
Remote Sensing of Environment 169 (2015) 163–175

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Assimilation of SMOS soil moisture over the Great Lakes basin
Xiaoyong Xu a,⁎, Bryan A. Tolson b, Jonathan Li a, Ralf M. Staebler c, Frank Seglenieks d,
Amin Haghnegahdar b, Bruce Davison e

a Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada
b Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
c Air Quality Processes Research Section, Environment Canada, Toronto, ON, Canada
d Boundary Water Issues, Environment Canada, Burlington, ON, Canada
e National Hydrology Research Centre, Environment Canada, Saskatoon, SK, Canada
⁎ Corresponding author at: Department of Geography
University of Waterloo, 200 University AvenueWest, Wat

E-mail address: xiaoyong.xu@uwaterloo.ca (X. Xu).

http://dx.doi.org/10.1016/j.rse.2015.08.017
0034-4257/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 20 February 2015
Received in revised form 19 May 2015
Accepted 13 August 2015
Available online xxxx

Keywords:
Soil moisture
Assimilation
SMOS
MESH
EnKF
The launch of European Space Agency's SoilMoisture and Ocean Salinity (SMOS) satellite has opened up the new
opportunities for land data assimilation. In thiswork, the one-dimensional version of the Ensemble Kalman filter
(1D-EnKF) is applied to assimilate SMOS soil moisture retrievals (2010–2013) into a land surface-hydrological
model, Modélisation Environmentale-Surface et Hydrologie (MESH), over the Great Lakes basin. A priori
rescaling on the retrievals is performed by matching their cumulative distribution function (CDF) to the model
surface soil moisture's CDF. The SMOS retrievals, the open-loop soil moisture (no assimilation) and the assimila-
tion estimates are validated against point-scale in situ measurements, respectively, in terms of the daily time se-
ries correlation coefficient (skill R). The skill for SMOS retrievals typically decreases with increased canopy
density. In contrast, the open-loop model typically provides higher soil moisture skill R for forest surfaces than
for crop surfaces. The skill improvement ΔRA-M, defined as the skill for the assimilation soil moisture product
minus the skill for the open-loop estimates, for both surface and root-zone soil moisture typically increases as
the SMOS observation skill and decreases with increased open-loop skill, showing a strong linear relation to
ΔRS-M, defined as the SMOS observation skill minus the open-loop surface soil moisture skill. Every time the
SMOS skill is greater than or equal to the open-loop surface soil moisture skill, the assimilation is typically able
to significantly improve the model soil moisture skill. The crop-dominated grids typically experience the largest
ΔRA-M if the assimilated SMOS retrievals also come from crop surfaces (note that a model grid cell and the SMOS
node mapped onto the grid are not exactly matched in space), consistent with a high satellite observation skill
and a low open-loop skill, while ΔRA-M is usually weak or even negative for the forest-dominated grids when
the SMOS retrievals also from forest surfaces are assimilated, due to the presence of a low observation skill and
a high open-loop skill. The dependence of ΔRA-S, referred to as the skill for the surface soil moisture assimilation
product minus the SMOS observation skill, upon the open-loop skill and the satellite observation skill is opposite
to that forΔRA-M. Overall our Rmetric of skill and the anomaly Rmetric as used in previous studies provide a con-
sistent explanation for the vegetationmodulation of the assimilation. Thiswork offers further insight into the im-
pact of the open-loop skill and the satellite observation skill on the assimilation.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Soil moisture, especially its anomaly information, is critical to
weather and climate forecast initialization (e.g., Lau & Kim, 2012;
Wolfson, Atlas, & Sud, 1987; Zeng et al., 2014; Zhang & Frederiksen,
2003). Microwave remote sensing technology offers an important ap-
proach for soil moisture estimation because changes in soil water con-
tent strongly affect the soil's dielectric properties. Satellite microwave
remote sensing holds the ability to provide the large-scale spatially
& Environmental Management,
erloo, Ontario N2L 3G1, Canada.
distributed near-surface soil moisture estimates, which, relative to
point in situmeasurements, aremore compatible in spacewith land/hy-
drologic models, especially the distributed models. In the past decade,
satellite microwave soil moisture observations have been intensively
integrated into land surface and hydrologic models, in particular
through advanced data assimilation that merges the observation and
the model forecast based on estimates of their respective error charac-
teristics (see a review paper by Xu, Li, & Tolson, 2014). Data assimilation
can spread and smooth the observed information in time and space
(Reichle, 2008). Through data assimilation, the remotely-sensed near-
surface soil moisture information can be propagated to the soil layers
or the model variables that are not directly measured by satellites (e.g.
Reichle & Koster, 2005). Additionally, in a data assimilation system
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satellite retrievals fromdifferent platforms can bemerged into the same
model framework to produce a single optimal state estimation of inter-
est (e.g. Draper, Reichle, De Lannoy, & Liu, 2012).

Until recently, the satellite soilmoisture productsweremainly based
upon the X (8–12 GHz) or C (4–8 GHz) band measurements, such as
the Advanced Microwave Scanning Radiometer-Earth Observing Sys-
tem (AMSR-E), the Scanning Multichannel Microwave Radiometer
(SMMR), the Tropical Rainfall Measuring Mission Microwave Imager
(TMI), the Advanced Scatterometer (ASCAT), and the RADARSAT series.
A series of assimilation experiments based upon these products (e.g.
Brocca et al., 2010; Crow, Bindlish, & Jackson, 2005; Draper et al.,
2012; Drusch, 2007; Liu et al., 2011; Reichle & Koster, 2005; Reichle
et al., 2007) have demonstrated the potential of satellite retrievals to
improve the predictive capabilities of land surface and hydrologic
models (e.g. soil moisture and runoff estimates) and provided insight
into the main challenges in this field of research (e.g. the model-
satellite scale discrepancy; the statistical biases between satellite prod-
uct and model estimation). However, X and C band sensors are suscep-
tible to vegetation cover and are sensitive to only the near-surface soil
moisture (top 1 to 1.5 cm). The launch of European Space Agency's
(ESA) Soil Moisture and Ocean Salinity (SMOS) satellite that carries an
L-band (~1.4 GHz) Microwave Imaging Radiometer with Aperture Syn-
thesis (MIRAS) (Kerr et al., 2010, 2001) has opened up the new oppor-
tunities for land data assimilation. The assimilation of SMOS soil
moisture is more attractive because the L-band microwave has a stron-
ger penetration of vegetation and soil (as opposed to those operating at
X or C band), which can provide surface soil moisture estimates for a
wide range of vegetation conditions and thus offer the new opportuni-
ties for assessing the vegetation modulation of the assimilation.

