tremendous amount of structural information. The proposed
method is expected to learn high level features from those information.
Therefore, in JointNet architecture, three feature descriptors, named
Horizontal Single Spin Image (HSSI), Vertical Quantity Accumulation
Image (VQAI) and Vertical Angle Accumulation Image (VAAI), are
designed to preserve the spatial relationship of the points. Feature maps
generated by these descriptors can be considered as three kinds of

representations of 3D point clouds. All these feature maps are in a 2D
form and so suitable as the input of CNNs. Therefore, they build a
bridge between 3D data and CNNs. Based on the generic recognition
model and the above three feature descriptors, we proposed JointNet as
follows:

= + +
= + +
= + + =

F P g g f P f P f P
g g f T P f T P f T P
g g v v v v

( ) ( ( ( ) ( ) ( )))
( ( ( ( )) ( ( )) ( ( ))))
( ( )) ,

2 1 1 2 3

2 1 1 2 3

2 1 1 2 3 (2)

where

= = = =T R i T HSSI T VQAI T VAAI: 2 , 1, 2, 3; , , ,i
R 2

1 2 3
3

g1 and g2 represent the first and second fusion module, respectively. f
represents the deep convolutional module, =v V i, 1, 2, 3i , vi re-
presents ×k 1 column vector. For convenience, we denote g g f T( ( ( )))2 1 1 ,
g g f T( ( ( )))2 1 2 and g g f T( ( ( )))2 1 3 as HSSINet , VQAINet and VAAINet , re-
spectively. Then the proposed model is a combined networks by fusing
three sub-Nets.

As a supervised framework, JointNet consists of two stages: training
and testing. Each stage has three steps: (1) computing three descriptors
to capture shallow features, (2) feeding shallow features to a deep
convolutional module to learn high-level features, (3) applying the
fusion modules to generate the final prediction score-vectors for re-
cognition. Fig. 1 shows the flowchart of JointNet. The following sub-
sections introduce the three feature descriptors followed by the details
of the feature extraction and fusion.

3.2.1. Horizontal Single Spin Image computation
The Spin image (SI), initially presented by Johnson and Hebert

(1999), is a local descriptor that can be used in 3D object analysis, such
as retrieval, recognition and registration. It has been considered to be
the defacto benchmark for the evaluation of feature descriptors
(Tombari et al., 2010; Guo et al., 2013a, 2014). To obtain the global
spatial relationship among points, we design the first feature descriptor,
HSSI, which follows an idea similar to SI. More specifically, the center
of the object is chosen as the key point of HSSI and the vertical direction
is chosen as the associative normal, n. This design is consistent with the
fact that objects in road environment are often perpendicular to the
road and rotate only around the vertical direction.

In our model, the ranges of X , Y and Z axis of 3D point cloud are
normalized to [−1,1], [−1,1] and [0,2], respectively. Therefore, the
key point, p, of HSSI is the point, (0,0,1), and the normal, n, is chosen
as (0,0,1). The projection function, SHSSI, is described by the following
formulas:

= = +S p q q q q( , , n) ( , ) ( ( ) ( ) , )HSSI x y z
2 2

(3)

where p = (0,0,1); q is an arbitrary point in the 3D point clouds; qx, qy
and qz are the coordinates of q along the X, Y and Z axes, respectively.
Then, the indexes (x, y) of q in the HSSI are defined by:

= + =x
k

y
k

2
2

,
1 1 (4)

where [·] denotes the rounding function; =k N1
2
HSSI

; NHSSI is the
number of bins in HSSI. For convenience, we restrict the height and
width of HSSI to be equal, and define =R NHSSI HSSI as the size of HSSI,
where RHSSI is an important parameter. Generally speaking, the larger
the value of RHSSI, the more information HSSI can encode, but sensi-
tivity to noise also increases. According to Eq. (4), the indexes (x, y) of
every point in HSSI can be calculated. So the number of points in every
bin of HSSI can be counted. Thus, we obtain the global feature image.
The generation of global image is shown in the upper right corner of
Fig. 2(a). To obtain the local spatial distribution pattern, we divide each
3D object into four equal segments, as shown in the lower right corner
of Fig. 2(a). Then, applying SHSSI individually to these segments, we

Z. Luo, et al. ISPRS Journal of Photogrammetry and Remote Sensing 150 (2019) 44–58

46



obtain four local feature images.
Fig. 2(b)–(e) show the same point clouds with increasing noise le-

vels. Four corresponding global feature images generated by HSSI are
depicted in Fig. 2(f)–(i). Obviously, the distribution patterns of pixels in
four global feature images are similar. This indicates that HSSI can
preserve effectively and robustly the spatial relationship among points.

3.2.2. Vertical quantity accumulation image computation
As the above discussion, HSSI captures the horizontal geometric

structure. However, features along the vertical direction may also
contain useful information. Therefore, considering only features along
the horizontal direction tends to limit the descriptiveness. Thus, we
design the second feature descriptor, VQAI, which obtains information
along the distinctive vertical profiles.

It can be observed that objects under the road environments often
have their own special vertical distribution patterns. For example, most
of the points of a tree usually distribute around the trunk, while points
on a light-pole often evenly distribute on the pole. Inspired by this
observation, to capture the vertical distribution patterns, we propose a
projection function, SVQAI, by accumulating the number of points that
lie in the same vertical position. It is defined as follows:

= =S p p p q( ) ( , ) ,VQAI
def

x y
def

(5)

where p R3 is an arbitrary point in 3D data; px, py are the coordinates

of p along the X, Y axes, respectively; q R2 is the corresponding
mapping point of p. Then the indexes (x, y) of q in VQAI are defined as:

=
+

=
+

x
p

k
y

p
k

1
,

1
,x y

2 2 (6)

where [·] denotes the rounding function; =k N2
2
VQAI

; NVQAI is the
number of bins in the VQAI. For convenience, we restrict the height and
width of VQAI to be equal, and define =R NVQAI VQAI as the size of
VQAI, where RVQAI is an important parameter. A larger value of RVQAI,
which might increase the ability to capture more meaningful informa-
tion, may also weaken the robustness of VQAI. According to Eq. (6), the
indexes (x, y) of every point in VQAI feature image are calculated. The
number of points for every bin in VQAI feature image can be counted.
Similarly, to obtain the local spatial distribution pattern, we divide a 3D
object into four equal segments along the vertical direction, as shown in
the lower right corner of Fig. 3(a). Then, by applying SVQAI to these four
segments, we obtain the local VQAI feature images.

