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Our work addresses the problem of extracting and classifying tree species from mobile
LiDAR data. The work includes tree preprocessing and tree classification. In tree pre-
processing, voxel-based upward-growing filtering is proposed to remove ground points
from the mobile LiDAR data, followed by a tree segmentation that extracts individual trees
via Euclidean distance clustering and voxel-based normalized cut segmentation. In tree
classification, first, a waveform representation is developed to model geometric structures
of trees. Then, deep learning techniques are used to generate high-level feature abstractions
of the trees’ waveform representations. Quantitative analysis shows that our algorithm
achieves an overall accuracy of 86.1% and a kappa coefficient of 0.8 in classifying urban
tree species usingmobile LiDARdata. Comparative experiments demonstrate that the uses
of waveform representation and deep Boltzmann machines contribute to the improvement
of classification accuracies of tree species.

1. Introduction

In the case of urban areas, tree species classification is gaining increasing attention for
safety studies, noise modelling, and environmental and ecological analysis because trees
play a critical role in urban ecosystems for the maintenance of environmental quality,
aesthetic beauty of urban landscape, and social service for inhabitants (Tooke et al. 2009;
Zhang and Hu 2012). As cities grow rapidly, urban forests are increasingly displaced by
infrastructure. Therefore, municipal governments desire to control development near
greenbelt areas by using land cover maps (Jim and Liu 2001; Sugumaran, Pavuluri, and
Zerr 2003). Moreover, biodiversity parameters such as tree species and age and height
distributions are primarily chosen for ecosystem analysis (Maas 2010).

Since last decade, high-sampling density LiDAR data have been widely used for
single tree extraction and tree species classification with explorations of varying algo-
rithms (Maas 2010; Puttonen et al. 2011, Dinuls et al. 2012; Li, Hu, and Noland 2013).
Currently, retrieval of tree structural attributes are largely from airborne LiDAR data
(Jones, Coops, and Sharma 2012; Chang et al. 2013; Kwaka et al. 2014). However,
airborne LiDAR systems mainly capture the tops of structures and have potentially limited
access to objects under the canopy, leading to incomplete data coverage of trees.
Compared to terrestrial and mobile LiDAR systems, airborne LiDAR systems have
relatively low-point sampling densities. Because terrestrial LiDAR systems capture very
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dense 3D representations of tree topologies and local forest structures, terrestrial LiDAR is
also a very valuable means for forest attribute measurements on single tree and plot levels.
However, terrestrial LiDAR systems frequently capture data from multiple views, leading
to a relatively time-consuming data acquisition process.

Mobile LiDAR has attracted much attention for urban vegetation detection and model-
ling (Jaakkola et al. 2010) because it acquires data at a much higher point density and more
complete data coverage than an airborne LiDAR system and at a higher efficiency than a
terrestrial LiDAR system. Consequently, studies have been conducted using mobile LiDAR
data. 3D segmentation methods, such as 3D Hough transform (Rutzinger et al. 2010),
minimum spanning tree (Shen et al. 2008), and stepwise voxel-based marked neighbour-
hood searching (Wu et al. 2013), were developed for identifying street trees from scattered
mobile LiDAR points. In addition, algorithms combining mobile LiDAR data with digital
images or videos captured by on-board digital camera(s) or video camera(s) were also
exploited for tree detection (Puttonen et al. 2011; Zhong et al. 2013). However, less
attention is paid to tree species classification from mobile LiDAR data. Thus, the impor-
tance of single-tree-based information for updating urban tree species maps is the motiva-
tion for developing algorithms from the unprecedented detailed 3D mobile LiDAR data for
tree detection and species identification in this letter.

In this letter, we propose a tree classification method, which applies a deep learning
technique to waveform representations of 3D tree points. The proposed method includes tree
preprocessing and tree classification. In tree preprocessing, ground points are first removed
frommobile LiDAR data through voxel-based upward-growing filtering; then individual trees
are isolated from the filtered off-ground points via Euclidean distance clustering and
voxel-based normalized cut segmentation. In tree classification, the extracted individual
trees are profiled in height to form waveform representations. Based on waveform representa-
tion, deep learning using deep Boltzmann machines (DBMs) is used to generate high-level
feature abstractions, which are further classified by a support vector machine (SVM)
classifier.