In recent years, there has been an intensive global research effort to
assimilate SMOS soil moisture data in various models (e.g., Ridler,
Madsen, Stisen, Bircher, & Fensholt, 2014; Zhao et al., 2014). Zhao
et al. (2014) incorporated the SMOS soil moisture retrievals into a
land surface model by minimizing the distance of the model solution
from the SMOS observation and the background model estimate (by
calibrating the model using the SMOS data first), which produced the
improved surface soil moisture estimates. However, the study averaged
the SMOS data across the entire domain (located in the central Tibetan
Plateau) and the assimilation was performed at a coarser scale
(~100 km) than the SMOS product scale (~15 km). A more recent
study by Ridler et al. (2014) assimilated SMOS soil moisture in a bias-
aware system (i.e., the observation bias is estimated jointly with the
model state by state augmentation). The assimilation was conducted
at a fine scale (by applying a vegetation-based disaggregation scheme
to the SMOS observation bias) and led to superior soil moisture esti-
mates (in terms of the square of the correlation), especially for the sur-
face layer, although only one node retrievals were used.

In this paper, an ensemble Kalman filter (EnKF) is applied to assim-
ilate SMOS soil moisture retrievals (Level 2) into a coupled land-surface
and hydrological model MESH over the Great Lakes basin. Due to the
bias between the retrievals and themodel surface soil moisture, a priori
rescaling on the SMOS retrievals is performed by matching their cumu-
lative distribution function (CDF) to the model surface soil moisture's
CDF. The retrievals, the open-loop model (no assimilation) soil mois-
ture, and the assimilation estimates are validated against in situ soil
moisture measurements from the Michigan Automated Weather Net-
work, the Soil Climate Analysis Network, and the Fluxnet-Canada Re-
search Network, in terms of the daily-spaced time series correlation
coefficient (soil moisture skill R). Our study differs from previous
SMOS assimilation studies in three aspects: (1) the assimilation is con-
ducted at a grid scale similar to the SMOS product scale (~15 km), and
the assimilation estimates are validated at both the grid-scale and the
subgrid-scale; (2) theGreat Lakes basinwas chosen as the study domain
since it offers a range of vegetation conditions that favor the assessment
of the vegetation impact on the assimilation; and (3) 4 years of SMOS
data (2010–2013) are used, and the overall consistency between the
years strongly demonstrates the robustness of our general conclusions.
This paper is organized as follows. In Section 2, thedata sets, the forecast
model, and the assimilation scheme are described. Section 3 presents
the skill for the SMOS soil moisture. Section 4 is focused upon the assim-
ilation results. A summary and discussion is provided in Section 5.

2. Data and methods

2.1. SMOS soil moisture retrievals

In this work, we use the SMOS Level 2 Soil Moisture User Data Prod-
uct (MIR_SMUDP2) delivered by ESA. The product comprises the in-
stantaneous soil moisture retrievals (rather than the daily composite
as provided in the Level 3 product) and abundant reference information,
such as geophysical features, retrieved standard deviation (RSTD), etc.
The retrieved soil moisture is primarily based upon an iterative
algorithm, which matches the modeled L-band emission of the surface
to that observed by SMOS/MIRAS (Kerr et al., 2008, 2012). SMOS has a
footprint of 43 km on average and a temporal resolution of 1–3 days
for both ascending (6:00 am LST) and descending (6:00 pm LST) orbits.
The MIR_SMUDP2 soil moisture retrievals are equally spaced at about
15 km (oversampled by a factor of nine). Four years (2010–2013)
of SMOS retrievals from both ascending and descending overpasses
are used in this study. Utilizing the attached reference information, a fil-
tering is performed to exclude the retrievals with a large RSTD
(N0.08 m3/m3) and those contaminated by open water, frozen surface,
snow, or rain, etc. To conduct the evaluation and assimilation, SMOS re-
trievals are resampled onto the hydrological forecast model grids
(~15 km resolution) using a nearest neighbor approach. Whenever and
wherever the model (combined with the rainfall forcing data) indicates
the presence of precipitation, frozen soils, or snow cover, the satellite
retrievals are also excluded from the evaluation and assimilation. Note
that the processor version of the Level 2 product was changed over the
four years with V501 (REPR data set) for 2010/2011 and V551 (OPER
data set) for 2012/2013. Since different dielectric constant models are
used in the two versions, there may be inconsistencies in the absolute
magnitude of SMOS retrieval between 2010/2011 and 2012/2013.

2.2. Hydrological model and in situ measurements

The forecast model used here is Environment Canada's standalone
MESH (Modélisation Environmentale-Surface et Hydrologie) model
(Pietroniro et al., 2007), which originates from the coupling of the
land surface scheme CLASS with the hydrological model WATFLOOD
(Soulis, Snelgrove, Kouwen, Seglenieks, & Verseghy, 2000). The primary
feature of MESH is that themodel uses a Grouped Response Unit (GRU)
approach to resolve the subgrid-scale variability. A GRU is a grouping of
subareas with similar soil and vegetation attributes, and each model
grid cell is represented by a limited number of distinct GRUs weighted
by their respective cell fractions. In the version of MESH used in this
work, the identification of GRUs is based solely on the land cover
types, i.e., eachGRU corresponds to one land cover class (other soil char-
acteristics are assumed to be same for the sameGRU). The soil column is
partitioned into three layers (0–10, 10–35, and 35–410 cm) to resolve
soil moisture and temperature dynamics. At the moment, the land sur-
face scheme considers only the vertical water movement between the
soil layers, which is governed by Richard's equation (Soulis et al.,
2000). Within a grid cell, the fluxes and variables are computed inde-
pendently for GRUs, ignoring the interactions between GRUs. The over-
all fluxes and prognostic variables of a grid cell are obtained by taking a
weighted average of those from GRUs. The lateral movement of water
between grid cells is not taken into account. The resulting horizontal
flows (overland flow, interflow, and base flow) at grid cells are ulti-
mately be routed into the stream and river network systems.

The study domain for this work is the Great Lakes basin (Fig. 1). The
basin, straddling the Canada–United States border, consists of the



Fig. 1. Vegetation types (gridded at 1/6th of a degree resolution) over the Great Lakes basin and location of in situ stations for soil moisture measurements. In situ stations are from the
Michigan AutomatedWeather Network (79 sites), the Soil Climate Analysis Network (3 sites), and the Fluxnet-Canada Research Network (1 site). Stations that are not used for validation
are marked with plus signs (SMOS retrievals are not available or not considered over these stations due to the impact of open water).
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largest group of freshwater lakes on earth and the surrounding lands,
with a drainage area of about 1,000,000 km2. The five primary fresh
lakes are naturally interconnected and contain roughly one-fifth of the
world's fresh surfacewater supply. Themodel configurations are similar
to those used in Pietroniro et al. (2007) and Haghnegahdar et al. (2014).
The model is run at a resolution of 1/6th of a degree (~15 km) using a
time step of 30 min. Each model grid cell is divided into a mosaic of
GRUs. Each GRU corresponds to one land cover type and is weighted
by the fraction of the land cover class within the cell. Seven GRU types
are used for this domain, including crop, grass, deciduous forest, conif-
erous forest, mixed forest, water, and impervious. The land cover
types were derived from a United States Geological Survey (USGS)
climatological database. In this work, the model parameter sets are di-
rectly taken from a global calibration experiment where GRU specific
parameters are calibrated basin-wide to streamflow observations
(Haghnegahdar et al., 2014). Here MESH is forced using the gridded
hourly precipitation data derived from the Canadian Precipitation Anal-
ysis (CaPA; Mahfouf, Brasnett, & Gagnon, 2007); other meteorological
forcing data (incoming shortwave and longwave radiations, surface
air temperature, wind speed, pressure, and specific humidity) come
from the Global Environmental Multiscale (GEM) model forecasts
(Mailhot et al., 2006).