The function mapping, SVQAI, can be considered as compressing a 3D
object into a 2D image in the vertical direction. Therefore, different
from the horizontal information contained in HSSI feature images,
VQAI feature images can preserve the vertical distribution pattern.
Fig. 3(a) shows the generation of VQAI. Fig. 3(b)–(e) show the same
point clouds with increasing noise levels. Four corresponding global
VQAI feature images are depicted in Fig. 3(f)–(i). It can be observed

Fig. 1. Flowchart of our method including three parts: computing global and local feature maps using three descriptors; feeding feature maps to the deep con-
volutional module to learn high-level features; and applying two fusion modules to generate the final prediction score for recognition.

Fig. 2. An example of HSSI. (a) Generation of HSSI. (b) Original point clouds. (c) Point clouds with Gaussian noise with standard deviation of 0.01 and outliers
( = 0.1), (d) Point clouds with Gaussian noise ( = 0.03) and outliers ( = 0.2). (e) Point clouds with Gaussian noise ( = 0.05) and outliers ( = 0.3). (f–i)
Corresponding global feature images generated by HSSI for these point clouds shown in (b–e).
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that although there are different levels of disturbance in 3D shapes, the
distribution patterns of the pixels in global feature images are similar.
This result indicates that VQAI has strong robustness.

3.2.3. Vertical angle accumulation image computation
The descriptor, VQAI, which accumulates the number of points lo-

cated in cells, contains rich information along the vertical direction.
However, there may be some features that VQAI cannot capture. For
example, as shown in the upper left of Fig. 3(a), the values of the blue
and green cells in the global VQAI feature image are the same, but the
distribution pattern is different. Actually, the two green points are close
to each other, but the blue points are far away from each other.

Therefore, to improve the descriptiveness of VQAI, more features
about the spatial information should be considered. To handle this
problem, we first introduced the cosine measure. The cosine of the
angle between vertical direction and the line connecting one point and
the origin measures the spacial distance relationship among points lo-
cated on the same vertical line. Then, for a point in 3D space, the key
value Kp of the point is defined as the cosine of the above mentioned
angle:

= +

= +
+ + +

K p p pcos(( , , 1), (0, 0, 1))
,

p
def

x y z
p

p p p
1

( 1) ( ) ( )
z

z y z2 2 2 (7)

where px, py, pz are the coordinates of p along the X, Y, Z axes, re-
spectively. Building on the above observation and the cosine measure,
we introduce the third feature descriptor, VAAI. It is formed by the
projection function, SVAAI, which is equivalent to the SVQAI. So the in-
dexes (x, y) of q in the VAAI feature image are defined by:

=
+

=
+

x
p

k
y

p
k

1
,

1x y

3 3 (8)

where [·] denotes the rounding function; =k N3
2

VAAI
; NVAAI is the number

of bins in VAAI. The =R NVAAI VAAI is defined as the size of VAAI.
Different from VQAI, in VAAI, the value of a cell rather than the number
of points in this cell, is calculated as follows:

=
=

w K ,i j
l

n

p,
1

l (9)

where wi,j is the value of cell with index (i, j); pl is the point located on
the cell with index (i, j); Kpl is the key value of pl, and the key value is
defined in Eq. (7). Thus, we obtain the global VAAI feature image. To
obtain the local spatial distribution pattern, we divide a 3D object into
four equal segments along the vertical direction, as shown in the lower
right corner of Fig. 4(a). Then, by applying SVAAI to these segments, we

obtain the local VAAI feature images. Fig. 4(a) shows the generation of
VAAI. Fig. 4(b)–(e) show the same point clouds with increasing noise
levels. Four corresponding global VAAI feature images are shown in
Fig. 4(f)–(i). We can find that various disturbance results in similar
global feature images. This result shows that VAAI is robust to noise.

3.2.4. High-level feature learning via CNNs
The above feature images describe the basic low-level statistical

features. To obtain more complementary information, it is feasible to
further extract high-level features from the basic statistical results.
Recently, deep CNNs have achieved huge success in many image pro-
cessing tasks, such as image classification, object detection, semantic
segmentation (Girshick, 2015; Ren et al., 2015; He et al., 2017).
Therefore, we adopt CNNs as our high-level feature learning module.
However, due to the intrinsic differences between the structures of 3D
point clouds and 2D images, it is not a simple task to input directly the
raw point clouds to CNNs. Fortunately, feature images obtained by
HSSI, VAAI and VQAI, are in 2D form, which is suitable for the input of
CNNs.

Overview of JointNet. As shown in Fig. 1, the architecture of
JointNet consists of three parts: computing three descriptors to capture
low-level features; feeding feature images to deep convolutional
module to learn high-level features; and generating the final prediction
score-vector using the two fusion modules, to recognize objects.

Deep convolutional module. The deep convolutional module is
used to extract high-level features. The multi-view feature images,
generated by these three descriptors, are used as the bridge between
deep convolutional module and 3D data. As shown in left part of Fig. 5,
deep convolutional module mainly contains five convolutional (Conv)
layers, a spatial pyramid pooling (SPP) layer (He et al., 2015), two fully
connected (FC) layers and a reshape layer. Max pooling and 2-level
pyramid are used as the parameters of the SPP layer.

Fusion module1. As shown in the middle of Fig. 5, fusion module1
consists of a connected operation and two Conv layers. The connected
operation concatenates the global and local feature images to obtain a
multi-channel feature image. The two Conv layers learn higher level
features from the multi-channel feature image.