2. Methodology

2.1. Tree preprocessing

2.1.1. Ground point removal

Usually, most filtering methods, which were originally developed for airborne LiDAR
data, assume that the lowest point in a neighbourhood is a ground point. However,
compared to the looking-down view patterns of airborne LiDAR systems, which are
more likely to generate uniform point densities, mobile LiDAR systems with side-view
patterns collect very dense data close to the scanner path and less dense data farther away
from the scanner path. Points belonging to road surface account for a great portion of the
collected mobile LiDAR data. Thus, the established filtering algorithms are unsuitable for
retrieving non-ground points from mobile LiDAR data. To improve computational effi-
ciency, we develop a rapid and effective method, namely voxel-based upward-growing
filtering, for removing ground points. This method is implemented as follows:

(1) Grid the entire point cloud into a set of data blocks, Dj ( j ¼ 0; 1; . . .N , where N
is the number of data blocks), with a block size of wb in the XY plane, as shown
in Figure 1(a). The block size is determined by ground fluctuations of the study
areas of interest.
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(2) Organize each data block, Dj, into an octree partition structure with a spacing of
wv to generate a set of voxels, vi (i ¼ 0; 1; . . .M , where M is the number of
voxels), as shown in Figure 1(b). The voxel size is empirically determined
based on the point density of the acquired mobile LiDAR data and the computa-
tional efficiency of the proposed ground removal method.

(3) Each voxel, vi, grows upward to its nine neighbours, N1 to N9, which are located
above the voxel, as shown in Figure 1(c). Then, each neighbour continues to grow
upward to its corresponding nine neighbours. The upward-growing process stops
when no more voxels can be reached. Finally, a voxel, ve, with the highest
elevation within the grown region is determined to justify whether voxel vi
contains ground points or non-ground points based on the following criteria:
(a) If the elevation of ve lies below a predefined ground threshold, Hthresh, label

all points in voxel vi as ground points, which are further removed.
(b) Otherwise, label all points in voxel vi as non-ground points, which are

retained.

The proposed voxel-based upward-growing filtering method has the advantage of
rapidly and effectively handling large scenes with strong ground fluctuations. Figure 2(a)
shows a visual example of the retrieved off-ground points after ground removal.

2.1.2. Tree segmentation

To rapidly group off-ground points into clusters representing individual objects, we use a
Euclidean distance clustering approach, which clusters discrete points based on their
Euclidean distances. Theoretically, an unclustered point is grouped into a specific cluster
if and only if its shortest Euclidean distance to the points in this cluster lies below a
threshold, dt. Otherwise, a new cluster is created to contain this point. Such a Euclidean
distance clustering approach starts at an unclustered off-ground point and then iteratively
processes each unclustered point until all off-ground points are grouped into specific

Figure 1. (a) Gridding raw data points of a road section into data blocks in the XYplane, (b) octree
partition structure for block Dj, and (c) nine upper neighbours (N1 to N9) for each voxel vi.

Figure 2. (a) Off-ground points after ground removal, (b) clustered off-ground points, and (c)
detected individual trees after VNCut segmentation and prior knowledge filtering.
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clusters. Through Euclidean distance clustering, most separated objects are successfully
segmented (see Figure 2(b)). However, as shown by the red box in Figure 2(b), by using
Euclidean distance clustering, some adjacent or overlapped objects cannot be well
segmented.

Before tree classification, individual trees must be separated from the clusters containing
multiple objects. In our previous study (Yu et al. 2015), we proposed a voxel-based normal-
ized cut (VNCut) segmentation method, which effectively segments point cloud clusters,
containing multiple adjacent or overlapped objects, into separated objects. Thus, in this letter,
VNCut is used to segment individual trees.

First, by using the octree partition strategy, the clusters, containing more than one
object, are partitioned into a voxel structure with a certain voxel spacing. Then, the
generated voxels are formed into a weighted graph, whose nodes are represented by the
voxels and edges are connected between each pair of voxels. The weight on the edge,
measuring the similarity of the connected voxels, is computed using the features asso-
ciated with the voxels. Next, after solving a generalized eigenvalue problem with respect
to the weighted graph, a set of eigenvalues and their associated eigenvectors are obtained.
Finally, by applying a threshold to the eigenvector associated with the second smallest
eigenvalue, a cluster is divided into two components. By using VNCut segmentation, the
clusters containing more than one object are effectively segmented into individual objects.
After segmentation, prior knowledge (e.g. crown size) is used to filter out non-tree objects
such as light poles. Figure 2(c) shows a visual example of the detected individual trees.