In this work, in situ soil moisture measurements (Fig. 1) from
the Michigan Automated Weather Network (MAWN; http://www.
agweather.geo.msu.edu/mawn/), the Soil Climate Analysis Network
(SCAN; http://www.wcc.nrcs.usda.gov/scan/), and the Fluxnet-Canada
Research Network (FCRN) are used to validate the SMOS retrievals,
themodel and the assimilation estimates. The specification of in situ sta-
tions and measurements is provided as electronic supplement. MAWN
is comprised of about 79 stations. Each station uses two Campbell Scien-
tific water content reflectometers (CS615 or CS616) to measure soil
moisture. The two probes are horizontally inserted to provide hourly
soil moisture measurements at depths of 10 and 25 cm (for 46 MAWN
sites) or are vertically installed to measure soil moisture in the upper
60 cm profile (0–30 and 30–60 cm) (for 33 MAWN sites since about
the middle of year 2008). Additionally, in situ data from three SCAN
sites (SCAN2003, 2011, and 2073) and one FCRN site (the Borden forest
station) are included in this study. At SCAN sites, Stevens Hydra Probe
sensors are horizontally inserted to provide hourly soil moisture mea-
surements at 5, 10, 20, 50, and 100 cm below the surface, while at the
Borden station (44.32°N, 79.93°W) 30min-averaged soil moisturemea-
surements are taken with CS615 probes at 2, 5, 10, 20, 50, and 100 cm
below the surface at two locations. A filtering step is applied to all in
situ data to ensure the reliability and effectiveness of the subsequent
validations. In situ soil moisture observations are rejected if (1) they
are beyond any realistic ranges (e.g., too high or too low to be explained
by physical variability); (2) the time series contains sudden changes
(significant “jump”) that are impossibly attributed to physical process;
or (3) the soil is frozen.

2.3. The EnKF method

Data assimilation typically can be viewed as a process to optimally
merge the model forecast and the observed information based upon
some estimate of their error characteristics. A great number of methods
have been developed for land/hydrologic data assimilation (e.g., Crow&
Wood, 2003; Crow& Zhan, 2007; Evensen, 1994, 2003; Reichle,Walker,
Koster, &Houser, 2002; Reichle et al., 2007). The reader is referred to the
relevant articles for details on the properties of different algorithms. In
the present study, the ensemble Kalman filter (EnKF) is used to assimi-
late SMOS soil moisture in the MESH model. The traditional Kalman
Filter (KF) and its various variants (extended Kalman Filter, EKF;
EnKF) are typical ‘filtering’ (or sequential) assimilation techniques. In
the traditional KF, each assimilation cycle consists of a forecast step
and an analysis step. In the forecast step, the forecast model is integrat-
ed forward in time (from an initial or analysis state) with an additional
error covariance equation (linear model operator) to propagate the
error information, while at the analysis step the new observation is
used to update the current forecast estimation. The KF is valid only for
linear systems. Its nonlinear variant, the EKF, can be utilized to solve
the nonlinear optimal estimation problem. The EKF still explicitly esti-
mates and propagates the error information, but with a linearized and
approximate error covariance equation. In practice, however, the full
error covariances are difficult or impossible to directly estimate due to
an expensive computational cost and insufficient error information, es-
pecially for large-scale applications. Additionally, the EKF may not be
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suitable for highly nonlinear systems since the high-order moments are
ignored in its error covariance equation. To this end, Evensen (1994)
proposed the EnKF scheme.

The primary innovation of the EnKF is that aMonte Carlo approach is
used to estimate model andmeasurement error statistics. The probabil-
ity density of the model states is represented using an ensemble where
themean is the best estimate (Gaussian assumption), and the ensemble
spread defines the error variance. The model error statistics evolve by
integrating the ensemble ofmodel states forward in time. Themeasure-
ment errors are represented using another ensemble with the mean
equal to zero (Gaussian assumption) and the spreading of the ensemble
consistent with the realistic or predefined observation error variance.
The measurement errors are imposed onto the actual measurement to
yield the ensemble of observations. At measurement times, a
variance-minimizing analysis is applied to the ensemble of model fore-
cast states, given by

xþj ¼ x−j þ P−HT HP−HT þ R
h i−1

yj−Hx−j
h i

; j ¼ 1;…;N ð1Þ

where j is the ensemble member index, counting from 1 to the ensem-
ble size N. xj− and xj

+ denote the a priori and posterior model state esti-
mates, respectively. yj represents the perturbed observation. H is the
measurement operator. P− and R denote the error covariances for
model forecast and observation, respectively. In contrast to the EKF,
the error evolution is implicit and fully nonlinear in the EnKF but with
a lower rank (finite ensemble size).

3. Skill for SMOS soil moisture

SMOS soil moisture products have been evaluated over different re-
gions/scales with in-situ data from point (e.g. Al Bitar et al., 2012;
Albergel et al., 2012) or network measurements (e.g. Gherboudj et al.,
2012; Jackson et al., 2012; Ridler et al., 2014; Zhao et al., 2014). The val-
idation studies have suggested that the SMOS retrievals typically exhibit
an underestimation bias. The performance of the retrievals varies with
the scale of the validation, typically showing a better accuracy for a
large-scale average. Overall the desired accuracy of 0.04 m3/m3 for
SMOS retrievals is met wherever the vegetation cover is light (nominal
surfaces). However, the validation of coarse-scale satellite soil moisture
unavoidably suffers from the disparity in spatial representativeness be-
tween satellite products and ground measurements (Crow et al., 2012;
Jackson et al., 2010). Point-scale ground measurements, relative to the
spatial averages, typically contain large uncertainties, which are strong-
ly controlled by the precipitation type (e.g. convective or stratiform)
and the local variability in geophysical fields (such as surface type, soil
texture, and topography). Even for a soil moisture network, the spatial
extent of ground observations may not always represent the satellite
footprint area since the latter varies over time. These factors pose an ob-
stacle to validating satellite soil moisture products, especially when
using the root-mean-square error (RMSE) metric.