Fusion module2. As shown in the right of Fig. 5, fusion module2
contains two parts: the CNN3 and multi-view pooling. CNN3 consists of
four Conv layers and two FC layers. The multi-view pooling is placed
after the last FC layer. Inspired by the TL-pooling operator (Laptev
et al., 2016) and the view-pooling layer (Su et al., 2015), the multi-view
pooling is achieved by using element-wise summation. It computes the
summation of score vectors at the same index i:

Fig. 3. An example of VQAI. (a) Generation of VQAI. (b) Original point clouds. (c) Point clouds with Gaussian noise with standard deviation of 0.01 and outliers
( = 0.1), (d) Point clouds with Gaussian noise ( = 0.03) and outliers ( = 0.2). (e) Point clouds with Gaussian noise ( = 0.05) and outliers ( = 0.3). (f–i)
Corresponding global feature images generated by VQAI for point clouds shown in (b–e), respectively.
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where S is the final prediction score vector, i = 1, 2, …, k, k is the
number of categories, n is the number of CNN3 branches, and Vh is the
score vectors output from h-th CNN3 branch.

In addition, the loss function is taken as the classic softmax cross
entropy loss:

= =
=

L E t y t S( , ) log ,Jo Net
i

N

i iint
1 (11)

where ti, which takes the form of one-hot representation, is the label of
the ith training sample; N is the batch size; Si is the final prediction
score vector for ith training sample. Then we have the model objective
as:

=G arg Lmin Jo Netint (12)

Thus, after training the model, the class label can be obtained from the
prediction score vector.

Training details. Our method was implemented with Tensorflow
on a NVIDIA GTX1080Ti.

We optimized the networks using stochastic gradient descent (SGD)
which is provided in Tensorflow. Note that, there are several para-
meters needed to be optimized, e.g., the batch size, the initial learning
rate, the momentum of SGD, and dropout rate. The grid search method
was used to find the optimal combination. The batch size, initial
learning rate, the momentum of SGD, and dropout rate were set with
ranges of (16, 32, 64), (0.01, 0.001, 0.0001), (0.7, 0.8, 0.9) and (0.6,
0.7, 0.8), respectively. The accuracy (defined in Eq. (17)) was used as
the metric. After testing the performance of JointNet with all possible
combinations, we obtained the optimal setting: {32, 0.01, 0.9, 0.7}.

Therefore, we trained our model using SGD with a momentum of 0.9, a
weight decay of 0.0005 and batch size of 32. The initial learning rate
was set to 0.001, which decreases by half in every 20 epochs. 150
epochs were used for training step.

4. Experiments

Several experiments were conducted to evaluate the proposed
method. Section 4.1 introduces three datasets used in this work. Section
4.2 generates the optimal parameters. Section 4.3 analyzes the con-
tributions of HSSINet, VQAINet and VAAINet to JointNet. Section 4.4,
4.5 and 4.6 evaluate the descriptiveness, robustness and efficiency of
JointNet, respectively.

4.1. Dataset description

We evaluated the performance of JointNet on three datasets, i.e.,
HDRObject9, SMDObject6 and Sydney Urban Objects (Deuge et al.,
2013).

HDRObject9 and SMDObject6. We collected experimental data
sets, HDRObject9 and SMDObject6, by our MLS system on Huandao
Road and Siming District, Xiamen, respectively. Our equipment, a MLS
system, integrates two full-view RIEGL VQ-450 laser scanners that
generate a maximal effective measurement rate of 1.1 million mea-
surements per second and a line scan speed of up to 400 scans per
second (see Fig. 6(a)). The accuracy and precision of the scanned point
clouds are within 8mm and 5mm, respectively. There are three steps to
acquire our datasets.

Firstly, points that are far from the trajectory and non-object points
lying in the air were all removed to make sure the raw data is clean.
Secondly, we extracted and removed the ground and building facade

Fig. 4. An example of VAAI. (a) Generation of VAAI. (b) Original point clouds. (c) Point clouds with Gaussian noise with standard deviation of 0.01 and outliers
( = 0.1), (d) Point clouds with Gaussian noise ( = 0.03) and outliers ( = 0.2). (e) Point clouds with Gaussian noise ( = 0.05) and outliers ( = 0.3). (f–i)
Corresponding global feature images generated by VAAI for these point clouds shown in (b–e).

Fig. 5. Networks of JointNet. Left: network of convolutional module; Middle: network of the first fusion module; Right: network of the second fusion module. Conv
(m, k, s) represents m convolution kernels of size k× k with a stride of s steps. Max Pooling (k, s) stands for the k× k max pooling operation with a stride of s steps.
SPP (2, 2, 1) means 2-level pyramid are used in the SPP layer. The sizes of the first and second pyramids are 2×1 and 1×1, respectively.
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points in order to separate the remaining objects from each other.
Specifically, to remove ground points from scene, we used the voxel-
based upward growing approach (Yu et al., 2015b), which achieves
good performance both on accuracy and efficiency for preprocessing
MLS point clouds. To remove the building facade points, the voxel-
based normalized cut segmentation method proposed in Yu et al.
(2015c) was applied to the off-ground points to partition them into
separated clusters. Then, considering the fact that the building facade
points are usually located farther away from the road than the other
objects, such as the road signs, trees and bus stations, we removed those
clusters that are away from the track line with a given threshold of
10m. Note that, the possible disturbances in this step, such as noise,
occlusion and outliers, may have influence on the performance of the
proposed method. Section 4.5 will evaluate the effect of these possible
disturbances. Thirdly, the remaining points were segmented into ob-
jects with their labels by manual method. Fig. 6(b) shows the pre-
processing flowchart.

