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Geo-Object-Based Image Analysis (GEOBIA) is becoming an increasingly important technology for infor-
mation extraction from remote sensing images. Multi-scale image segmentation is a key procedure that
partitions an image into homogeneous parcels (image objects) in GEOBIA. Hierarchical image objects also
provide a better representation result than a single-scale representation. However, scale selection in
multi-scale image segmentation is always difficult for high-performance GEOBIA. This paper first gener-
alizes the commonly used segmentation scale parameters into three aspects: spatial bandwidth (spatial
distance between classes), attribute bandwidth (difference between classes) and merging threshold.
Next, taking mean-shift multi-scale segmentation as an example, this paper proposes a spatial and spec-
tral statistics-based scale parameter selection method for object-based information extraction from high
spatial resolution remote sensing images. The main idea of this proposed method is to use the ALV graph
to replace the semivariogram to pre-estimate the optimal spatial bandwidth. Next, the selection of the
optimal attribute bandwidth and the merging threshold are based on the ALV histogram and simple geo-
metric computation, respectively. This study uses Ikonos, Quickbird and aerial panchromatic images as
the experimental data to verify the validity of the proposed scale parameter selection method.
Experiments based on quantitative multi-scale segmentation evaluation testify to the validity of this
method. This pre-estimation-based scale parameter selection method is practically helpful and efficient
in GEOBIA. The idea of this method can be further extended to other segmentation algorithms and other
sensor data.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

With the improvements in satellite sensor technology, the spa-
tial resolution of remote sensing images has significantly
increased. In very high spatial resolution images, it often occurs
that different classes have the same spectral reflectance or the
same class has different spectral reflectances (strong spectral
variability within class). Thus, pixel-based multi-spectral image
classification not only leads to misclassification but also results
in broken patches. GEOBIA (Hay and Castilla, 2008), the
geo-related sub-discipline of OBIA (Object-Based Image Analysis),
has become increasingly commonplace over the last decade
(Blaschke, 2010), and its popularity continues to sharply increase
(Blaschke et al., 2014) because it can effectively incorporate spatial
information and expert knowledge into the classification, and the
classified image objects are a useful link on which remote sensing
and GIS can be integrated (Blaschke et al., 2008; Blaschke, 2010).
Multi-scale image segmentation is the foundational procedure of
OBIA in which the digital image is transformed from discrete pixels
into homogeneous image object primitives (Vieira et al., 2012).
Blaschke et al. (2004) provide an overview of numerous segmenta-
tion techniques used in remote sensing. However, the real
challenge is to define appropriate segmentation parameters
(Hay et al., 2005). Object-based scale selection (scale parameter
selection in the image segmentation, see Ming et al. (2011)) is
the key to GEOBIA because an inappropriate scale will lead to
over-segmentation or insufficient segmentation (Ming et al.,
2012), which will directly reduce the accuracy and efficiency of
multi-scale information extraction from high spatial resolution
remote sensing images (Myint et al., 2011; Ming et al., 2011;
Dronova et al., 2012). Although GEOBIA is becoming increasingly
prominent in remote sensing science (Blaschke et al., 2008), the
selection of segmentation scale parameters is often dependent on
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subjective trial-and-error methods. A ready-to-use application
allowing the user to evaluate the scale parameter as a function of
the intrinsic spatial structure of images before segmentation is
not common.

Kim et al. (2008) noted that defining the most suitable scale for
image segmentation is still problematic as no objective method
currently exists for setting the scale parameter in segmentation
algorithms. Currently, several multi-scale segmentation algorithms
have been proposed and applied in remote sensing image analysis,
including watershed segmentation (Vincent and Soille, 1991;
Scheunders and Sijbers, 2002), multi-resolution segmentation
(Definiens Developer �) (Baatz and Schäpe, 2000; Peña-Barragán
et al., 2011; Duro et al., 2012) and mean-shift segmentation
(Comaniciu and Meer, 2002; Comaniciu, 2003; Rao et al., 2009;
Zhou et al., 2013). Among these algorithms, watershed segmenta-
tion has specific scale parameter, namely, the sampling window
size, valley threshold and catchment area threshold; however,
the relationship between segmentation results on different scales
cannot be easily determined. Multi-resolution segmentation
(Baatz and Schäpe, 2000; Baatz et al., 2000; Benz et al., 2004) is
based on the idea of Fractal Net Evolution approach (Baatz and
Shäpe, 1999), and it not only provides a scale parameter but also
incorporates the hierarchical relationship between different levels.
The scale parameter in multi-resolution segmentation is very
important and it determines the average image object size by
determining the upper limit for a permitted change of heterogene-
ity throughout the segmentation process. However, the scale
parameter is an abstract value used to determine the maximum
possible change of heterogeneity caused by fusing several objects,
and it is difficult for a user to quantitatively select the optimal scale
parameter without repetitious trials because the practical meaning
of scale parameter is different in different segmentation mode
(Normal, Spectral difference and Sub obj.line analysis) provided
by eCognition. The relation between the scale parameter and the
image data is complicatedly tacit and cannot be directively and
easily built.