Although point measurements are not readily converted to the
spatial averages, the temporal variability of soil moisture observed
by point measurement may be spatially representative (e.g. Brocca,
Melone, Moramarco, & Morbidelli, 2009; Loew & Mauser, 2008;
Martinez-Fernandez & Ceballos, 2005). Fig. 2 presents the soil moisture
time sequences observed at four pairs of neighboring sites (all from
MAWN). Each pair of sites may lie within the same SMOS footprint
area. Although the absolute magnitudes of soil moisture are not neces-
sarily matched, each pair of sites typically show good agreement for
the temporal pattern of soil moisture. Likewise, at the Borden station
soil moisture measurements taken at two locations are not always
same in magnitude but showing consistent temporal dynamics for the
period of record (not shown). Regarding the SCAN measurements, Liu
et al. (2011) suggested that the SCAN point observations were highly
correlated with the watershed average soil moisture obtained from
networkmeasurements and thuswere suitable for evaluating the assim-
ilation estimates with the correlation metric. Thus, overall the point-
scale measurements (from MAWN, SCAN, and Borden) being used in
this work are assumed to represent the areal average (satellite product
scale or model grid cell) in terms of the temporal variability of soil
moisture.

Since the absolute magnitude of soil moisture for the areal average
(corresponding to the satellite footprint scale) is difficult to estimate
based upon point-source observations, the SMOS retrievals are not
validated with the RMSE metric in this study. Instead, we only assess
the SMOS soil moisture skill R, which is defined as the daily time series
correlation of SMOS retrievals with point measurements. SMOS
measures only the water content within the top ~5–6 cm soil layer.
Although the5 cmdepthmatcheswellwith the average soil penetration
of SMOS, here the SMOS soil moisture skill is computed using in situ
measurements taken at 10 cm depth or in the top 30 cm profile (for
those sites with the vertically installed probes), to be consistent with
the subsequent assessment of the model surface soil moisture skill
(Sections 4.2 and 4.3). Overall the use of 10 cm-depth and 0–30 cm
measurements is acceptable in this study since typically the time pat-
terns of soil moisture between in situ measurements taken at 5 cm,
10 cm, and 20/25 cm are highly correlated.

To be consistent with the subsequent 1D-EnKF (Section 4), the
SMOS retrievals (from both ascending and descending orbits) are
mapped onto the MESH model grid cells (at a 1/6th degree resolution)
using a nearest neighbor approach. Given a model grid, the SMOS skill
(daily time series correlation R with in situ data) is assessed using in
situ measurements falling within the grid cell. Typically only one in
situ site is available permodel grid cell.We do not compute the R values
when any of the following occurs: (1) the effective length of SMOS soil
moisture daily time series is less than 60 days per year; (2) in situ soil
moisture (unfrozen) time series are shorter than 100 days per year;
(3) the time series standard deviation of in situ soil moisture is less
than 0.02 m3/m3 (since the measurement noise may significantly im-
pact the R values when the time series standard deviation is too
small); or (4) linear or quadratic trends in the SMOS or in situ time se-
ries significantly contribute to the correlation (by examining if a linear
regression and a polynomial of the 2nd degree give statistically signifi-
cant trends). Eventually, the skill R is computed for about 38 grids
(per year).

Fig. 3 shows the SMOS soil moisture skill. To be consistent with the
subsequent validation of the assimilation estimates, we classify the
model grid cells into four types: (1) sCmC: the SMOS soil moisture has
a nominal (low vegetation) surface type (the retrieval case value is 12
in MIR_SMUDP2; in this study, for the grids of interest, a nominal sur-
face is typically a crop surface) and the crop cover is also dominant
(N50%)within themodel grid square; (2) sCmF: the SMOS soil moisture
is from a crop surface node, but the fraction of forest cover (the sum of
the deciduous, coniferous, and mixed forest classes) within the model
grid cell exceeds 50% (note that since a model grid square and the
SMOS node mapped onto the grid are not exactly matched in space
their surface types may be not always the same); (3) sFmC: the SMOS
retrievalmappedonto amodel grid is froma forest surface node (the re-
trieval case values equals 11 in MIR_SMUDP2), but the model grid is
dominated by crop cover; and (4) sFmF: the SMOS retrieval case is a for-
est surface and the model grid is also covered dominantly by forest.
Table 1 provides the median and mean skill R for each grid type.

The SMOS retrievals from crop surfaces, i.e., at the sCmC and sCmF
grids (triangles and diamonds in Fig. 3), typically show modest to high
skill R (median of 0.55 for sCmC and 0.64 for sCmF), which means that
the time variation of SMOS soil moisture at these grids agrees well
with the temporal pattern of in situ measurements. In contrast, the
SMOS observation skill is usually low at the sFmC and sFmF grids
(squares and circles) where the retrievals come from forest cover-
dominated surfaces (with a median of 0.23 for sFmC and 0.32 for
sFmF). The identified SMOS skill disparity between forest and crop



Fig. 2. Comparison of volumetric water content (VWC) daily time sequences for four pairs of MAWN sites. For each panel, location of the two sites and their distance are shown, and R
denotes the correlation coefficient between the two soil moisture sequences. The labels on the x-axis denote the first day of each month.
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surfaces is consistent with the fact that the satellite retrieval capabil-
ities decrease with increased canopy density. Additionally, the forest
grids with low SMOS skill are typically located near the lakes. The
corresponding SMOS retrievals may also be impacted by the pres-
ence of open water and a low quality of the reconstructed brightness
temperatures caused by the Gibbs effect (Gibbs, 1899) over the
coast. Al Bitar et al. (2012) suggested that the temporal dynamics
of soil moisture between SMOS and SCAN/SNOTEL point stations
were typically well matched, but negatively affected by the increas-
ing forest and/or water fractions within the satellite node. Note that
such a vegetation modulation of the SMOS observation skill can
strongly impact the model soil moisture skill gain through data as-
similation (Sections 4.2 and 4.3).

4. Assimilation of SMOS soil moisture

A 1D-EnKF (i.e., the analysis increment computation is performed
independently for the model grids) with 12 ensemble members is ap-
plied to assimilate SMOS retrievals into the MESH model. Given a
model grid, in the EnKF analysis Eq. (1) the model state vector xj (di-
mension is 21) is comprised of the volumetric liquid water content
from all the seven GRUs within the grid cell and all the three soil layers
modeled inMESH. The observation yj is the perturbed SMOS soilmoisture
and the corresponding model prediction Hxj

− denotes the model esti-
mates of the grid-averaged volumetric liquid water content (a weighted
sum of GRU values) in the model surface layer (0–10 cm). The assimila-
tion period is from 1 January 2010 through 31 December 2013. The
model is spun up for a 8-year period with the 2002–2009 forcing data.