In HDRObject9, there are 9 object classes (the number of instances
in each class is indicated in parenthesis): Bus station (1143), Light-pole
(4175), Road sign (1281), Station sign (2062), Traffic light(1728),
Traffic sign(4687), Trashcan (1456), Tree1 (Plam) (4200) and Tree2
(Cycas) (1920). In SMDObject6, there are 6 object classes: Car (1265),
Light-pole (2500), Pedestrian (7 4 0), Road sign (8 5 5), Traffic sign
(2930), Tree3 (Ficus microcarpa) (1203). Fig. 6(c) and (d) show sam-
ples from HDRObject9 and SMDObject6, respectively. Each dataset was
split into 70%, 10%, and 20% subsets for training, validating and
testing, respectively.

Sydney Urban Objects (SUObject14). This dataset was generated
from several sequences of Velodyne scans by applying the segmentation
techniques developed in Deuge et al. (2013). It contains 588 labelled
objects in 14 categories (vehicles, pedestrians, signs, and trees) and is
divided into four folds. Unlike HDRObject9 or SMDObject6, this dataset
is formed by very sparse point clouds. It demonstrates non-ideal sensing
conditions with occlusions (holes) and a large variability in viewpoint.
Hence, it would be a challenging task to recognize objects from this
dataset. Fig. 6(e) shows several samples.

4.2. JointNet generation parameters

JointNet has three important parameters: the sizes of HSSI, VQWI
and VAAI. To obtain the appropriate sizes, JointNet was tested under
different parameter settings using the Precision-Recall (PR) curve on

HDRObject9 with different disturbances. We disturbed the HDRObject9
by down-sampling, adding Gaussian noise and outliers. ( , , ) is de-
noted as the combination of the noise parameters, where , and
represent the down-sampling ratio, the standard deviation of Gaussian
noise, and the rate of outliers, respectively. Because the ranges of X, Y
and Z axis of 3D point clouds are normalized to [−1,1], [−1,1] and
[0,2], respectively, the has no unit. The rate of outliers is calculated as
follows:

=
+

number of outliers
number of outliers number of originpoints( ) ( ) (13)

Then HDRObject9 with (0.5, 0.01, 0.1), (0.5, 0.03, 0.2) and (0.5,
0.05, 0.3) are denoted as test dataset1, dataset2 and dataset3, respec-
tively.

PR curve generation. First, after feeding the low-level feature
images generated by HSSI, VQAI and VAAI, into JointNet, we obtain the
final score-vector, S, for each testing sample. Second, for the ith cate-
gory, if the distance ||1 - Si|| is less than a threshold, , the corre-
sponding testing sample is predicted as a sample of the ith category.
Then, if this sample belongs to the ith category, it is a true positive
sample of the ith category; otherwise it is a false positive sample. Thus,
the precision and recall of the ith category can be calculated as follows:

=
+

×ecision TP
TP FP

Pr 100 (14)

= ×call TP
N

Re 100
i (15)

where TP is the number of true positive samples, FP is the number of
false positive samples, and Ni is the number of samples in the ith ca-
tegory. Finally, the average precision and recall for all categories can be
calculated. By varying the threshold, , the PR curve is generated.
Ideally, the PR curve will fall in the top-right corner of the plot, which
means the method obtains both high precision and recall (Davis and
Goadrich, 2006; Guo et al., 2016).

Note that, we evaluated the performance of JointNet with ex-
amining 6 (options for RHSSI)× 6 (options for RVQAI)× 6 (options for
RVAAI)= 216 combinations, and found the optimal combination
{16,8,16}. Considering that the number of combinations is so large, we
presented the performance of each parameter using the controlling
variable method. More specifically, we only changed one parameter,
while fixed the other two parameters to their optimal values.

Size of HSSI. The RHSSI plays an important role in JointNet. A larger

Fig. 6. (a) MLS system. (b) Flowchart of data preprocessing. (c)–(e) Samples from HDRObject9, SMDObject6 and Sydney Urban Objects, respectively.
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value of RHSSI enables HSSINet to capture more information from point
clouds. However, HSSINet also becomes more sensitive to noise. To
obtain the optimal value, we tested the performance of JointNet by
varying RHSSI on three test datasets, while setting the other two para-
meters, RVQAI and RVAAI as 8 and 16, respectively. Fig. 7(a)–(c) show the
PR curves on three test datasets with values of RHSSI ranging from 8 to
256. As shown in Fig. 7(a), the performance of JointNet improves as
RHSSI increases from 8 to 16. This is because HSSI captures more details
as the RHSSI increases. However, the performance of JointNet deterio-
rates as RHSSI increases. The reason is that a large value of RHSSI in-
creases the sensitivity to noise. Fig. 7(c) shows a similar situation.
However, as shown Fig. 7(b), the performance of JointNet with
RHSSI= 32 is somewhat better than that with RHSSI=16. To obtain the
proper balance between capturing ability and maintaining high ro-
bustness, we set RHSSI=16 as the optimal value.

Size of VQAI. RVQAI, which determines both the descriptiveness and
robustness of the VQAINet, is another important parameter. We tested
the performance of JointNet by varying RVQAI on three test datasets,
while maintaining RHSSI and RVAAI at 16 each. Fig. 7(d)–(f) illustrate the

PR curves for different RVQAI. As shown in Fig. 7(d), JointNets, with
RVQAI=8 and RVQAI=256, achieve excellent performance on test da-
taset1. However, as shown in Fig. 7(e) and (f), JointNet with RVQAI=8
achieves the best performance, while the performance of JointNet with
RVQAI=256 deteriorates sharply. This is because a smaller value of
RVQAI is more robust to noise. Therefore, we set RVQAI=8.

Size of VAAI.We evaluated the performance of JointNet by varying
RVAAI, while maintaining RHSSI and RVQAI, at 16 and 8, respectively.
Fig. 7(g)–(i) show the PR curves for different RVAAI. As shown in
Fig. 7(g), JointNets with RVAAI=8 and RVAAI=16 achieve excellent
performance on test dataset1. As shown in Fig. 7(h) and (i), the per-
formance of JointNet improves as RVAAI increases from 8 to 16. That is,
as the RVAAI increases, more information is encoded, resulting in the
significant improvement. However, as RVAAI continues increasing, the
performance degrades sharply. This is because increasing RVAAI not only
adds very little significant information to the model, but also increases
the sensitivity to noise. Thus, the optimal value can be set as
RVAAI=16.