2.2. Tree classification

2.2.1. Waveform generation

The extracted individual trees are then profiled vertically to generate waveform representa-
tions. In elevation, using a predefined waveform dimension, n, a tree is subdivided
vertically into n profiles, within each of which points are counted, and then the values of
point statistics are normalized at the continuous range of 0–1. Figure 3 shows three
subtropical tree types. The left figures are tree models in the form of 3D points, and the
right figures are their corresponding waveform representations based on point statistics. As
seen in Figure 3, the generated waveform data deliver a good representation of tree’s
geometric structures. Similar to real waveform digitalization, which delivers a full-intensity
profile of the echo of a laser pulse, the proposed waveform representation offers a unique
geometric profile of a tree. We classify trees directly from waveform data, rather than
indirect information or parameters deduced from waveform data, which reduces classifica-
tion errors caused by human interpretation.

Figure 3. Tree samples and their corresponding waveform data: (a) tree 1, (b) tree 2, and (c) tree 3.
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2.2.2. Tree classification

Recently, deep learning techniques have become attractive for their superior performance
in learning hierarchical features from high-dimensional unlabelled data. By learning
multilevel feature representations, deep learning models have been proved to be an
effective tool for rapid object-oriented classification problems. DBMs (Salakhutdinov,
Tenenbaum, and Torralba 2013) are an important breakthrough in the requirement for
powerful deep feature representation models. In this letter, we construct a deep feature
generation model for generating high-level feature abstractions of the trees’ waveforms
using a DBM model.

As shown in Figure 4(a), we construct a two-layer DBM model. Denote v 2 ½0; 1�n as
the real-valued visible units representing a tree’s waveform. Denote h1 2 f0; 1gF1 and

h2 2 f0; 1gF2 as the lower- and higher-layer hidden units, respectively. F1 and F2 are the
numbers of hidden units in the lower and higher hidden layers, respectively. Then, the
energy of the configuration, fv; h1; h2g, is defined as follows:

Eðv; h1; h2; ϕÞ ¼ 1

2

Xn
i¼1

v2i
σ2i

�
Xn
i¼1

XF1

j¼1

vi
σi
w1
ijh

1
j �

XF1

j¼1

XF2

m¼1

h1j w
2
jmh

2
m; (1)

where ϕ ¼ fW1;W2; σg are the model parameters. vi is the ith element of v; h1j is the jth
element of h1; h2m is the mth element of h2. W1and W2are the visible-to-hidden and
hidden-to-hidden symmetric interaction terms, respectively. w1

ij is the element on the ith

row and jth column of W1.w2
jm is the element on the jth row and mth column of W2. σ2

represents the variances of the visible units. σi is the ith element of σ. The conditional
distributions over the visible and two sets of hidden units are expressed as follows:

pðh1j ¼ 1jv; h2Þ ¼ g
Xn
i¼1

vi
σi
w1
ij þ

XF2

m¼1

h2mw
2
jm

 !
; (2)

pðh2m ¼ 1jh1Þ ¼ g
XF1

j¼1

h1j w
2
jm

 !
; (3)

Figure 4. (a) Two-layer DBM model and (b) deep feature generation model.

868 H. Guan et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

at
er

lo
o]

 a
t 1

7:
37

 0
8 

O
ct

ob
er

 2
01

5 



pðvi ¼ xjh1Þ ¼ 1ffiffiffiffiffi
2π

p
σi
exp �

x� σi
PF1

j¼1
h1j w

1
ij

 !

2σ2i

0
BBBB@

1
CCCCA; (4)

where g(x) = 1/(1 + e–x) is the logistic function (Salakhutdinov, Tenenbaum, and Torralba
2013).

To rapidly, effectively train the model parameters, ϕ, first, a greedy layer-wise pre-
training is performed to initialize the model parameters. Then, an iterative training algorithm
combined with variational and stochastic approximation approaches (Salakhutdinov,
Tenenbaum, and Torralba 2013) is used to fine-train the model parameters.