In the EnKF, the estimates of the model forecast errors are derived
from an ensemble of model integrations. To represent random errors
in the forcing inputs, cross-correlated forcing perturbation fields are
generated following Reichle et al. (2007). The selected perturbation pa-
rameters are largely based upon order-of-magnitude considerations
(Reichle et al., 2002). To account for themodel forecast errors due to de-
ficiency in model physics and/or parameters, temporally correlated
error perturbations are applied to soil moisture (volumetric liquid
water content) estimates in the model. The following equation is used
to yield the time evolution of error perturbations.



Fig. 3. SMOS soilmoisture skill,which is defined as the correlation coefficientR of daily averaged SMOS retrievalswith in situmeasurements, over four individual years. R is computed after
the SMOS retrievals aremapped onto themodel grid coordinate system. Symbols indicate themodel grid types as defined in the text: (triangles) sCmC, (diamonds) sCmF, (squares) sFmC,
and (circles) sFmF. R values that are not significantly (5% level) different from zero are indicated by open symbols in gray.
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qk ¼ σ 1−k=τð Þw0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1−k=τð Þ2

q
wk

� �
ð2Þ

where q is the error perturbation ensemble, w is white noise ensemble
with mean of 0 and variance of 1, τ is the correlation time length (unit:
the model time step), k denotes the time index (0 ≤ k b τ), and σ repre-
sents the specified model error standard deviation. Currently, the
0.001 m3/m3, 0.0005 m3/m3, and 0.00005 m3/m3 error standard devia-
tions are applied to the model's three layers (0–10, 10–35, and
35–410 cm), respectively. The model error correlation time is set to
1 day, which is the approximate frequency for the SMOS observations
(1 or 2 observations every 3 days for both ascending and descending
passes). In the EnKF, the measurement errors are represented using an-
other ensemble with the mean equal to zero and the variance equal to
theobservation error variance. In this study, a uniformerror standardde-
viation of 0.08 m3/m3 (derived from the SMOS climatology) is assumed
Table 1
Median and mean skill R within each grid type for soil moisture from SMOS, the open-loop mo

Soil layer Grid type N Median R

SMOS Open-loop

0–10 cm sCmC 91 0.55 0.39
sCmF 8 0.64 0.60
sFmC 21 0.23 0.40
sFmF 33 0.32 0.62

0–35 cm sCmC 89 – 0.51
sCmF 8 – 0.65
sFmC 20 – 0.49
sFmF 32 – 0.67

Grid types are defined in the text. N denotes the combined number of grid-based R values for
for the SMOS retrievals. Although the input error parameters are not
on-line tuned in our assimilation, Reichle, Crow, and Keppenne (2008)
demonstrates that a non-adaptive EnKF typically performs well for soil
moisture estimates, even when the input error parameters moderately
deviate from their true values. However, when the error estimates for
the model and/or the retrievals are far from the realistic conditions, the
assimilation estimates may be even worse than the open-loop (Reichle,
Crow, and Keppenne, 2008).

4.1. Bias detection and reduction

If we directly assimilate the unscaled SMOS soil moisture product,
the analysis (updating the model forecast with a SMOS observation)
typically makes systematic corrections to the model estimate. Negative
mean increments (change in themodel estimate between after and be-
fore the updating) are pronounced across the study region for both the
del, and the assimilation, respectively.

Mean R with 95% confidence intervals

Assim. SMOS Open-loop Assim.

0.64 0.55 ± 0.01 0.39 ± 0.01 0.64 ± 0.01
0.74 0.62 ± 0.04 0.61 ± 0.03 0.73 ± 0.02
0.52 0.23 ± 0.04 0.42 ± 0.02 0.50 ± 0.02
0.60 0.29 ± 0.03 0.60 ± 0.02 0.61 ± 0.02
0.72 – 0.47 ± 0.01 0.71 ± 0.01
0.80 – 0.67 ± 0.03 0.77 ± 0.02
0.54 – 0.48 ± 0.02 0.53 ± 0.02
0.65 – 0.64 ± 0.02 0.62 ± 0.02

2010–2013.
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surface layer and the root zone (not shown here). This provides clear
evidence of the presence of bias in the system. If the system is bias-
free (i.e., no systematic errors in either themodel or the SMOS observa-
tion), mean analysis increments should be close to zero. This bias prob-
lem was also indicated by non-zero mean innovations and non-zero
difference between climatology of satellite retrievals and that of their
model equivalents.

Data assimilation systems are usually designed to produce an opti-
mal estimate based upon the hypothesis of unbiased (and uncorrelated)
errors in model and observation (i.e., a bias-blind system). In practice,
biases in model forecast or observation (including observation opera-
tor) would contribute to the error variances, resulting in a suboptimal
analysis. Observation biases, if present and known, should be removed
prior to the assimilation. Provided that we can attribute the systematic
errors to proper sources, and they also can be represented, by design,
using appropriate parameters, the biases can be estimated jointly with
the model state by adding the designed parameters to the state vector
(i.e., a bias-aware system). However, this is extremely complicated to
achieve considering limited reference data and thus beyond the scope
of this work.

Following previous studies (e.g., Draper et al., 2012; Liu et al., 2011;
Reichle & Koster, 2004; Reichle et al., 2007) we utilize a bias reduction
scheme that matches the cumulative distribution function (CDF) of
SMOS retrievals to the MESH model surface soil moisture's CDF by scal-
ing the retrievals. The CDF matching scheme can effectively remove the
climatological difference (mean and standard deviation) between satel-
lite retrievals and model data, with little impact on the SMOS soil
moisture skill. The skill for the rescaled SMOS retrievals is almost identi-
cal to the skill of unscaled SMOS (Fig. 3). However, notice that since the
absolute magnitude of SMOS soil moisture is changed the assimilation
products aremeaningful only in terms of the time variability of soilmois-
ture, which is consistent with the advantage of point measurements
(Section 3). In the present study, the model CDF is based on the 4-year
(2010–2013) model surface soil moisture, while the SMOS soil moisture
CDF (and the scaling of SMOS) is calculated separately for 2010/2011 and
2012/2013 since there are non-negligible inconsistencies in SMOS re-
trievals between the twoperiods (due to the change of the dielectric con-
stant model in the retrieval algorithms). Correspondingly, the SMOS
observation error standard deviation (0.08 m3/m3) is rescaled by multi-
plying it with the ratio between the scaled SMOS time series standard
deviation (very close to the model soil moisture standard deviation)
and the unscaled SMOS time series standard deviation. The rescaling of
the SMOS retrievals and their error standard deviations is conducted lo-
cally. In addition,we alsomatched the satellite andmodel CDFs separate-
ly for the two model periods (2010–2011 and 2012–2013) and
independently for each season. Results indicated that the rescaling pa-
rameters depended only weakly upon the model period and the season
for this study.
4.2. Skill improvement over open-loop