Fig. 7. PR curves with different parameter combinations. (a–c) Varying RHSSI on test data set1, set2 and set3, respectively. (d-f) Varying RVQAI on test data set1, set2
and set3, respectively. (g–i) Varying RVAAI on test data set1, set2 and set3, respectively. (We set RHSSI=16, RVQAI=8 and RVAAI=16 as the optimal parameters to
balance the descriptiveness and robustness).
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4.3. Contributions of three sub-Nets

As discussed in Section 3, JointNet consists of three sub-Nets:
HSSINet, VQAINet and VAAINet. HSSINet captures rich information of
the 3D object along the horizontal direction, while VQAINet and
VAAINet describe the distribution patterns of points along the vertical
direction from the perspectives of quantity and angle, respectively. This
subsection evaluates the contributions of three sub-Nets to JointNet. F1
score and confusion matrix are used as the evaluation criteria. The F1
score is computed as follows:

= × ×
+

×F ecision call
ecision call

1 2 Pr Re
Pr Re

100 (16)

where precision and recall follow Eqs. (14) and (15).
Fig. 8 shows the network parameters in three modules. It illustrates

the size of convolution kernel, the number of outputs in each con-
volution layer and also the sizes of the generated feature images. Note
that, the network architecture of each sub-Net is similar to the deep
convolution module. The difference is that a fully connected layer is
used to replaced the reshape layer.

Fig. 9(a)–(c) show F1 scores on test dataset1 to dataset3, respec-
tively. On one hand, JointNet achieves a higher F1 score for nearly
every category than three sub-Nets. Especially, as shown in Fig. 9(a),
JointNet has a excellent F1 score (about 90%) for each category, while
F1 scores generated by most of sub-Nets are less than 90%. This in-
dicates that JointNet has a better descriptiveness than sub-Nets. On the
other hand, HSSINet performs well on road signs, station signs, Plam
and Cycas, while VQAINet provides a competitive level of F1 score on
road signs and traffic signs, and VAAINet achieves a higher F1 score
than the other two sub-Nets on bus stations and traffic lights. Note that,

road signs, station signs, Plam and Cycas contain more horizontal fea-
tures; while samples belonging to bus stations or traffic lights have
more discriminating vertical information. Thus, these results are con-
sistent with the functions of three sub-Nets: HSSINet captures more
horizontal features from 3D shape, while VQAINet and VAAINet encode
more vertical information. In summary, these three sub-Nets make their
contributions to JointNet from different perspectives.

Fig. 10 shows the confusion matrices computed by three sub-Nets
and JointNet. Fig. 10(a)–(c) and (d) show the results generated by three
sub-Nets and JointNet on test dataset1, respectively. It is seen that after
fusing three sub-Nets, the values of the diagonal elements in the con-
fusion matrix increase, while the values of some non-diagonal elements
decrease. This means that the intra-class similarity increases, while the
inter-class similarity decreases. As shown in the second and third rows
of Fig. 10, JointNet also achieves the best performance over three sub-
Nets on test dataset2 and dataset3, respectively. In addition, from the
first to third columns of Fig. 10, it can be observed that HSSINet
achieves better performance than the other two sub-Nets. This de-
monstrates that HSSINet has a higher descriptiveness and so it may
make more contribution to JointNet. Consequently, by fusing these
three sub-Nets, JointNet improves discrimination.

Although fusing sub-Nets would improve the descriptiveness, it may
affect the space (model size) and time complexity (forward and back-
ward operation) of JointNet. To evaluate the influence, we ran 1000
forward-backward iterations for each sub-Nets and JointNet, and then
calculate the average time. We also recorded the peak GPU memory
consumption and the time of recognizing testing samples on both
HDRObject9 and SMDObject6. Table 1 shows the results. Obviously,
after fusing sub-Nets, model size and GPU memory consumption in-
crease by more than 60MB and 1000MB, respectively. Besides, the

Fig. 8. Network parameters and the sizes of feature images in the three modules.

Fig. 9. Comparison of F1 scores generated by sub-Nets and JointNet on three test datasets. (a)–(c) test dataset1, dataset2 and dataset3, respectively.
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time of one forward-backward operation in JointNet is about three
times than that in each sub-Net. The time of recognizing testing samples
on each dataset increases about 1.5 times after fusing three sub-Nets.
These results indicate that fusing sub-Nets would reduce the time and
memory efficiency. The reason lies in that fusing sub-Nets increases the
number of layers and parameters of the network.

4.4. Descriptiveness comparison

To demonstrate the descriptiveness of the proposed method, we
compared JointNet with four competing methods: Sping Image (SI)
(Johnson and Hebert, 1999), Signature of Histograms of OrienTations
(SHOT) (Tombari et al., 2010), Hierarchy Descriptor (HD) (Bertrand,
2009) and PointNet (Qi et al., 2016). SI is the most popular 3D local
feature descriptor that has achieved good performance. SHOT obtains a
good balance between descriptiveness and robustness. HD is a context-
based model, which describes the typical vertical features of 3D shape
observed in urban environments. PointNet is a point-based model that
exhibits superior feature extraction performance on some synthetic
datasets. PR curve and F1 score were used to measure the performance.

Fig. 11 shows PR curves generated by selected methods on three
datasets. JointNet (red curve) achieves superior performance on
HDRObject9 and SMDObject6 (Fig. 11(a) and (b)). The recall of Join-
tNet remains above 95% and 90% on these two datasets, respectively.
Besides, as shown in Fig. 11(c), JointNet obtains a set of competitive
recall values on Sydney Urban Objects dataset. When precision exceeds
30%, the recall of JointNet is larger than that of PointNet. In addition,
Table 2 shows the numerical values on three datasets. (In this experi-
ment, for Sydney Urban Objects dataset, the fold 4 is selected as testing
data and other three folds are training data.) Obviously, JointNet
achieves higher precision, recall, and F1 score than other methods on
each datasets. Therefore, our method demonstrates promising dis-
criminative capacity for 3D point clouds.