Because the mean-shift segmentation algorithm has the advan-
tages of a specific scale parameter and a hierarchical relationship
between segmentation levels, this paper adopts the mean-shift
multi-scale segmentation algorithm to extract the homogenous
parcels from high spatial resolution images. Based on the essence
of spatial dependence for scale, this paper combines the theories
of geospatial statistics and pattern recognition and proposes an
optimal scale parameter selection method based on average local
variance (ALV) for mean-shift image segmentation. Compared with
existing studies on scale parameter selection that are based on
post-evaluation, the characteristic feature of this method is that
it is based on pre-estimation. The method is further validated
based on multi-scale segmentations of Ikonos and Quickbird
panchromatic image data.
2. Object-based scale and optimal object-based scale selection

Scale is a broadly used term in geoscience and has a variety of
meanings in different contexts. Although GEOBIA has drawn con-
siderable attention in remote sensing image processing and analy-
sis, a specific concept of an object-based scale of remote sensing
images has not been given. Ming et al. (2011) generalized the three
levels of connotation of the spatial scale of remote sensing images
(pixel-based, object-based and pattern-based scales). The
object-based scale is considered the size of the meaningful unit
(image primitive). An image object is defined (Definiens, 2007) as
a group of connected pixels that have homogenous features.
Thus, the object-based scale refers to the spatial extent or the size
of image object, and the optimal object-scale refers to the optimal
size of the smallest class or the optimal size for different classes.
From the viewpoint of using an algorithm to extract the image
objects, the object-based scale corresponds to the scale parameters
in the multi-scale image segmentation, and the optimal
object-based scale corresponds to the optimal segmentation level
that contains the most pure objects and the least mixed objects,
and as a result, the subsequent object-based classification can
achieve high accuracy.

In image processing, some attempts have been made to select
the optimal scale parameters for multi-scale segmentation. For
example, Claudio (2007), Tian and Chen (2007), Tan et al. (2007),
Kim et al. (2008), He et al. (2009) and Johnson and Xie (2011) used
the indices of the homogeneity within the segmentation parcels
and the heterogeneity between the segmentation parcels to select
the optimal scale parameter. Drǎgut et al. (2009) presented a focal
mean statistics-based procedure to optimize the parameterization
and to scale for terrain segmentation. Drǎgut et al. (2010) proposed
the idea that the local variance (LV) of object heterogeneity within
a scene can indicate the appropriate scale level, and they intro-
duced an ESP (Estimation of Scale Parameter) tool to find optimal
parameters for the multi-resolution segmentation. Karl and
Maurer (2010) use variogram-based spatial dependency prediction
to determine appropriate segmentation scales for producing
land-management information. The rule Eid et al. (2010) use to
detect the optimal scale is that if the area of an object is kept static
or nearly static in a set of successive scales, then any of these scales
can be chosen as the appropriate scale. Anders et al. (2011) evalu-
ate the quality of the segmentation results for each specific geo-
morphological feature type to optimize segmentation
parameters. Zhao et al. (2012) employed the changed ROC-LV
method, similar to the ESP tool by Drǎgut et al. (2010), to judge
the optimal scales in the slope segmentation by using
multi-resolution segmentation and eCognition software.
However, these methods and applications are actually intended
to select the scale by post-evaluation of the multi-scale segmenta-
tion, not pre-estimation of the optimal scale parameters.
Additionally, most of them are basically based on the
multi-resolution segmentation provided by Definiens Developer�,
in which the meaning of the scale parameter is complicated, mak-
ing it practically difficult to understand the relationship between
the scale selection indictors and the scale parameter.

Scale parameters selection for multi-scale image segmentation
in image processing is also called bandwidths selection for mode
clustering in pattern recognition. In pattern recognition, some
bandwidth selection methods in this context also have been
explored for multi-scale clustering. Comaniciu (2003) discussed
the optimal bandwidths (based on asymptotic bias-variance
trade-off) originally derived for the purpose of multivariate nor-
malized density estimation, however this idea was discarded
quickly for practical considerations (Einbeck, 2011). An alternative
family of methods, which is tailored toward the extraction of reli-
able scale information for multi-dimensional data, attempts to
maximize the stability of the partitioning under variation of the
bandwidth (Comaniciu et al., 2001; Comaniciu, 2003; Einbeck,
2011). However, it is not clear whether a bandwidth which is opti-
mal for the clustering is necessarily optimal for the problem of
finding local modes. What’s more, these works are mostly based
on discrete simulated data sets which seldom present in reality,
therefore the resulting bandwidth is often of little practical use
(Li et al., 2005; Li et al., 2007; Zhang et al., 2012). In addition,
(Park et al., 2009; Sun and Xu, 2010; Vojir et al., 2014) employ esti-
mation of local structure to select the bandwidth or scale parame-
ter for image segmentation or filtering. However, these methods
are mainly based on natural color images that are greatly differing
from remote sensing images, their performance on complex
remote sensing image segmentation need to be further verified.
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In fact, the essence of determining the optimal scale parameters
is the statistical pre-estimation of the spatial autocorrelation of
objects within the image. The optimal scale is essentially the
critical point at which the spatial dependence exists or does not
exist. The critical point is just reflects the meaning of the spatial
statistical term ‘‘range’’. Based on this idea, Ming et al. (2012) com-
bined the classical semivariogram method with the segmentation
scale selection of remote sensing images, which achieves good per-
formance. Spatial statistics is deemed as a feasible and inevitable
approach for scale selection, especially in the geo-application of
remote sensing images. This paper applies statistical methods
(especially geospatial statistics) to pattern recognition to select
the optimal bandwidths. This approach can be explained by classi-
cal geospatial statistical theory and is practically meaningful for
multi-scale information extraction from remote sensing images.