Fig. 4 compares the surface soil moisture skills from the open-loop
model (single integrationwithout assimilation) and the assimilation es-
timates based upon the scaled SMOS retrievals. Here the surface soil
moisture skill refers to the correlation R (daily time series) between
the grid-averaged soil moisture from the model surface layer
(0–10 cm) and in situ measurements taken at 10 cm depth or in the
0–30 cmprofile (theprobe is vertically installed for some sites). R values
are not computed if the length of SMOS and/or in situ soil moisture time
series is short or when the correlation is strongly affected by the in situ
measurement noise or the trends (Section 3). Consistent with the as-
sessment of the SMOS skill, the model grids are categorized as the
sCmC, sCmF, sFmC, and sFmF types (Section 3). Table 1 summarizes
themedian andmean skill Rwithin each grid type for each soil moisture
product.
To test the significance of the difference between skills for the three
soil moisture products (SMOS, the open-loop, and the assimilation), the
Fisher Z transform method is used. Assuming that two correlations R1
and R2 are independent, the Z-score for the difference between the
two correlations can be expressed as (Dunn & Clark, 1969; Meng,
Rosenthal, & Rubin, 1992)

z ¼
0:5 ln

1þ R1

1−R1

� �
− 0:5 ln

1þ R2

1−R2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N1−3

þ 1
N2−3

r ð3Þ

where N1 andN2 are the sample sizes for R1 and R2. Given a significance
level, the two correlations are statistically different from each other if
the absolute Z-score exceeds the corresponding critical value. In prac-
tice, the assumption that the correlations (skills) are independent is
not strictly valid for the three soil moisture products. To this end, the
significance was estimated using a Monte Carlo approach for a limited
number of grids (due to computational burden). This preliminary test
confirmed the results assuming independence very closely approximate
the Monte Carlo-based results. Thus, all statistical tests for the skill dif-
ference reported in the paper utilize the independence assumption
and are not Monte Carlo based.

The open-loop model (Fig. 4, left column) typically provides higher
surface soil moisture skill R at the sFmF and sCmF grids (median/
mean of about 0.61), which are covered dominantly by forest, than at
the sCmC and sFmC grids (median/mean of about 0.40) that are domi-
nated by crop cover. Through the assimilation, the four grid types expe-
rience different skill gainsΔRA-M, defined as the skill for the assimilation
soilmoisture productminus the skill for the open-loop estimates (Fig. 4,
right). Overall the sCmC grids (triangles) have the largest improvement
ΔRA-M, and the sFmF grids (circles) show the weakest or even negative
ΔRA-M;while soilmoisture from the sCmFand sFmC grids (diamondand
square signs) typically shows low to modest increase in skill. The skill
gain ΔRA-M is typically statistically significant for the sCmC grids. After
the assimilation (Fig. 4, middle), the surface soil moisture skill R for
the sCmC grids (median/mean of about 0.64) are typically closer to or
even larger than R for the forest-dominated grids (sCmF and sFmF).
Similarly, Draper et al. (2012) revealed larger skill (anomaly R) im-
provements for the cropland than for the mixed cover class (10–60%
trees or woody plants) when assimilating the AMSR-E and ASCAT re-
trievals in the Catchment Land Surface Model (CLSM).

The counterpart of Fig. 4 for root-zone soil moisture (0–35 cm) is
provided in Fig. 5. The root-zone soil moisture skill is derived using a
depth-weighted average of soil moisture estimates in the model's top
two layers (0–10 and 10–35 cm) against the arithmetic mean of in
situmeasurements at 10 and 25 cmdepths or the 0–30 cmprofilesmea-
sured by vertically installed sensors. The variations with the grid types
of the open-loop skill and the skill gain ΔRA-M for root-zone soil mois-
ture are quite similar to those observed for the surface soil moisture.
Overall the open-loop skill for root-zone soil moisture (Fig. 5, left col-
umn) is higher at forest-dominated grids (sFmF and sCmF) than at
crop cover-dominated grids (sCmC and sFmC). The strongest skill im-
provement ΔRA-M for root-zone soil moisture are also observed for the
sCmC grids (triangles in Fig. 5, right). This clearly indicates that the sur-
face soilmoisture informationmeasured by SMOS, through the EnKF as-
similation, can be propagated to the soil layers that are not directly
measured. For a given grid type, on average, the skill for root-zone soil
moisture is slightly higher than the surface soil moisture skill (for both
the open-loop and the assimilation product) (Table 1).

The skill improvement ΔRA-M is controlled not only by the satellite
observation skill but also by the skill for the open-loop estimates. In gen-
eral, the skill improvement ΔRA-M increases as the satellite observation
skill, but decreases with increased open-loop skill (Reichle, Crow,
Koster, Sharif, & Mahanama, 2008). Therefore, when the satellite obser-
vation skill is high and the model (open-loop) skill is low, the largest



Fig. 4. Skill for surface soil moisture (0–10 cm) from (left) the open-loop model and (middle) the assimilation, and (right) the skill improvement ΔRA-M (Assimilation minus Open-loop)
over four individual years (top to bottom: 2010, 2011, 2012, and 2013). In the right column, ΔRA-M is denoted by an open symbol in gray if the open-loop R and the assimilation R are not
significantly (5% level) different from each other. Symbols denote the model grid types, same as in Fig. 3.
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skill improvement ΔRA-M is expected, which typically corresponds to
the sCmC case. On the contrary, if the satellite observation skill is low
and the open-loop model skill is high, we usually expect weak ΔRA-M,
as observed for the sFmF grids. When the satellite skill and the open-
loop skill are either both high (e.g. sCmF grids) or both low (e.g. sFmC
grids), ΔRA-M are typically low to modest.

The skill improvementΔRA-M (the assimilation skill minus the open-
loop skill) against ΔRS-M, defined as the SMOS observation skill minus
the skill for the open-loop surface soil moisture, is provided in Fig. 6.
Overall the skill improvement ΔRA-M for both surface and root-zone
soil moisture (the ordinate) is strongly related to ΔRS-M (the abscissa).
Every time the SMOS skill is greater than or equal to the open-loop sur-
face soil moisture skill, the assimilation is typically able to significantly
improve the skill of the model estimates. Such is the case with most of
the sCmC grids (triangles). When the satellite observation skill is
about 0–0.3 lower than the open-loop model (i.e., ΔRS-M along the ab-
scissa is between −0.3 and 0), the open-loop skill was still improved
by the assimilation for most cases (85% for surface soil moisture and
80% for root-zone soil moisture), but the improvements are not always
statistically significant. If the skill for SMOS retrievals ismore than about
0.3 below the open-loop skill (i.e., ΔRS-M is less than−0.3), the assimi-
lation is not helpful and even negatively affects the open-loop skill. The
results are fairly consistent with Draper et al. (2012). The study showed
that the assimilation of AMSR-E and ASCAT retrievals in CLSM typically
generated an improved skill (in terms of anomaly R) for both the surface
and root zone soil moisture as long as the satellite observation skill is no
more than about 0.2 lower than the open-loop skill.