Once the model parameters are trained, the stochastic activities of binary features in
the hidden layers of the DBM are replaced by real-valued probability estimations to
construct a deep feature generation model (Figure 4(b)). Considering the feedbacks
from hidden layers, for each visible vector v, mean-field inference (Salakhutdinov and
Hinton 2012) is adopted to generate an approximate posterior distribution, Q(h2|v). Then,
the marginal, q(h2|v) of the approximate posterior serves as an augment to the deep feature
generation model. Finally, the top layer of the deep feature generation model produces the
following high-level feature representation:

IT ¼ g g
vT

σT
W1 þ qðh1jvÞTðW2ÞT

� �
W2

� �
2 ½0; 1�F2 : (5)

To classify the segmented trees into specific tree species, first, the trees’ waveforms
are characterized by the deep feature generation model to generate high-level feature
representations. Then, by using an SVM classifier, the generated high-level feature
representations are classified into specific classes. In this way, all the trees are classified
into specific tree species.

3. Results and conclusion

In this study, using a RIEGL VMX-450 mobile LiDAR system, the mobile LiDAR data
were acquired along the urban roads in Xiamen City, China. The specification of the RIEGL
VMX-450 system claims that the system can achieve a maximum effective measurement
rate of 1.1 million points per second and a scan speed of 400 lines per second. In this letter,
point density stands for the number of points per square metre and sharply drops perpendi-
cular to the line of travel. For example, with a vehicle driving speed of 50 km hour−1, the
average point density is around 250–500 points m−2. For urban landscaping, a total number
of 10 different species of trees (including T1: Elaeocarpus apiculatusmast; T2: Sago cycas;
T3: palm; T4: Roystonea regia; T5: Bischofia polycarpa; T6: Delonix regia; T7: Euonymus
japonicas; T8: mango; T9: Ficus microcarpa; and T10: Ficus macrophylla) are planted
along both sides of the road corridor, as shown by the examples in Figure 5. At training
stage, 50,000 tree samples from 10 different tree species, each of which includes 5000 tree
samples, were selected for training the deep feature generation model and the SVM
classifier. At test stage, from the collected data, a road segment of approximately 4 km,
containing 2013 trees from 10 species, was selected for evaluating the proposed classifica-
tion algorithm.
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3.1. Tree classification

We applied the proposed algorithm to the selected point cloud data set to classify tree
species. Through parameter sensitivity analysis on computational and classification per-
formances, the parameters and their configurations used in this study are listed in Table 1.
In practice, first, the selected point cloud data set was partitioned into a set of data
segments with a road length of about 50 m. Then, in the tree preprocessing step, each data
segment was handled separately to segment individual trees. The block size (wb) and
voxel size (wv) were set to 3 m and 5 cm, respectively. The ground threshold (Hthresh) was
set to 0.3 m for removing ground points. In addition, the clusters were created from the
extracted off-ground points based on a clustering threshold (dt) of 0.15 m.

Next, waveform representations were generated from the segmented individual trees
with the given waveform dimension, n = 150. Finally, the segmented individual trees were
classified into different tree species based on the high-level features of their waveform
representations. The numbers of hidden units in the lower and higher hidden layers (F1

and F2) of the DBM were set to 500 and 50, respectively. In the letter, a Gaussian radial
basis function (RBF) kernel was chosen for our SVM classifier since RBF kernels yield
extremely high-accuracy rates for the most challenging high-dimensional image classifi-
cations. Two parameters should be specified while using the RBF kernels: penalty
parameter (C) and kernel function (γ). We selected the SVM parameters empirically by
trying a finite number of values and keeping those that provide the least test error. The
optimal values of C and γ were found to be 300 and 0.4, respectively. In the selected data
set, there are a total number of 2013 trees from 10 different tree species. Figure 5
illustrates some tree examples of the 10 different tree species. The tree species classifica-
tion results are illustrated in Table 2 by using a confusion matrix. The overall tree
classification accuracy is 86.1% and the kappa value is 0.8. The producer’s accuracies
for all trees are >81%, and the user’s accuracies for all trees are >78%. The misclassifica-
tion errors were mainly caused by the waveform similarities of some trees among different
species; thus, these trees were falsely classified into other species.

Figure 5. Illustration of 10 different tree species (termed as T1, T2, . . . T10) in the study area.