3. Multi-scale segmentation based on mean-shift algorithm

The mean-shift algorithm by Fukunaga and Hostetler (1975) is a
robust and adaptive clustering algorithm with non-parametric
density estimation, and it does not require a priori knowledge of
the number of clusters. This algorithm can shift the points in the
feature space to the local maxima of the density function by effec-
tive iterations and can achieve fast convergence. Thus, it has been
successfully used in image segmentation (Comaniciu et al., 2001;
Zhou et al., 2013; Yang et al., 2013).

3.1. Introduction to mean shift clustering

Given n data points xi, i = 1, . . ., n in the d-dimensional space Rd,
the kernel density estimation at the location x can be calculated by
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with the bandwidth parameter hi > 0. The kernel K is a spherically
symmetric kernel with bounded support (Polat and Ozden, 2006),

KðxÞ ¼ ck;dkðkxk2Þ > 0 kxk 6 1 ð2Þ

where the normalization constant ck,d ensures that K(x) integrates
to one. The function k(x) is called the profile of the kernel.
Assuming derivative of the kernel profile k(x) exists, using
g(x) = �k0(x) as the profile, the kernel G(x) is defined as G(x) = cg,d

g(||x||2). The following property can be proven by taking the gradi-
ent of Eq. (1) as follows,

mGðxÞ ¼ C
r̂f KðxÞ
f̂ GðxÞ

ð3Þ

where mG(x) is called mean shift vector. C is a positive constant and,
it shows that, at location x, the mean shift vector computed with
kernel G is proportional to the normalized density gradient
estimate obtained with kernel K. The mean shift vector is defined
as follows
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The mean shift vector thus points toward the direction of maximum
increase in the density (Comaniciu and Meer, 2002; zheng et al.,
2010). The mean shift procedure is obtained by successive compu-
tation of the mean shift vector and translation of the kernel G(x) by
the mean shift vector. At the end of the procedure, it is guaranteed
to converge at a nearby point where the estimate has zero gradient
(Cheng, 1995). In other words, it is a hill climbing technique to the
nearest stationary point of the density. The iterative equation is
given by
yjþ1 ¼
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The initial position of the kernel (starting point to calculate y1) can
be chosen as one of the data points xi. Usually, the modes (local
maximum) of the density are the convergence points of the iterative
procedure. For more details, please refer to Cheng (1995), Polat and
Ozden (2006) and Wu and Yang (2007).

3.2. Mean-shift based image segmentation and the meanings of the
bandwidths

Most conventional color clustering algorithms for image
segmentation are based on the information in the color space.
However, clustering in the color space usually does not provide
satisfactory performance because it lacks information about the
spatial configuration. To resolve this limitation, in addition to color
information, the spatial information is often incorporated into the
feature space representation, and the mean-shift algorithm-based
color segmentation method can be applied to obtain reliable
segmentation results.

Mean-shift-based segmentation is a straightforward extension
of the discontinuity preserving smoothing algorithm (Comaniciu
and Meer, 2002). When the multi-variate kernels (hs, hr) are used
to replace the single bandwidth parameter of the kernel function,
formula (2) can be expressed by
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Spatial bandwidth hs is the spatial distance between classes in the
spatial domain, and it indicates the spatial window size in the
segmentation. Attribute bandwidth (or spectral bandwidth) hr

represents the spectral difference between classes in the spectral
domain. The mean-shift algorithm segments the image by grouping
together all pixels that are closer than hs in the spatial domain and
hr in the spectral domain and then connecting the corresponding
convergence points. In the multi-scale segmentation, class labels
for all pixels are available for building the relationships between
different levels of segmentation results. An optional step of elimi-
nating spatial regions containing less than M pixels is another
approach to performing multi-scale segmentation. For further
details, please refer to Comaniciu and Meer (2002).

In mean-shift-based multi-scale segmentation, there are three
scale parameters (hs, hr, M) that determine the scale level of the
segmentation. More concretely, the scale parameters hs, hr and M
relate to the spatial size of the patches making up a class, the spec-
tral ‘‘size’’ or compactness of classes and the minimum acceptable
spatial size of patches in a class, respectively.

4. Object-based scale selection by spatial statistics: using mean-
shift-based multi-scale segmentation as an example

Selection of the optimal scale parameters is the key to
multi-scale segmentation because they can determine the pattern
recognition resolution and the precision of the information extrac-
tion from the remote sensing image. However, it must be kept in
mind that there is not absolutely ideal scale for the variously sized,
shaped, and spatially distributed image-objects composing a scene,
which also reflects the substance of the Modifiable Area Unit
Problem (MAUP, Openshaw, 1984). A compromise solution is to
compute a theoretically ideal scale on which the geographic infor-
mation can be recognized by an GEOBIA-based classification, and
the overall classification accuracy can be theoretically guaranteed
by using the selected optimal scale parameters.