For the retrievals of very low or even negative skill (ΔRS-M is thus
small in Fig. 6), which generally reflect poor satellite observations,
their real errors could be severely underestimated by the input error pa-
rameters, thus causing negativeΔRA-M. Overall, negativeΔRA-M is sever-
er in root zone than for the surface layer (Fig. 6). This is generally
consistent with the finding that poorly specified observation errors
have a fiercer impact on the assimilation estimates of root zone soil



Fig. 5. Similar to Fig. 4, but for root-zone (top 35 cm) soil moisture.
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moisture than on surface soil moisture estimates (Reichle, Crow, and
Keppenne, 2008). The on-line quality control routines (e.g., Reichle,
2008) and on-line tuning of error covariances (Reichle, Crow, and
Keppenne, 2008) may be helpful for controlling the occurrence of neg-
ativeΔRA-M. Note that although the assimilation skill does not necessar-
ily exceed the skill of the open-loop model for individual grids, the
assimilation product always outperforms or at least match the open-
loop counterpart in terms of the averaged skill for each grid type
(Table 1), coinciding with the finding based on synthetic assimilation
experiments (Reichle, Crow, Koster, et al., 2008). Additionally, as
shown in Fig. 6, overall the surface soil moisture ΔRA-M, relative to
root-zone ΔRA-M, exhibits a better linear relationship with ΔRS-M. For a
given ΔRS-M, the skill improvement ΔRA-M is usually more variable
(along the ordinate) for root-zone soil moisture than for surface soil
moisture. This may be due to the fact that during the assimilation the
updating of root-zone soilmoisture is subject to the accurate information
exchanges between the surface soil and the deeper layers, which, in turn,
are controlled by many factors (e.g. the model dynamics and the input
error parameters). However, notice that a perfect linear relationship be-
tween ΔRA-M and ΔRS-M is not expected since the sensitivity of ΔRA-M to
ΔRS-M is additionally affected by the magnitude of open loop skill.

4.3. Skill improvement over SMOS

In theory, the assimilation seeks to produce superior estimates, rela-
tive to both the open-loop model and the observation product alone. In
this section, we investigate the skill improvement, relative to the SMOS
observation skill, by the assimilation. Fig. 7 shows ΔRA-S, defined as the
skill for the surface soil moisture assimilation product minus the SMOS
observation skill. It is expected that ΔRA-S, as opposed to ΔRA-M, in-
creases as the open-loop skill (since the assimilation product skill typi-
cally increases with the open-loop skill for the same observation skill),
but decreases with increased satellite observation skill. As expected,
overall the variation of ΔRA-S with the grid type (Fig. 7) is opposite to



Fig. 6. Skill improvementΔRA-M (skill for the assimilationminus the open-loop skill, ordinate) for (left) surface and (right) root-zone soilmoisture againstΔRS-M (skill for the SMOSobservation
minus skill for the open-loop surface soil moisture, abscissa). Symbols indicate the model grid types as defined in the text: (triangles) sCmC, (diamonds) sCmF, (squares) sFmC, and (circles)
sFmF. Symbols in red mean that ΔRA-M are not statistically significant at the 5% level. The horizontal dashed line denotes ΔRA-M = 0. The two vertical dashed lines denote ΔRS-M =−0.3 and
ΔRS-M = 0, respectively.
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that forΔRA-M (Fig. 4, right column). At the sFmF and sFmCgrids (circles
and squares in Fig. 7), the surface soil moisture skill for the assimilation
typically significantly exceeds the skill of SMOS product alone (but the
corresponding ΔRA-M is typically small or even negative, as discussed
above). This is mainly because that for the two grid types the open-
loop skill is typically much higher than the satellite skill (e.g. Table 1).
In contrast, smallerΔRA-S are usually observed for the sCmC grids (trian-
gles in Fig. 7; the corresponding ΔRA-M is typically the strongest).

The SMOS observation skill could even exceed the assimilation
skill at a few of the sCmC grids (Fig. 7). Reichle, Crow, Koster, et al.
Fig. 7. Skill improvement ΔRA-S, defined as the skill for the surface soil moisture assimilation pr
ilation skill and the SMOS skill are not significantly (5% level) different from each other. Symb
(2008), based upon synthetic experiments (Fig. 2a therein), also
found that the surface soil moisture skill from the assimilation was
not always above the satellite observation skill (anomaly R was
used therein), especially in the presence of a poor open-loop model
skill and a high satellite skill (such is the case with our sCmC grids
showing negative ΔRA-S). As they pointed out, the reasons for the
occurrence of negative ΔRA-S may include the effects from the
nonlinearity of the system, a small ensemble size, and the imperfect
input error parameters, etc. However, note that overall the surface
soil moisture assimilation skill (median/mean of 0.64) is still
oduct minus the SMOS observation skill. ΔRA-S in gray open symbol means that the assim-
ols denote the model grid types, same as in Fig. 4.
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significantly better than the SMOS product skill (median/mean of
0.55) for the sCmC-type grid (Table 1).

4.4. Subgrid-scale (GRU) soil moisture skill

In the above, point in situ measurements are used to assess the skill
for the grid-scale soil moisture. It is acknowledged that there could be a
mismatch in vegetation or soil characteristics between the two products
with different spatial scales. A model grid square typically represents a
mixture of multiple land cover and soil attributes, while a point station
corresponds to only a specific vegetation and/or soil type. In this study,
however, this factor is expected to have negligible effects on the skill
evaluation above since the land cover type for in situ station is typically
consistent with the dominant land cover class for the grid-scale soil
moisture.

We also computed the subgrid-scale soil moisture skill, i.e., point
measurements are compared with the model soil moisture from a
subgrid area that has the same vegetation or soil characteristics as the
point site. In the MESH model, the subgrid-scale variability is resolved
using the GRU approach (Section 2.2). Each model grid cell is a mosaic
of up to seven GRUs. Each GRU corresponds to one land cover class
(other soil characteristics are assumed to be same for the same GRU
type) and is weighted by the fraction of the land cover class within
the grid cell. Hence, for a given grid location, the soil moisture skill for
a specific GRU, which corresponds to the land cover class for the in
situ station, is assessed. Overall the subgrid-scale (GRU) soil moisture
(not shown) and the grid-averaged soil moisture reveal a consistent
vegetation modulation of skill for both the open-loop and the assimila-
tion. The open-loopmodel usually provides strong soil moisture skill for
forest GRUs andweaker skill for crop GRUs. A crop GRU, if the SMOS soil
moisture sampled from a crop surface node is assimilated, typically ex-
periences a large skill improvementΔRA-M.When the assimilated SMOS
retrievals come from a forest-type surface, the skill improvementΔRA-M

for the crop GRU soil moisture is relatively weak. The assimilation typi-
cally leads to smaller or even negative ΔRA-M for forest-GRUs, even
when the assimilated SMOS soil moisture is from a crop surface node.
To further improve the assessment of the soil moisture skill, dense in
situ observations would clearly be of advantage, although such data
are not available for this study.