Table 1. Parameters and their configurations used in this study.

wb wv Hthresh dt n F1 F2

3 m 0.05 m 0.3 m 0.15 m 150 500 50
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3.2. Comparative experiments

In this study, a DBM-based deep feature generation model is used to generate high-level
feature abstractions of the tree’s waveform data generated from mobile LiDAR data. Thus,
to demonstrate the superior performance of the deep feature generation model, we
compared it with the following three methods.

Method 1 – in which the waveform representation is directly used as features. The
waveform dimension, n, was set to 150 to generate a 150-dimensional (150-D) feature
vector based on point statistics.

Method 2 – in which a total of 134 features covering four types of LiDAR features
were designed, including (1) the 3D texture of a tree (14 features), (2) the relative degree
of foliage clustering (80 features for 20 height layers), (3) the relative scale (20 features),
and (4) the gap distribution within a tree crown (20 features). For more details about the
used features, refer to Li, Hu, and Noland (2013).

Method 3 – in which the proposed DBM-based feature generation model is used to
learn high-level feature abstractions from the total of 134 features in method 2.

In pursuing the objectives of this study, an SVM classifier was used in methods 1–3. The
comparative results are detailed in Table 3. As seen in Table 3, method 1 achieved the lowest
classification accuracies with an overall accuracy of 73.4% and a kappa value of 0.7. This is
caused by the low-level, low-distinctiveness features of the 150-D waveform representation.
Method 2 outperformedmethod 1 with an overall accuracy of 79.2% and a kappa value of 0.8.
The producer’s accuracies for all species were between 71.9% and 83.1%, and the user’s
accuracies for all species were between 75.6% and 82.4%. Moreover, method 2 achieved
better classification accuracies than those reported in Li, Hu, and Noland (2013). This is
because the point density of the used mobile LiDAR data is larger than that of the airborne
LiDAR data in Li, Hu, and Noland (2013). The airborne LiDAR points cover tree canopies
and miss the most structure of a tree under the canopy, while the mobile LiDAR data almost
cover a complete structure of a tree. Compared to methods 1 and 2, method 3 achieved
relatively higher classification accuracies. This might be benefited from the use of the deep
feature generation model for generating high-level feature representations. Finally, the

Table 2. Overall results of classification accuracies of 10 tree species (see Figure 5) by using
confusion matrix, showing the numbers of classified versus validation trees.

Species

Validation trees

Total
Accuracy
UA (%)T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Classified
trees

T1 180 3 3 2 5 11 0 7 0 2 210 85.7
T2 3 165 4 3 0 0 15 0 0 0 190 86.8
T3 2 3 159 4 0 5 12 2 2 0 189 84.1
T4 4 3 2 186 3 4 0 2 4 2 210 88.6
T5 0 0 5 3 185 2 3 0 3 2 203 91.1
T6 15 3 0 3 4 165 3 8 8 2 211 78.2
T7 0 17 8 0 3 2 161 2 0 0 193 83.4
T8 3 1 1 4 3 2 2 176 0 16 208 84.6
T9 0 2 0 0 1 1 0 2 179 1 186 96.2
T10 3 5 3 4 0 1 2 12 5 178 213 83.6
Total 210 199 185 209 204 193 198 211 201 203 2013

Accuracy PA (%) 85.7 82.9 85.9 89.0 90.7 85.5 81.3 83.4 89.1 87.7
OA (%) = 86.1; kappa coefficient = 0.8

Note: PA, producer’s accuracy; UA, user’s accuracy; OA, overall accuracy.
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proposed tree classification method outperformed all the three methods. The reasons behind
this phenomenon might be (1) the use of the DBM-based feature generation model for the
high-level feature representation contributes to the improvement of classification accuracies,
and (2) the use of waveform representation as data rather than classification feature vectors
contributes to the complete description of a tree from mobile LiDAR data.

4. Conclusion

In this letter, we proposed a novel algorithm for classifying tree species in urban areas using
mobile LiDAR data, which consists of (1) ground point removal and individual tree detection,
and (2) waveform representation of individual trees and deep learning-based feature abstrac-
tions using DBMs for SVM classification. Our algorithm achieved an overall accuracy of
86.1% and a kappa coefficient of 0.8 on the selected 4-km urban road data set. In addition,
comparative studies also demonstrated that the use of waveform representation and DBMs in
the proposed algorithm obtained promising and high performance in classifying tree species
from mobile LiDAR data. We will continue to develop novel waveform representations, with
the goal of improving tree classification accuracy in support of urban forest attribute modelling.
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