Fig. 1. Workflow of pre-estimating the optimal scale parameters.

Fig. 2. Schematic diagrams for the computation of semivariance and local variance.
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Additionally, the three scale parameters in mean-shift-based
multi-scale segmentation (hs, hr, M) are universal for representing
the scale meanings in GEOBIA and are actually independent of
the segmentation algorithms. This paper only uses
mean-shift-based multi-scale segmentation as an example, and it
applies classical geospatial and spectral statistics to pattern recog-
nition to select the optimal scale parameters (hs, hr, M) in GEOBIA.
Fig. 1 demonstrates the workflow of pre-estimating the optimal
scale parameters based on the Local Variance (LV) (Woodcock
and Strahler, 1987) and spectral statistical methods, where (I)xy

represents an image with x rows and y columns, and i indicates
the repeating times of the computation.
4.1. Spatial bandwidth selection based on local variance

Spatial bandwidth hs has a distinct effect on the clustering out-
put compared to the spectral bandwidth hr (Comaniciu and Meer,
2002). Only features with large spatial support are represented in
the segmentation when hs increases. How to predict the optimal
spatial bandwidth hs or the appropriate spatial window size is an
important issue for image segmentation and GEOBIA. Combining
the theories of classical geospatial statistics and pattern recogni-
tion, Ming et al. (2012) propose an optimal spatial bandwidth
selection method based on a semivariogram for mean-shift image
segmentation and achieve good performance. The idea behind
their approach is that the range can be deemed as the measure-
ment of similarity between variables, and it can indicate the size
of a spatial object, a spatial phenomenon or a spatial pattern
(Wang et al., 2001). Similarly, because spatial bandwidth hs corre-
sponds to the size of the spatial window (abbreviated as ws and
ws = 2 ⁄ hs + 1), the LV method can also be used to estimate the
optimal spatial bandwidth.

Local variance (LV) was introduced by Woodcock and Strahler
(1987) to reveal the spatial structure of images and, thus, to char-
acterize the relationship between the spatial resolution and objects
in the scene. In previous studies, local variance calculated the
mean value of the standard deviation by passing an n pixel by n
pixel moving window for each pixel and then taking the mean of
all local variance (Average Local Variance, ALV) over the entire
image as an indication of the local variability in an image. This idea
was later introduced in the context of OBIA by Kim et al. (2008)
and Drǎgut et al. (2010). However, the related works are mostly
based on multi-resolution segmentation of the eCognition soft-
ware, and the scale selections are a post-evaluation of the segmen-
tation in nature. This paper proposes to employ the local variance
on the pixel level before segmentation to pre-estimate the optimal
spatial bandwidth in clustering-based pattern recognition.

Fig. 1 demonstrates the workflow of estimating the optimal spa-
tial bandwidth hs based on the LV method. The computation of LV
is actually similar to the computation of synthetic SV (semivari-
ance), considering the different directions (horizontal, vertical
and two diagonal directions). Therefore, using LV to estimate the
optimal spatial bandwidth is rational and feasible and is actually
an extension of the semivariogram-based method proposed by
Ming et al. (2012) because, from the computation of LV, LVs with
different window sizes are synthetic variances in four directions
and with different lags. Fig. 2 demonstrates the calculation of semi-
variance and local variance at one pixel, where both SV and ALV are
the average values of accumulation on the whole image. For fur-
ther details on the computing formulae, please refer to Ming
et al. (2012) and Ming et al. (2010). Consequently, the principle
of optimal spatial bandwidth selection based on ALV is similar to
that of SV. If the ALV chart, namely, the curve of ALV varying with
the window size, is used to substitute the semivariogram, the
range of the ALV chart can be used to select the optimal spatial
bandwidth hs. Here the ALV chart is called ALvariogram. Next,
the key of this task is to derive the range of ALvariogram.
4.2. Attribute bandwidth selection based on spectral statistics

The direct estimation of attribute bandwidth is generally diffi-
cult because one needs a priori knowledge of the neighborhood
size in which the fitting parameters are to be estimated
(Comaniciu, 2003). However, once the spatial bandwidth hs is
selectively determined, attribute bandwidth hr can be further esti-
mated based on the result of the spatial bandwidth selection.
Within the large sample approximation, the estimation bias can
be canceled, and the estimation of the true local covariance of
the underlying mode distribution is allowed (Comaniciu, 2003).
The attribute bandwidth selection criterion is that the underlying
mode distribution has the local variance equal to the attribute
bandwidth that maximizes the magnitude of the normalized mean
shift vector, which means the magnitude of the
bandwidth-normalized mean-shift vector is maximized when the
bandwidth is equal to the covariance matrix. Comaniciu (2003)
mathematically proves the bandwidth selection theorem in detail.