5. Summary and discussion

Since the launch of SMOS satellitemission, the validation and assim-
ilation of SMOS soil moisture has been an active research area. In this
paper, the 1D-EnKF is applied to assimilate SMOS soil moisture re-
trievals into the MESH model over the Great Lakes basin. The satellite
retrievals, the open-loop soil moisture, and the assimilation estimates
are validated against point-scale in situ soil moisture measurements
from MAWN, SCAN and FCRN, in terms of the daily time series correla-
tion coefficient (soilmoisture skill R). Due to the bias between the SMOS
retrievals and the model soil moisture estimates, a priori rescaling on
the retrievals is performed using the CDF matching. Our focus in this
work is thus on the assimilation of the scaled SMOS retrievals. The
main results from this study are as follows.

(1) The observation skill is typically low for the SMOS retrievals from
forest surface nodes, but becomes high for those from crop sur-
faces, consistent with the effect of canopy density on the satellite
retrieval capabilities. On the other hand, the open-loop model
typically provides higher soil moisture skill R over forests than
over crops.

(2) Overall the assimilation can favorably influence the model soil
moisture skill for both the surface layer and the root zone except
for the cases with a small SMOS observation skill and a large
open-loop skill. The skill improvement ΔRA-M, defined as the
skill for the assimilation soil moisture product minus the skill
for the open-loop estimates, for both surface and root-zone soil
moisture typically increases as the SMOS observation skill and
decreaseswith increased open-loop skill, showing a strong linear
relation to ΔRS-M, defined as the SMOS observation skill minus
the open-loop surface soil moisture skill. When the SMOS skill
is greater than or equal to the open-loop surface soil moisture
skill, the assimilation is typically able to significantly increase
the open-loop soil moisture skill.

(3) The crop-dominated grids typically experience the largest ΔRA-M

if the assimilated SMOS retrievals also come from crop surfaces,
consistent with a high satellite observation skill and a low
open-loop skill, while ΔRA-M is usually the weakest for the
forest-dominated grids when the SMOS retrievals from forest
surfaces are assimilated, due to a low observation skill and a
high open-loop skill.

(4) On average, the skill for the surface soil moisture assimilation
product is always significantly better than the skill for the
SMOS product alone, although the dependence of ΔRA-S (skill
for the surface soil moisture assimilation product minus the
SMOS observation skill) upon the open-loop skill and the satel-
lite observation skill is opposite to that for ΔRA-M. The forest-
dominated grids, if the assimilated SMOS retrievals also come
from forest surfaces, typically have largeΔRA-S because the corre-
sponding open-loop skill is generally higher than the satellite
skill. In contrast, smaller ΔRA-S are typically observed when the
assimilated SMOS retrievals are from crop surfaces since the cor-
responding SMOS observation skill is high.

(5) We also investigated the subgrid-scale (GRU) soil moisture skill
by comparing point measurements with the GRU soil moisture
(a GRU and an in situ site lie within the same grid cell and have
the same land cover class). Overall the GRU soil moisture skill
and the grid-scale soil moisture skill show a consistent vegeta-
tion modulation for both the open-loop and assimilation esti-
mates. This confirms a negligible impact of point measurements
(in situ data) on the skill assessment for the grid-scale soil mois-
ture (the model and SMOS) due to the possible disparity in veg-
etation characteristics between them.

Unlike previous assimilation studies of SMOS soil moisture (e.g.
Ridler et al., 2014; Zhao et al., 2014), this work assimilated 4 years of
SMOS retrievals (2010–2013) at a grid scale of ~15 km. The overall
agreement within the same grid type and the overall consistency be-
tween the years are observed for each of the three soil moisture prod-
ucts (SMOS, the open-loop, and the assimilation), which demonstrates
the robustness of our results. This study also suggests that the ability
of SMOS/MIRAS to measure surface soil moisture for a wide range of
vegetation covers is clearly of advantage for assessing the vegetation
modulation of the assimilation. The results offer further insight into
thedependence of the assimilation upon theopen-loop skill and the sat-
ellite observation skill.

In thiswork, only the correlation Rmetric of skill is used to assess the
three data sets (SMOS alone, the open-loopmodel, and the assimilation
estimates) because (1) the temporal variability of soil moisture (rather
than the absolute magnitude) observed by point measurements is spa-
tially representative; and (2) the absolute magnitude of the soil mois-
ture assimilation product is meaningless since the satellite retrievals
are rescaled prior to the assimilation (Reichle et al., 2007). Note that
through a percentile-based transformation (e.g., Entekhabi, Reichle,
Koster, & Crow, 2010) the time variations of soil moisture can be scaled
to the soil moisture initial conditions of weather and climate models,
while any bias (systematic error) in the soil moisture product can be
scaled out (e.g. Zhang & Frederiksen, 2003). Therefore, the resulting
soilmoisture assimilation product can benefitweather and climate fore-
cast initializations as long as the time variability of soil moisture is cap-
tured accurately. The skill R values presented in this work are derived
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based upon the original soilmoisture time series. To assess the impact of
soil moisture seasonality on the skill R estimates, we also analyzed the
anomaly R. The soil moisture anomalies are defined as departures of
daily soil moisture from the seasonal (monthly mean) climatology
(e.g., Reichle et al., 2007). At least three years of complete estimates,
for each soil moisture product, are required for extracting the soil mois-
ture seasonal climatology. In addition, for a given grid, a minimum of
60-day SMOS anomalies and 100-day in situ anomalies (per year) are
required for computing the anomaly R. Eventually, only 18 grids are
available for the anomaly R analysis. Overall our R metric of skill
(based upon the original time series) and the anomaly R metric lead
to the consistent general conclusions.

In the present work, overall the open loop soil moisture skill for
2010/2011 is lower than that for 2012/2013 (Figs. 4 and 5). The differ-
ence may be caused by two sources: (i) the meteorological forcing
data (notably rainfall) used for 2010/2011may be in relatively lowqual-
ity; and (ii) themodel parameters (related to physiography, vegetation,
and soil characteristics), which were based upon a calibration with the
2004–2005 streamflow observations (Haghnegahdar et al., 2014), may
be not the “best” for 2010/2011. If the improved forcing data and/or cal-
ibrated model parameters are applied, the 2010/2011 open-loop skill
could be increased and the corresponding skill improvement through
the assimilation is expected to decrease (as shown for 2012/2013).
However, our general conclusions remain valid.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2015.08.017.
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