Since the Sydney Urban Objects dataset is a public dataset, results of
several state-of-the-art algorithms are available. Therefore, using the
same testing protocol, we compared our method with these existing
methods. Different from the protocol used in the above experiment, we
evaluated the F1 score achieved on each fold and obtained the average
value. Table 3 shows the results. It is clear that DL-based methods
outperform the handcrafted-feature-based methods, such as

Fig. 10. Confusion matrixes generated by sub-Nets and JointNet on three test datasets. (a)–(d) test dataset1, (e)–(h) test dataset2, (i)–(l) test dataset3, respectively.

Table 1
Space and time complexity of sub-Nets and JointNet. The model size and GPU-memory consumption are used to evaluate the space complexity. The time of forward-
backward operation and the time of recognition on two data sets are used to evaluate the efficiency.

Method Size of model GPU-memory
consumption

Time of one backward
operation

Time of one forward
operation

Time of recognition on
HDRObject9

Time of recognition on
SMDObject6

Sub-Net 159MB 14264MB 38.06ms 11.53ms 17.16 s 4.54 s
JointNet 223MB 15647MB 109.13ms 33.91ms 29.21 s 7.69 s
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unsupervised feature learning (UFL) (Deuge et al., 2013) and Global
Fourier Histogram descriptor (Chen et al., 2014). Our method surpasses
the VoxNet (Maturana and Scherer, 2015), which is the pioneer work
applying CNNs to 3D data. Additionally, compared to the BV-CNNs (Ma
et al., 2018), our method achieves a competitive result (0.755 for BV-
CNNs and 0.749 for JointNet). However, other DL-methods, including
the ORION (Sedaghat et al., 2017) and LightNet (Zhi et al., 2017),
obtain higher scores than JointNet. Specially, the LightNet achieves the
best performance among all selected methods. The reason may be that
LightNet has a very small number of network parameters and so it is
hard to overfit, which is the key issue for recognition on dataset with
large viewpoint variations and occlusion, such as the Sydney Urban
Objects dataset. This result inspires us to reduce the model size of
JointNet in our future work.

4.5. Robustness comparison

A method proposed to process 3D point clouds is robust if it is in-
sensitive to many disturbances, which can be generated by noise, out-
liers, occlusion, or variations in the density of point clouds (Tombari
et al., 2013). By performing experiments with a set of disturbances,
including Gaussian noise, down sampling, adding outliers, and occlu-
sion, we evaluated the robustness of our method and other four selected
methods. Accuracy, used to measure the performance, is calculated as
follows:

= ×=

=

Accuracy
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100i
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i
k

i

1
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where TPi is the number of true positive samples in the ith category; Ni

is the number of samples in the ith category. k is the number of cate-
gories.

Firstly, we added different Gaussian disturbance on three datasets.
Specifically, for a given standard deviation, Gaussian noise with zero
mean was added to the x, y and z axis of every point. Fig. 12(a),(e) and
(i) show the accuracy curves generated by selected methods on
HDRObject9, SMDObject6 and Sydney Urban Objects, respectively. It is
seen that our method has a significant advantage over other four se-
lected methods. Especially, as shown in Fig. 12(a), even when the

standard deviation is 0.1, the accuracy of our method is still 80%. In
addition, PointNet is sensitive to Gaussian noise. Although held at a
high level when the standard deviation is less than 0.04, the accuracy of
PointNet deteriorates sharply as the standard deviation increases.

Secondly, we evaluated the robustness of the selected methods to
varying point density. Testing samples on three datasets are down-
sampled with different rates. Fig. 12(b), (f) and (j) show the results on
HDRObject9, SMDObject6 and Sydney Urban Objects, respectively.
Obviously, JointNet achieves the best performance over all the tested
methods. Especially, as shown in Fig. 12(b), the accuracy of JointNet is
higher than 80% even when the rate is 1/64. This indicates that our
method is robust to varying point density.

Thirdly, we added different rates of outliers to three datasets.
Fig. 12(c), (g) and (k) show the compared results. As shown in these
three sub-figures, our method yields the best performance among all
methods. Although the testing data is disturbed by large rate of outliers,
JointNet still achieves high discrimination. Especially, as shown in
Fig. 12(c), the accuracy of JointNet is still larger than 90%, even the
rate of outliers is 30%. We can also observe that PointNet is very sen-
sitive to outliers, while SHOT has a higher robustness on HDRObject9.

Finally, we analyzed the performance of the selected methods with
respect to occlusion. The definition of occlusion for 3D data in Johnson
and Hebert (1999), which is based on the mesh, is not suitable for point
clouds. Therefore, considering that all points are normalized to fixed
size space (x: [−1,1], y: [−1,1], z: [0,2]), we define the occlusion by
deleting points located in occluded space with given size. The occlusion
rate is defined as follows:

Fig. 11. PR curves generated by four selected methods and JointNet on three datasets. (a)–(c) HDRObject9, SMDObject6 and Sydney Urban Objects, respectively.

Table 2
Performance of different methods on three datasets.

Method HDRObject9 (%) SMDObject6 (%) SUObjects (%)

Precision Recall F1 score Precision Recall F1 score Precision Recall F1 score

HD (Bertrand, 2009) 80.0 80.8 80.4 66.5 68.2 65.6 54.7 59.8 53.6
SI (Johnson and Hebert, 1999) 84.5 84.3 84.4 71.1 71.4 69.9 55.5 65.3 58.2
SHOT (Tombari et al., 2010) 88.3 86.4 87.3 77.2 77.4 77.1 55.2 54.6 51.6
PointNet (Qi et al., 2016) 92.6 92.4 92.5 89.5 83.2 83.4 67.1 58.1 58.7
JointNet (Ours) 95.9 95.7 95.8 94.7 91.0 92.3 70.3 76.9 70.7

Table 3
F1 score achieved by different methods on the Sydney Urban Objects dataset.