Considering the simplicity of the method and the particularity
of image segmentation, this paper simplifies the attribute band-
width selection method and uses the matrix of local variance to
estimate the optimal attribute bandwidth. Based on the selected
optimal spatial bandwidth hs, an LV matrix with x rows and y col-
umns (marked with LVxy) can be obtained. Then, the first left peak
of the histogram of LVxy can be used as the indicator of the optimal
attribute bandwidth hr. The workflow of the method is
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demonstrated in Fig. 3, in which a schematic example is shown in
the right part.

In this workflow, d refers to the bit depth of the original image.
Because LV approximates the mean square of the difference values
between the central pixel and its neighbors, the minimum bin is
set as 4, so that the optimal hr, the square root of LV at the first
peak location, is absolutely more than 2. Of course, if the radiomet-
ric resolution of the original image is very high, such as d is16 bit,
the minimum bin can be set as a larger value.

Additionally, to avoid the pseudo peaks, histogram curve
smoothing is necessary. There are many approaches to smooth
Histogram curve smoothing

Peak detection result (the 
location point where the first 

peak appears, Pk1)

Optimal hr = SQRT(Pk1)

Peak detection

Histogram of LVxy by 2d/4 
equally spaced bins

The first peak is pseudo?

LVxy

Yes 

N
o

Fig. 3. Workflow of optima

Fig. 4. Sketch map of computi
the histogram curve, such as interpolation or curve fitting.
However, for simplicity, some pseudo peaks can be discarded
according to the number of locations at ascending slope and
descending slope. Then, the numbers of the bins need to be
increased until the first peak of the LVxy histogram is authentic
and practically meaningful.

4.3. Merging threshold selection based on semivariance

The essence of merging threshold M is the area or pixel number
of the minimum meaningful object. The segmented parcel that is
Original image LVxy

Optimal hr 

l bandwidth selection.

ng the merging threshold.
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smaller than M is deemed meaningless and will be merged into the
most similar adjacent parcel with the least attribute difference. As
mentioned above, the range of the semivariogram can indicate the
size of a spatial object, and it can be predicted by ALvariogram, so
M can be roughly predicted by a semivariogram or ALvariogram.
(a) building_a

(c) farmland_a

Fig. 5. Experimental panchromatic

(a) ALvariogram

Fig. 6. ALV and synthetic SV
As is generally known, the object types in an image are usually
complicated and an absolutely ideal object size that suits different
classes does not exist. Therefore some priori knowledge and
assumptions should be involved. The basic principle of setting M
is that the value of M should be neither too low nor too high.
(b) building_b

(d) farmland_b

high spatial resolution images.

(b) Synthetic semivariogram

of experimental images.



Table 1
The optimal merging thresholds for the experimental images.

Image building_a building_b farmland_a farmland_b

Object shape Regular Regular Irregular Regular
Optimal merging

threshold M
144 113 121 200
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Firstly, to ensure that the meaningful parcels with small size will
not be merged in segmentation, the value of M should not be too
high. However, the value of M should not be too low otherwise
the segmented parcels with low value of M will be over fractional,
which will results in low heterogeneity between the parcels and
further results in low separability in GeOBIA. Consequently, the fol-
lowing rules are involved.

(1) When the shape of object is regular and close to a square or
rectangle, or when the image mainly covers an artificial
building area, M = INT(hs

2/2). That means when the shapes
of objects are regular, the shape of objects are likely close
to square or rectangle. Of course it also may be triangle,
(a) ROC-ALV

Fig. 7. ROC-ALV and SCROC-AL

(a) building_a

(c) farmland_a

Fig. 8. Histogra
which has the minimum area of all the possible cases. As
shown in Fig. 4(a), the area of the triangle can be approxi-
mated by the hs

2/2, half of the square with size length hs.
(b) SCROC-ALV

V of experimental images.

(b) building_b

(d) farmland_b

ms of LV.
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(2) When the shape of the object is irregular, M = INT(hs
2/4).

That means when the shapes of objects are irregular, the
shapes of object could not be simply supposed. However,
even when the shapes of objects are irregular, the value of
M should not be too low. For sake of this, as shown in
Fig. 4(b), the area of the triangle can be approximated by
the hs

2/4, quarter of the square with size length hs.
(3) If not involving any a priori knowledge and not considering

the fragmentation of the object shape, M can be set as INT
(hs

2/4). That means hs
2/4 can be used as the threshold of

the minimum of the meaningful object.

5. Experiments

As shown in Fig. 5, four high spatial resolution images with a
size of 800 � 800 pixels are used for the experiments.
Fig. 5(a) and (b) are covered by building area. Fig. 5(a) is a subset
Ikonos panchromatic image with a 1-meter spatial resolution and
an area of 0.64 km2. Fig. 5(b) is a subset aerial panchromatic image
obtained from the Erdas Imagine example dataset (the spatial res-
olution and area are unknown). Fig. 5(c) and (d) are covered by
cropland that had been partly harvested. These are Quickbird
panchromatic images with a 0.7-meter spatial resolution and an
area of 0.45 km2. Fig. 5(b) is a subset aerial panchromatic imkm2.
(a) building_a with (17, 7, 144)

(c) farmland_a with (22, 5, 121)

Fig. 9. Segmentation results with the s
5.1. Computing the optimal scale parameter based on statistics

From the viewpoint of information extraction of the high spatial
resolution images, the fine segmentation and the precise informa-
tion are expected. To precisely reflect the change of ALV along the
window size ws, the ws are set from 3 to 101, and the lag step is set
as 2, which means the hs are set from 1 to 50, and the lag step is set
as 1. To compare the role of ALV and SV in selecting the optimal
spatial bandwidth hs, Fig. 6(a) and (b) show the computing results
of the ALV and synthetic SV for the four experimental images. For
more details on synthetic SV, please refer to Ming et al. (2012).