Method Average F1 score (%)

GFH+SVM (De Deuge et al., 2013) 0.67
GFH+SVM (Chen et al., 2014) 0.71
VoxNet (Maturana and Scherer, 2015) 0.72
BV-CNNs (Ma et al., 2018) 0.755
ORION (Sedaghat et al., 2017) 0.778
LightNet (Zhi et al., 2017) 0.798
JointNet (Ours) 0.749

Z. Luo, et al. ISPRS Journal of Photogrammetry and Remote Sensing 150 (2019) 44–58

54



=

=

occlusion rate volume of occluded space
volume of normalized space

volume of occluded space
8 (18)

Considering the general situation of objects being occluded under
the road scene, we take the z= 2, y= 2 for the occluded space, and so
the occlusion rate is:

= =x xocclusion rate ·2·2
8 4 (19)

where x, y, z are the length, width and height of occluded space, re-
spectively. Then, we took different levels of occlusion disturbance on
three datasets. Fig. 12(d), (h) and (l) show the compared results. As
shown in Fig. 12(d), our method achieves excellent accuracy, which is
above 80%, when the occlusion rate is less than 0.2. As the occlusion
rate further increases, the performance deteriorates. On the other two
datasets, as shown in Fig. 12(h) and (l), our method is somewhat sen-
sitive to occlusion, but it still outperforms other methods by a sig-
nificant margin.

In summary, all these results indicate that our method is more ro-
bust to disturbance than other selected methods. There are two main
reasons. First, different from handcrafted-based methods that in-
sufficiently describing 3D data using statistical information, JointNet
utilizes the deep neural network to learn high-level features, which
offer more comprehensive and robust information for recognition task.
Second, compared to PointNet learning deep features without lever-
aging local geometric structure, our method fuses the local and global
distribution maps of points generated by three designed feature de-
scriptors. This further improves the robustness and distinctiveness.

Training with disturbances. The possible disturbances in data pre-
processing would deteriorate the performance of JointNet. Therefore,
we tested the robustness of JointNet to the training dataset with dis-
turbances. Considering the practical application, we take two dis-
turbances into account. The first one is the normal noises, including
Gaussian noise, down sampling, outliers and occlusion. Second one is
the noisy label data, which is not only a common disturbance in pre-
processing, but also a hot topic in computer vision (Xiao et al., 2015;
Jiang et al., 2018).

We firstly evaluated the normal noises. Accuracy was used to
measure the performance. The results are presented in Fig. 13. It is clear
that our method achieves better performance with down sampling than
other disturbances. Specifically, as shown in Fig. 13(b), the test accu-
racy is still higher than 80%, even though the decimation rate is 1/16.
This demonstrates that JointNet is robust to training data with down
sampling. Additionally, as shown in Fig. 13(c) and (d), JointNet per-
forms somewhat robustly to outlier and occlusion. For the outlier dis-
turbance, when the rate is less than 0.2, the accuracy is higher than
85% on HDRObject9 and 70% on SMDObject6. For the occlusion, the
accuracy is higher than 90% on HDRObject9 when the occlusion rate is
less than 0.1.

These results are attributable to the following factors. First, three
designed feature descriptors preserve the distribution of points ro-
bustly, so even the training samples are disturbed by noise, the feature
images generated by these three descriptors can still capture accurate
geometric structure information. Second, the two-stage fusion network
increases the stability and robustness of JointNet to training samples
with noise, especially the occlusion and outliers.

However, JointNet may not perform well on training data with

Fig. 12. Comparison of the change curves of accuracy generated by selected methods with respect to Gaussian noise, down-sampling, outliers and occlusion on three
datasets. (a)–(d) HDRObject9, (e)–(h) SMDObject6, (i)–(l) Sydney Urban Objects, respectively.
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Gaussian noise (Fig. 13(a)). The test accuracy is higher than 70% when
the standard deviation is less than 0.05. However, the performance
deteriorates as the standard deviation further increases. The reason may
lie in that the geometric structure would be seriously damaged after
adding Gaussian noise, and so the 3D shape is seriously deformed.

We also evaluated the effect of combining different kinds of noises
on recognition task. PR curve was used to measure the performance. We
denote =C ( , , , ) as the combination of the noise parameters,
where , , and represent the standard deviation of Gaussian noise,
down-sampling ratio, outlier rate, and occlusion rate, respectively.
Fig. 14(a) and (b) show the results on HDRObject9 and SMDObject6,
respectively. It can be found that JointNet achieves excellent perfor-
mance when the disturbance is not serious, especially with the combi-
nation C = (0.01, 1/2, 0.05, 0.05) (red curve), on both two datasets.
However, the recall and precision of JointNet deteriorate when these
combined noises become more severe. The reason may be that the
combined noise would deform the 3D shape seriously and so the
training data could not provide rich and accurate geometric structure
information.

Finally, we evaluated the noisy labeled training data. In this ex-
periment, since the batch size was 32, the noisy labeled data rate
ranged from 1/32 to 8/32. Accuracy was used as the metric. Fig. 14(c)
shows the accuracy curves tested on HDRObject9 and SMDObject6. It is
observed that the test accuracy of JointNet is higher than 85% when the
rate is less than 2/32 on both two datasets, but it decreases significantly
as the rate continues increasing. This indicates that the noisy labeled
training data will deteriorate the performance of JointNet, and so more
attention should be took in data preprocessing.

4.6. Efficiency

To demonstrate the time and memory efficiency of our method, we
conducted a thorough evaluation. Specially, for handcrafted-feature-

based methods, we calculated the dimension and memory footprint of
descriptors, and the time for recognition on both HDRObject9 and
SMDObject6. For DL-based methods, we ran 1000 forward-backward
iterations, and then calculated the average time. In addition, we eval-
uated the model size and recorded the peak GPU memory consumption,
and also calculated the time for recognition on both HDRObject9 and
SMDObject6.