Fig. 6(a) shows that the ALvariogram is very smooth. However,
as shown as in Fig. 6(b), there are many dithers on the synthetic
semivariogram, which means the ALV method more easily indi-
cates the optimal spatial band width than the SV method. If ALV
and SV are taken as random variants, ALV is more stationary than
SV. Next, determining the range of the ALvariogram is the key to
selecting the optimal scale parameters in image segmentation.

5.1.1. Estimating the optimal spatial bandwidth
Function fitting is a commonly used way to determine the range

of a semivariogram. However, in some practical applications, it is
difficult to find a valid solution because the type of joint distribu-
tion of the spatial statistic character is usually unknown.
Additionally, SV values with short lags play a more important role
(b) building_b with (15, 8, 113)

(d) farmland_b with (20, 5, 200)

elected optimal scale parameters.
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than those with long lags in determining the range of a semivari-
ogram (Zhang, 2005). Based on the methods proposed by Drǎgut
et al. (2010) and Ming et al. (2012), this paper proposes a simplified
range determining method based on the change of ALV. Two mea-
sures, namely, the first-order rate of change in ALV (ROC-ALV) and
the second-order change in ALV (SCROC-ALV), are used to assess
the dynamics of ALV along the spatial bandwidth hs.

½ROC-ALV�i ¼
ALVi � ALVi�1

ALVi�1
ð7Þ
Table 2
Peak ranges and optimal hs for the four experimental images.

Image building_a building_b farmland_a farmland_b

Peak range (hs) 15–21 15–21 18–21 21–24
Peak point (hs) 21 15 18 21
Optimal hs by pre-

estimation
17 15 22 20
SCROC-ALV½ �i ¼ ½ROC-ALV�i�1 � ½ROC-ALV�i ð8Þ

where [ROC-ALV]i is the rate of change in ALV at level hsi, and the
value of [ROC-ALV]i is usually between [0,1]. SCROC-ALVi is the
change of [ROC-ALV]i, and the value of [SCROC-ALV]i is also usually
between [0,1]. Most of the [SCROC-ALV]i are small fractions.

The thresholds of ROC-ALV and SCROC-ALV are respectively set
as 0.01 and 0.001, which means the optimal spatial bandwidth hsi

is determined by the window size wsi at which the [ROC-ALV]i is
first less than 0.01 and [SCROC-ALV]i is first less than 0.001.
There are three main reasons for setting the two thresholds in this
way. The first reason is that it is based on large amount experi-
ments. The second is the ALV values with short lags play a more
important role than those with long lags. The third is that the con-
dition of the ROC-ALV value of 0.01 and the SCROC-ALV value of
0.001 can guarantee that the change of ALV is tiny enough that
the corresponding hsi can be roughly taken as the range of the
ALvariogram.
(a) building_a with (hs, 7, 10)

(c) farmland_a with (hs, 5, 10)

Fig. 10. Segmentation evaluations changing w
Fig. 7 demonstrates the change of ROC-ALV and SCROC-ALV
along hs, according to which the optimal spatial bandwidths of
building_a, building_b, farmland_a and farmland_b are, respec-
tively, 17, 15, 22 and 20. The optimal spatial bandwidth selection
results of farmland_a and farmland_b are very close to those of
Ming et al. (2012), who used the same two experimental images
but with a smaller size (512 ⁄ 512). The optimal spatial bandwidth
selection results in the current study are 22 and 20, and those in
Ming et al. (2012) are 22 and 18.
5.1.2. Estimating the optimal attribute bandwidth
Based on the optimal spatial bandwidth selection results, the

corresponding histograms of the LV matrices are illustrated in
Fig. 8.

According to the attribute bandwidth selection method men-
tioned in Section 4.2, the optimal attribute bandwidths hr for the
four experimental images are 6.67, 8.05, 4.93 and 5.32. In practical
application, the attribute bandwidth is usually an integer. Thus,
after the rounding-off process, the optimal hr for the four experi-
mental images are 7, 8, 5 and 5, respectively.
(b) building_b with (hs, 8, 10)

(d) farmland_b with (hs, 5, 10)

ith hs of the four experimental images.
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5.1.3. Estimating the merging threshold
Through visual interpretation, the object shapes in the four

experimental images can be determined. According to the merging
threshold selection method mentioned in Section 4.3, the optimal
merging threshold M can be pre-estimated as shown in Table 1.

The segmentation results with the selected optimal scale
parameters for the four images are demonstrated in Fig. 9.
Table 3
Peak ranges and optimal hr for the four experimental images.

Image building_a building_b farmland_a farmland_b

Peak range (hr) 7–9 5–6 4,7,10 7–8
Peak point (hr) 8 6 10 8
Optimal hr by pre-

estimation
7 8 5 5
5.2. Verification and analysis based on segmentation evaluation

Generally, there are three types of evaluation methods: visual
evaluation, quantitative evaluation and indirect evaluation (or
application-based evaluation) (Li and Xiao, 2007). This paper uses
quantitative evaluation to verify the validity of the scale parameter
selection method proposed in this paper. Theoretically, the optimal
segmentation scale is a segmentation level that contains the most
pure objects and the least mixed objects, that is, the homogeneity
within the segmentation parcels is high, and the heterogeneity
between the segmentation parcels is low. Therefore, this paper
uses the synthetic evaluation model based on homogeneity within
the segmentation parcels (F(U)) and the heterogeneity between the
segmentation parcels (F(V)) to test the optimal scale parameters.
For more details about the synthetic evaluation model, please refer
to Espindola et al. (2006), Kim et al. (2008) and Ming et al. (2012).

This paper sequentially segments the four experimental images
with a series of scale parameters using the mean-shift algorithm.
First, hs and hr are determined, and the fixed value of M is set as
a small value of 10 to reduce the impact on segmentation caused
(a) building_a with (17, hr, 10)

(c) farmland_a with (22, hr, 10)

Fig. 11. Segmentation evaluations changing w
by patch merging. Then, the merging threshold M is determined
based on the selected optimal (hs, hr).

According to the research findings of (Ma, 2014), the following
two aspects are considered. First, the heterogeneity between the
image objects plays a more important role in object-oriented
image classification, so the weight of the heterogeneity index is
set 0.6. Second, considering the accuracy of object-oriented image
classification, neither the homogeneity within the segmentation
parcels nor the heterogeneity between the segmentation parcels
should be poor, as also proven by (Ma, 2014). That means the seg-
mented parcels with both high homogeneity and heterogeneity are
desired. However, it is actually difficult to maintain both high
homogeneity and high heterogeneity. A large amount of experi-
ments have proved that high homogeneity often is accompanied
by low heterogeneity or high heterogeneity often is accompanied
by low homogeneity. Therefore, a compromised solution is
proposed based on a large amount of experiments. The optimal
bandwidth should meet the following two requirements.
(b) building_b with (15, hr, 10)

(d) farmland_b with (20, hr, 10)

ith hr of the four experimental images.
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(1) The synthetic evaluation score at the optimal bandwidth
location should be within the peak ranges of the evaluation
curve.

(2) The F(U) and F(V) should be greater than 0.4.

5.2.1. Verification of optimal hs with fixed hr and M
To reduce the computation of verification, the evaluation of the

segmentations is based on spatial bandwidth from 3 to 30 with a
step of 3. For the sake of comparison, uniform values of hr and M
are used. The value of hr is set as the selected optimal value. To
reduce the impact on segmentation caused by patch merging, the
value of M is set as a small value of 10. The segmentation evalua-
tion results with fixed hr and M (M = 10) are demonstrated in
Fig. 10.

Fig. 10 shows the peak ranges of the synthetic segmentation
evaluation score for the four experimental images. The peak range
indicates that the change of the segmentation evaluation scores
within the range is very tiny. Table 2 further summarizes the peak
ranges meeting the two requirements mentioned above and also
lists the optimal hs determined by LV. Because the hs interval in
the segmentation is 3 and there are inevitable random distur-
bances in the segmentation, the hs at the peak points are not abso-
lutely equal to the pre-estimated optimal ones. However, the
(a) (22, 4, 10)

(c) (22, 7, 10)

Fig. 12. Segmentation results of
selected optimal hs based on LV are within the peak ranges and
are close to the maximum points or close to the lower limits of
the peak ranges. The results prove that the LV-based spatial band-
width selection is effective at estimating the appropriate spatial
bandwidth before segmentation.
5.2.2. Verification of optimal hr with fixed hs and M
The evaluation of the segmentations is based on spectral

bandwidth from 1 to 10 with step of 1. For the sake of comparison,
uniform values of hs and M are used. The value of hs is set as the
selected optimal value and M is also set as 10. The segmentation
evaluation results with fixed hs and M (M = 10) are demonstrated
in Fig. 11.

Table 3 summarizes the peak ranges meeting the two require-
ments mentioned above and lists the optimal hr determined by
the proposed statistical method. Similarly, the hr at the peak points
are not absolutely equal to the selected optimal ones. However, the
selected optimal hr of two of the four images (building_a and
building_b) are within the peak ranges, another two are close to
the peak ranges. Taking farmland_a as an example (the difference
between pre-estimation and verification is the most distin-
guished), as shown in Fig. 12, the optimal segmentation
(b) (22, 5, 10)

(d) (22, 10, 10)

building_b (hr = 4,5,7,10).



(a) building_a with (17, 7, M) (b) building_b with (15, 8, M)

(c) farmland_a with 22, 5, M) (d) farmland_b with (20, 5, M)

Fig. 13. Segmentation evaluations changing with M of the four experimental images.

Table 4
Peak ranges and optimal M for the four experimental images.

Image building_a building_b farmland_a farmland_b

Peak range (M) 150–200 100–200 150–200 100–200
Peak point (M) 150 150 150 150
Optimal M by pre-

estimation
144 113 121 200
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determined by quantitative evaluation is not really visually satis-
fied because the parcels are over-merged on the right part of the
image.