Table 4 shows the comparison results. Our method is about 20ms
and three times faster than PointNet on backward and forward opera-
tions, respectively. This is because in JointNet, the number of con-
volution layers is less than that in PointNet, and so JointNet takes much
less time to compute gradients. However, PointNet has a smaller model
size and GPU memory consumption, while our method consumes more
memory. The reason is that most of the sizes of the convolution kernels
used in PointNet are 1×1, while our method uses the 5× 5 and 3×3
convolution kernels.

Additionally, the last two columns of Table 4 show comparison re-
sults on the recognition time. It is clear that PointNet achieves the best
performance on both HDRObject9 and SMDObjcet6, while handcrafted-
feature-based methods run much slower. Our method is more efficient
over handcrafted-feature-based methods. For example, on HDRObject9,
JointNet is more than five times, eight times and fifty-nine times faster
than the HD, SI and SHOT, respectively. And on SMDObject6, JointNet
is about seven times, ten times and fifty times faster than the HD, SI and
SHOT, respectively. However, our method is still slower than PointNet.
Especially on the HDRObject9, PointNet is about 7 s faster than Join-
tNet. The reason is that our method needs time to compute the three
feature descriptors (HSSI, VQAI and VAAI), while PointNet processes
the raw point clouds directly. In this experiments, the time of calcu-
lating three descriptors on HDRObject9 and SMDObjcet6 is about
20.43 s and 4.8 s, respectively. This indicates that the time of inference
on HDRObject9 and SMDObject6 is just about 8.78 s and 2.89 s, re-
spectively.

Fig. 13. Change curves of test accuracy generated by JointNet on training samples with different disturbances. (a)–(d) Gaussian noise, down-sampling, outliers and
occlusion, respectively. (red: results on HDRObject9, green: results on SMDObject6.) (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 14. Performance of JointNet on training samples with different disturbances. (a) PR-curves on HDRObject9. (b) PR-curves on SMDObject6. (c) Test accuracy of
JointNet on two datasets with different noisy labeled data rates. (red: results on HDRObject9, green: results on SMDObject6.) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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In summary, the handcrafted-feature-based methods take much
time in calculating the descriptors, which rely heavily on the local
surface neighborhoods, therefore, they have low efficiency. For DL-
based methods, since PointNet processes the raw point clouds directly,
it has the advantage on the time. However, because of the large number
of convolution layers in the PointNet, it performs much slower on
backward and forward operations than our method.

5. Discussion

As shown in Section 4, the proposed method achieves a better
performance than other selected approaches on descriptiveness, ro-
bustness and efficiency. Such superior performance may come from the
following factors: (1) The three feature descriptors, i.e. HSSI, VQAI, and
VAAI, can robustly preserve the spatial relationship of points from three
different perspectives, which would help to capture the basic geometric
information. (2) By fusing the designed feature descriptors, our method
can learn the high-level features, which is demonstrated to help en-
hance the descriptiveness.

For the handcrafted-feature-based methods, such as SI, SHOT and
HD, the main issue lies in insufficiently describing 3D data using sta-
tistical information. This makes the descriptiveness still far from sa-
tisfactory. Compared with these methods, our approach makes full use
of the deep neural network to learn the high-level features. More spe-
cifically, the two-stage fusion framework combines well-engineered
CNNs and three proposed feature descriptors to mine more descriptive
information. Therefore, JointNet can be applied in describing complex
3D shape.

For PointNet, it achieves impressive performance on synthetic da-
tasets, such as ModelNet40. However, because PointNet processes each
point in a 3D shape individually, the geometric relationship among the
neighboring points would not be well employed. Therefore, PointNet
would be weak in descriptiveness and sensitive to disturbances such as
Gaussian noise, down sampling, outliers and occlusion, which are all
unavoidable in a real scene, especially in road environments. In con-
trary, JointNet takes feature maps generated by the proposed three
descriptors as input. Because these descriptors preserve the spatial re-
lationship of points from different perspectives, local geometric struc-
ture information among neighboring points would be encoded in the
feature maps. Consequently, these maps would improve the perfor-
mance of JointNet.

Limitations. Firstly, as shown in Table 4, the model size of JointNet is
large. This will weaken its generalization ability. Secondly, as discussed
in Section 4.5, although JointNet is robust to data with noises, such as
Gaussian noise, down sampling and outliers, it is still somewhat sen-
sitive to noisy labeled data. Finally, compared with PointNet, JointNet
requires extra time to calculate the feature descriptors. These short-
comings show clearly the direction of our future work.

6. Conclusions

We have presented a new framework, JointNet, by jointing low-
level features and CNNs for 3D object recognition, and evaluated the

descriptiveness, robustness and efficiency of JointNet on three real
road-scene datasets, including the public dataset, the Sydney Urban
Objects, and two datasets collected by a MLS system. In conclusion, our
proposed method has several major advantages: First, the proposed
three designed feature descriptors can learn spatial relationships of
points from three different perspectives, providing rich basic geometric
information. Second, JointNet uses the CNNs as the feature detector, so
the high-level semantic information can be extracted to improve the
descriptiveness. Third, our proposed method is robust to noise, outliers,
occlusion and varying point density. Thus, JointNet is suitable for
practical applications, such as automatic driving. Last, comparing with
DL-based methods, such as PointNet, JointNet is more time-saving in
forward-backward operations and so can speed up the training speed.
Comparative experiments clearly demonstrate that JointNet outper-
forms the other selected methods by a large margin in terms of re-
cognition error and computational time. It can be concluded that our
method can recognize 3D MLS point clouds under road scene more
accurately, robustly and efficiently.

In the future, we plan to refine our work in the following aspects:
reducing the number of model parameters in an effective way to further
improve the generalization ability; considering more low-level features,
such as the intensity and RGB values, to improve descriptiveness; de-
signing more suitable and effective fusion strategy to exploit the re-
presentation.
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