5.2.3. Verification of optimal M
The evaluation of the segmentations is based on merging

threshold M from 50 to 500 with step of 50. Other two scale
parameters, hs and hr, are set as the selected optimal values. The
evaluation results are demonstrated in Fig. 13.

Table 4 summarizes the peak ranges meeting the two require-
ments mentioned above and lists the optimal M determined by
the proposed method. Table 4 shows that the optimal M selected
by pre-estimation are within the peak ranges (the peak range
means it not only contains the peak point but also covers the range
within which both F(U) and F(V) are greater than 0.4) and they are
very close to the peak points. As a pre-estimation of the optimal
scale parameter, the performance of the scale parameter selection
method is acceptable.
6. Conclusions

Scale selection in information extraction from high spatial res-
olution images is important for remote sensing applications. This
paper applies spatial statistics to pattern recognition to select the
optimal scale parameters in image segmentation for GEOBIA.
There are two theoretical foundations involved in this research.
The first one is that the essence of determining the optimal scale
parameters is the statistical pre-estimation of global and local
structure of the original image. The second one is that the range
of semivariogram can be deemed as the measurement of similarity
between variables, and it can indicate the size of a spatial
object.

The scale parameters in multi-scale segmentation are general-
ized into three aspects: hs (spatial bandwidth, spatial distance
between classes), hr (spectral bandwidth, spectral difference
between classes) and M (merging threshold). Aiming at the selec-
tion of the optimal hs, based on the semivariogram-based method
proposed by Ming et al. (2012), this paper proposes that semivari-
ance can be roughly replaced by Average Local Variance (ALV). The
ALV-based optimal spatial bandwidth selection method performs
as well as the semivariogram method. Moreover, the computation
results of ALV are also useful in selecting the optimal spectral
bandwidth hr and merging threshold M. The selection of optimal
hr is based on histogram of ALV and the selection of optimal M is
based on simple geometric computation. A series of experimental
results verify that the selected scale parameters can achieve a
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satisfactory segmentation result with high homogeneity and high
heterogeneity. The proposed scale selection method is feasible
and effective and it has characteristics as follows.

(1) Other than previous post-evaluation-based scale selection in
many OBIA/GEOBIA studies, the proposed statistical method
for scale parameter selection is a pre-estimation method. It
employs the spatial statistical methods before segmentation
to pre-estimate the optimal scale parameters. Comparing to
the post-evaluation method, this proposed method can
promisingly enhance the efficiency of GEOBIA.

(2) In the experiments, despite the selected optimal scale
parameters do not absolutely achieve the highest segmenta-
tion evaluation scores in the verification, they quite approx-
imate to the highest evaluation ones. The selected
parameters perform very well because they can obtain high
homogeneity and high heterogeneity in segmentations,
which reduces necessary post-error enhancements and thus
somewhat guarantees the accuracy of GEOBIA because high
homogeneity and high heterogeneity is one of the necessary
requirements for satisfactory accuracy in GEOBIA.

(3) The statistics-based scale parameter selection method is
proposed based on mean-shift segmentation. However, this
method is not only suitable for mean-shift segmentation.
Spatial attribute and spectral attribute are general attributes
for spatial data and they are used in most segmentation
algorithms. The parameter M, merging threshold, is also
used in many segmentation algorithms, such as watershed,
region-growth and mean-shift algorithm. So this paper does
not merely propose a scale parameter selection for
mean-shift segmentation algorithm, but also conveys an
scale selection idea for GeOBIA.

(4) This scale parameter selection method is independent of the
spatial resolution of the image data. So the applicability is
theoretically strong for different kind of sensor data.

In addition, there are still some following limitation, which are
still subjects of future research.

(1) This paper only gives experiments and verifications for
panchromatic images. However, this idea can be extended
to the scale selection of multi-spectral image segmentation.

(2) Because the method is still in pilot stage and tremendous
computing resources are needed to segment tremendous
numbers of objects, the study areas or experimental data
are of small sizes, otherwise the computers will breakdown
and freeze during the segmentation. This should be consid-
ered a limitation especially when dealing with a large data-
set (finer resolution data for a relatively large area), so
enhancement of the algorithm efficiency is a problem to be
solved in the future.

(3) The range of ALvariogram graph is determined by simple
threshold control. This method is more suitable for local
detailed information extraction from high spatial resolution
images. In theory, for an image that contains a complicated
scene or nested structure, an ‘ideal’ object scale does not
exist. However, several optimal scales can be selected by a
multiple range of multi-function fitting, and they are theo-
retically appropriate to different landscapes or different
kinds of objects with different sizes. Objects from different
levels of segmentation (spatially) and of different meanings
(ecologically) have to be combined for many applications.

(4) Quantitative verification of this proposed method would
actually refer to object based image classification, which
inevitably involves a large amount of verification based on
GeOBIA classification and thus falls beyond the scope of this
paper. However, based on this scale parameter
pre-estimation, to what extend could a GeOBIA classification
be improved or the workload reduced is still a subject of fur-
ther research.
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